Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Overview of PROTACs Targeting the Estrogen Receptor: Achievements for Biological and Drug Discovery

Author(s): Hui Qin, Yiwen Zhang, Yutao Lou, Zongfu Pan, Feifeng Song, Yujia Liu, Tong Xu, Xiaowei Zheng, Xiaoping Hu and Ping Huang*

Volume 29, Issue 22, 2022

Published on: 13 January, 2022

Page: [3922 - 3944] Pages: 23

DOI: 10.2174/0929867328666211110101018

Price: $65

Abstract

Estrogen receptors (ERs) are steroid hormone receptors, which belong to a large nuclear receptor family. Endocrine diseases correlate strongly with dysregulated ER signaling. Traditional therapies continue to rely on small molecule inhibitors, including aromatase inhibitors (AIs) and selective estrogen receptor modulators (SERMs), all of which permit acquired resistance to endocrine therapy. Proteolytic targeting chimeras (PROTACs) offer unprecedented potential for solving acquired endocrine resistance. ARV-471, an ER-targeting PROTAC developed by Arvinas, was designated as an Investigational New Drug by the US FDA in 2019, and a phase I trial in patients suffering from locally advanced or metastatic ER-positive/HER2- negative breast cancer was initiated. In this review, we will focus on progress in developing ER-targeting PROTACs from publications and patents aimed at the treatment of endocrine diseases.

Keywords: PROTACs, Estrogen receptors (ERs), nuclear receptor (NR), DNA binding region, ER-α, ER-β.

[1]
Kuiper, G.G.; Enmark, E.; Pelto-Huikko, M.; Nilsson, S.; Gustafsson, J.A. Cloning of a novel receptor expressed in rat prostate and ovary. Proc. Natl. Acad. Sci. USA, 1996, 93(12), 5925-5930.
[http://dx.doi.org/10.1073/pnas.93.12.5925] [PMID: 8650195]
[2]
Jia, M.; Dahlman-Wright, K.; Gustafsson, J-Å. Estrogen receptor alpha and beta in health and disease. Best Pract. Res. Clin. Endocrinol. Metab., 2015, 29(4), 557-568.
[http://dx.doi.org/10.1016/j.beem.2015.04.008] [PMID: 26303083]
[3]
Murphy, E. Estrogen signaling and cardiovascular disease. Circ. Res., 2011, 109(6), 687-696.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.236687] [PMID: 21885836]
[4]
McInerney, E.M.; Katzenellenbogen, B.S. Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J. Biol. Chem., 1996, 271(39), 24172-24178.
[http://dx.doi.org/10.1074/jbc.271.39.24172] [PMID: 8798658]
[5]
Nilsson, S.; Mäkelä, S.; Treuter, E.; Tujague, M.; Thomsen, J.; Andersson, G.; Enmark, E.; Pettersson, K.; Warner, M.; Gustafsson, J-Å. Mechanisms of estrogen action. Physiol. Rev., 2001, 81(4), 1535-1565.
[http://dx.doi.org/10.1152/physrev.2001.81.4.1535] [PMID: 11581496]
[6]
Langdon, S.P. Estrogen receptor signaling in cancer. Cancers (Basel), 2020, 12(10), 2744.
[http://dx.doi.org/10.3390/cancers12102744] [PMID: 32987743]
[7]
Cahua-Pablo, J.Á.; Flores-Alfaro, E.; Cruz, M. Estrogen receptor alpha in obesity and diabetes. Rev. Med. Inst. Mex. Seguro Soc., 2016, 54(4), 521-530.
[PMID: 27197110]
[8]
Gajadeera, N.; Hanson, R.N. Review of fluorescent steroidal ligands for the estrogen receptor 1995-2018. Steroids, 2019, 144, 30-46.
[http://dx.doi.org/10.1016/j.steroids.2019.02.002] [PMID: 30738074]
[9]
Farzaneh, S.; Zarghi, A. Estrogen receptor ligands: A review (2013-2015). Sci. Pharm., 2016, 84(3), 409-427.
[http://dx.doi.org/10.3390/scipharm84030409] [PMID: 28117309]
[10]
Russo, J.; Russo, I.H. The role of estrogen in the initiation of breast cancer. J. Steroid Biochem. Mol. Biol., 2006, 102(1-5), 89-96.
[http://dx.doi.org/10.1016/j.jsbmb.2006.09.004] [PMID: 17113977]
[11]
Miyoshi, Y.; Murase, K.; Saito, M.; Imamura, M.; Oh, K. Mechanisms of estrogen receptor-α upregulation in breast cancers. Med. Mol. Morphol., 2010, 43(4), 193-196.
[http://dx.doi.org/10.1007/s00795-010-0514-3] [PMID: 21267694]
[12]
McDonnell, D.P.; Wardell, S.E.; Norris, J.D. Oral Selective Estrogen Receptor Downregulators (SERDs), a breakthrough endocrine therapy for breast cancer. J. Med. Chem., 2015, 58(12), 4883-4887.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00760] [PMID: 26039356]
[13]
Bhatnagar, A.S.; Häusler, A.; Schieweck, K.; Lang, M.; Bowman, R. Highly selective inhibition of estrogen biosynthesis by CGS 20267, a new non-steroidal aromatase inhibitor. J. Steroid Biochem. Mol. Biol., 1990, 37(6), 1021-1027.
[http://dx.doi.org/10.1016/0960-0760(90)90460-3] [PMID: 2149502]
[14]
Jordan, V.C. Tamoxifen: Toxicities and drug resistance during the treatment and prevention of breast cancer. Annu. Rev. Pharmacol. Toxicol., 1995, 35(1), 195-211.
[http://dx.doi.org/10.1146/annurev.pa.35.040195.001211] [PMID: 7598491]
[15]
Komm, B.S.; Mirkin, S. An overview of current and emerging SERMs. J. Steroid Biochem. Mol. Biol., 2014, 143, 207-222.
[http://dx.doi.org/10.1016/j.jsbmb.2014.03.003] [PMID: 24667357]
[16]
Osborne, C.K.; Wakeling, A.; Nicholson, R.I. Fulvestrant: An oestrogen receptor antagonist with a novel mechanism of action. Br. J. Cancer, 2004, 90(1)(Suppl. 1), S2-S6.
[http://dx.doi.org/10.1038/sj.bjc.6601629] [PMID: 15094757]
[17]
Boér, K. Fulvestrant in advanced breast cancer: Evidence to date and place in therapy. Ther. Adv. Med. Oncol., 2017, 9(7), 465-479.
[http://dx.doi.org/10.1177/1758834017711097] [PMID: 28717399]
[18]
Perey, L.; Paridaens, R.; Hawle, H.; Zaman, K.; Nolé, F.; Wildiers, H.; Fiche, M.; Dietrich, D.; Clément, P.; Köberle, D.; Goldhirsch, A.; Thürlimann, B. Clinical benefit of fulvestrant in postmenopausal women with advanced breast cancer and primary or acquired resistance to aromatase inhibitors: Final results of phase II Swiss Group for Clinical Cancer Research Trial (SAKK 21/00). Ann. Oncol., 2007, 18(1), 64-69.
[http://dx.doi.org/10.1093/annonc/mdl341] [PMID: 17030543]
[19]
van Kruchten, M.; de Vries, E.G.; Glaudemans, A.W.; van Lanschot, M.C.; van Faassen, M.; Kema, I.P.; Brown, M.; Schröder, C.P.; de Vries, E.F.; Hospers, G.A. Measuring residual estrogen receptor availability during fulvestrant therapy in patients with metastatic breast cancer. Cancer Discov., 2015, 5(1), 72-81.
[http://dx.doi.org/10.1158/2159-8290.CD-14-0697] [PMID: 25380844]
[20]
Kuter, I.; Gee, J.M.W.; Hegg, R.; Singer, C.F.; Badwe, R.A.; Lowe, E.S.; Emeribe, U.A.; Anderson, E.; Sapunar, F.; Finlay, P.; Nicholson, R.I.; Bines, J.; Harbeck, N. Dose-dependent change in biomarkers during neoadjuvant endocrine therapy with fulvestrant: results from NEWEST, a randomized Phase II study. Breast Cancer Res. Treat., 2012, 133(1), 237-246.
[http://dx.doi.org/10.1007/s10549-011-1947-7] [PMID: 22286314]
[21]
Robertson, J.F.R.; Harrison, M. Fulvestrant: Pharmacokinetics and pharmacology. Br. J. Cancer, 2004, 90(1)(Suppl. 1), S7-S10.
[http://dx.doi.org/10.1038/sj.bjc.6601630] [PMID: 15094758]
[22]
Flanagan, J.J.; Neklesa, T.K. Targeting Nuclear Receptors with PROTAC degraders. Mol. Cell. Endocrinol., 2019, 493, 110452.
[http://dx.doi.org/10.1016/j.mce.2019.110452] [PMID: 31125586]
[23]
Luh, L.M.; Scheib, U.; Juenemann, K.; Wortmann, L.; Brands, M.; Cromm, P.M. Prey for the proteasome: Targeted protein degradation-a medicinal chemist’s perspective. Angew. Chem. Int. Ed. Engl., 2020, 59(36), 15448-15466.
[http://dx.doi.org/10.1002/anie.202004310] [PMID: 32428344]
[24]
Adjei, A.A. What is the right dose? The elusive optimal biologic dose in phase I clinical trials. J. Clin. Oncol., 2006, 24(25), 4054-4055.
[http://dx.doi.org/10.1200/JCO.2006.07.4658] [PMID: 16943522]
[25]
Hopkins, A.L.; Groom, C.R. The druggable genome. Nat. Rev. Drug Discov., 2002, 1(9), 727-730.
[http://dx.doi.org/10.1038/nrd892] [PMID: 12209152]
[26]
Paik, Y-K.; Jeong, S-K.; Omenn, G.S.; Uhlen, M.; Hanash, S.; Cho, S.Y.; Lee, H-J.; Na, K.; Choi, E-Y.; Yan, F.; Zhang, F.; Zhang, Y.; Snyder, M.; Cheng, Y.; Chen, R.; Marko-Varga, G.; Deutsch, E.W.; Kim, H.; Kwon, J-Y.; Aebersold, R.; Bairoch, A.; Taylor, A.D.; Kim, K.Y.; Lee, E-Y.; Hochstrasser, D.; Legrain, P.; Hancock, W.S. The Chromosome-Centric Human Proteome Project for cataloging proteins encoded in the genome. Nat. Biotechnol., 2012, 30(3), 221-223.
[http://dx.doi.org/10.1038/nbt.2152] [PMID: 22398612]
[27]
Lai, A.C.; Crews, C.M. Induced protein degradation: An emerging drug discovery paradigm. Nat. Rev. Drug Discov., 2017, 16(2), 101-114.
[http://dx.doi.org/10.1038/nrd.2016.211] [PMID: 27885283]
[28]
Dang, C.V.; Reddy, E.P.; Shokat, K.M.; Soucek, L. Drugging the ‘undruggable’ cancer targets. Nat. Rev. Cancer, 2017, 17(8), 502-508.
[http://dx.doi.org/10.1038/nrc.2017.36] [PMID: 28643779]
[29]
Jin, L.; Wang, W.; Fang, G. Targeting protein-protein interaction by small molecules. Annu. Rev. Pharmacol. Toxicol., 2014, 54(1), 435-456.
[http://dx.doi.org/10.1146/annurev-pharmtox-011613-140028] [PMID: 24160698]
[30]
Lazo, J.S.; Sharlow, E.R. Drugging undruggable molecular cancer targets. Annu. Rev. Pharmacol. Toxicol., 2016, 56(1), 23-40.
[http://dx.doi.org/10.1146/annurev-pharmtox-010715-103440] [PMID: 26527069]
[31]
Burslem, G.M.; Crews, C.M. Small-molecule modulation of protein homeostasis. Chem. Rev., 2017, 117(17), 11269-11301.
[http://dx.doi.org/10.1021/acs.chemrev.7b00077] [PMID: 28777566]
[32]
Cromm, P.M.; Crews, C.M. Targeted protein degradation: From chemical biology to drug discovery. Cell Chem. Biol., 2017, 24(9), 1181-1190.
[http://dx.doi.org/10.1016/j.chembiol.2017.05.024] [PMID: 28648379]
[33]
Bondeson, D.P.; Mares, A.; Smith, I.E.; Ko, E.; Campos, S.; Miah, A.H.; Mulholland, K.E.; Routly, N.; Buckley, D.L.; Gustafson, J.L.; Zinn, N.; Grandi, P.; Shimamura, S.; Bergamini, G.; Faelth-Savitski, M.; Bantscheff, M.; Cox, C.; Gordon, D.A.; Willard, R.R.; Flanagan, J.J.; Casillas, L.N.; Votta, B.J.; den Besten, W.; Famm, K.; Kruidenier, L.; Carter, P.S.; Harling, J.D.; Churcher, I.; Crews, C.M. Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat. Chem. Biol., 2015, 11(8), 611-617.
[http://dx.doi.org/10.1038/nchembio.1858] [PMID: 26075522]
[34]
Sakamoto, K.M.; Kim, K.B.; Kumagai, A.; Mercurio, F.; Crews, C.M.; Deshaies, R.J. Protacs: chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proc. Natl. Acad. Sci. USA, 2001, 98(15), 8554-8559.
[http://dx.doi.org/10.1073/pnas.141230798] [PMID: 11438690]
[35]
Komander, D. The emerging complexity of protein ubiquitination. Biochem. Soc. Trans., 2009, 37(Pt 5), 937-953.
[http://dx.doi.org/10.1042/BST0370937] [PMID: 19754430]
[36]
Skaar, J.R.; Pagan, J.K.; Pagano, M. SCF ubiquitin ligase-targeted therapies. Nat. Rev. Drug Discov., 2014, 13(12), 889-903.
[http://dx.doi.org/10.1038/nrd4432] [PMID: 25394868]
[37]
Li, W.; Bengtson, M.H.; Ulbrich, A.; Matsuda, A.; Reddy, V.A.; Orth, A.; Chanda, S.K.; Batalov, S.; Joazeiro, C.A.P. Genome-wide and functional annotation of human E3 ubiquitin ligases identifies MULAN, a mitochondrial E3 that regulates the organelle’s dynamics and signaling. PLoS One, 2008, 3(1), e1487.
[http://dx.doi.org/10.1371/journal.pone.0001487] [PMID: 18213395]
[38]
Hatakeyama, S.; Nakayama, K-I. U-box proteins as a new family of ubiquitin ligases. Biochem. Biophys. Res. Commun., 2003, 302(4), 635-645.
[http://dx.doi.org/10.1016/S0006-291X(03)00245-6] [PMID: 12646216]
[39]
Petroski, M.D.; Deshaies, R.J. Function and regulation of cullin-RING ubiquitin ligases. Nat. Rev. Mol. Cell Biol., 2005, 6(1), 9-20.
[http://dx.doi.org/10.1038/nrm1547] [PMID: 15688063]
[40]
Deshaies, R.J.; Joazeiro, C.A.P. RING domain E3 ubiquitin ligases. Annu. Rev. Biochem., 2009, 78(1), 399-434.
[http://dx.doi.org/10.1146/annurev.biochem.78.101807.093809] [PMID: 19489725]
[41]
Metzger, M.B.; Hristova, V.A.; Weissman, A.M. HECT and RING finger families of E3 ubiquitin ligases at a glance. J. Cell Sci., 2012, 125(Pt 3), 531-537.
[http://dx.doi.org/10.1242/jcs.091777] [PMID: 22389392]
[42]
Metzger, M.B.; Pruneda, J.N.; Klevit, R.E.; Weissman, A.M. RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim. Biophys. Acta, 2014, 1843(1), 47-60.
[http://dx.doi.org/10.1016/j.bbamcr.2013.05.026] [PMID: 23747565]
[43]
Chamberlain, P.P.; Lopez-Girona, A.; Miller, K.; Carmel, G.; Pagarigan, B.; Chie-Leon, B.; Rychak, E.; Corral, L.G.; Ren, Y.J.; Wang, M.; Riley, M.; Delker, S.L.; Ito, T.; Ando, H.; Mori, T.; Hirano, Y.; Handa, H.; Hakoshima, T.; Daniel, T.O.; Cathers, B.E. Structure of the human Cereblon-DDB1-lenalidomide complex reveals basis for responsiveness to thalidomide analogs. Nat. Struct. Mol. Biol., 2014, 21(9), 803-809.
[http://dx.doi.org/10.1038/nsmb.2874] [PMID: 25108355]
[44]
Ohoka, N.; Okuhira, K.; Ito, M.; Nagai, K.; Shibata, N.; Hattori, T.; Ujikawa, O.; Shimokawa, K.; Sano, O.; Koyama, R.; Fujita, H.; Teratani, M.; Matsumoto, H.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. In vivo knockdown of pathogenic proteins via specific and nongenetic Inhibitor of Apoptosis Protein (IAP)-dependent Protein Erasers (SNIPERs). J. Biol. Chem., 2017, 292(11), 4556-4570.
[http://dx.doi.org/10.1074/jbc.M116.768853] [PMID: 28154167]
[45]
Ottis, P.; Toure, M.; Cromm, P.M.; Ko, E.; Gustafson, J.L.; Crews, C.M. Assessing different E3 ligases for small molecule induced protein ubiquitination and degradation. ACS Chem. Biol., 2017, 12(10), 2570-2578.
[http://dx.doi.org/10.1021/acschembio.7b00485] [PMID: 28767222]
[46]
Schneekloth, A.R.; Pucheault, M.; Tae, H.S.; Crews, C.M. Targeted intracellular protein degradation induced by a small molecule: En route to chemical proteomics. Bioorg. Med. Chem. Lett., 2008, 18(22), 5904-5908.
[http://dx.doi.org/10.1016/j.bmcl.2008.07.114] [PMID: 18752944]
[47]
Ito, T.; Ando, H.; Suzuki, T.; Ogura, T.; Hotta, K.; Imamura, Y.; Yamaguchi, Y.; Handa, H. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971), 1345-1350.
[http://dx.doi.org/10.1126/science.1177319] [PMID: 20223979]
[48]
Krönke, J.; Udeshi, N.D.; Narla, A.; Grauman, P.; Hurst, S.N.; McConkey, M.; Svinkina, T.; Heckl, D.; Comer, E.; Li, X.; Ciarlo, C.; Hartman, E.; Munshi, N.; Schenone, M.; Schreiber, S.L.; Carr, S.A.; Ebert, B.L. Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells. Science, 2014, 343(6168), 301-305.
[http://dx.doi.org/10.1126/science.1244851] [PMID: 24292625]
[49]
Sekine, K.; Takubo, K.; Kikuchi, R.; Nishimoto, M.; Kitagawa, M.; Abe, F.; Nishikawa, K.; Tsuruo, T.; Naito, M. Small molecules destabilize cIAP1 by activating auto-ubiquitylation. J. Biol. Chem., 2008, 283(14), 8961-8968.
[http://dx.doi.org/10.1074/jbc.M709525200] [PMID: 18230607]
[50]
Buckley, D.L.; Van Molle, I.; Gareiss, P.C.; Tae, H.S.; Michel, J.; Noblin, D.J.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Targeting the von Hippel-Lindau E3 ubiquitin ligase using small molecules to disrupt the VHL/HIF-1α interaction. J. Am. Chem. Soc., 2012, 134(10), 4465-4468.
[http://dx.doi.org/10.1021/ja209924v] [PMID: 22369643]
[51]
Ottis, P.; Crews, C.M. Proteolysis-targeting chimeras: Induced protein degradation as a therapeutic strategy. ACS Chem. Biol., 2017, 12(4), 892-898.
[http://dx.doi.org/10.1021/acschembio.6b01068] [PMID: 28263557]
[52]
Sakamoto, K.M.; Kim, K.B.; Verma, R.; Ransick, A.; Stein, B.; Crews, C.M.; Deshaies, R.J. Development of Protacs to target cancer-promoting proteins for ubiquitination and degradation. Mol. Cell. Proteomics, 2003, 2(12), 1350-1358.
[http://dx.doi.org/10.1074/mcp.T300009-MCP200] [PMID: 14525958]
[53]
Jaakkola, P.; Mole, D.R.; Tian, Y-M.; Wilson, M.I.; Gielbert, J.; Gaskell, S.J.; von Kriegsheim, A.; Hebestreit, H.F.; Mukherji, M.; Schofield, C.J.; Maxwell, P.H.; Pugh, C.W.; Ratcliffe, P.J. Targeting of HIF-α to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science, 2001, 292(5516), 468-472.
[http://dx.doi.org/10.1126/science.1059796] [PMID: 11292861]
[54]
Semenza, G.L. HIF-1 and human disease: One highly involved factor. Genes Dev., 2000, 14(16), 1983-1991.
[PMID: 10950862]
[55]
Zhang, D.; Baek, S.H.; Ho, A.; Lee, H.; Jeong, Y.S.; Kim, K. Targeted degradation of proteins by small molecules: A novel tool for functional proteomics. Comb. Chem. High Throughput Screen., 2004, 7(7), 689-697.
[http://dx.doi.org/10.2174/1386207043328364] [PMID: 15578931]
[56]
Zhang, D.; Baek, S-H.; Ho, A.; Kim, K. Degradation of target protein in living cells by small-molecule proteolysis inducer. Bioorg. Med. Chem. Lett., 2004, 14(3), 645-648.
[http://dx.doi.org/10.1016/j.bmcl.2003.11.042] [PMID: 14741260]
[57]
Bargagna-Mohan, P.; Baek, S-H.; Lee, H.; Kim, K.; Mohan, R. Use of PROTACS as molecular probes of angiogenesis. Bioorg. Med. Chem. Lett., 2005, 15(11), 2724-2727.
[http://dx.doi.org/10.1016/j.bmcl.2005.04.008] [PMID: 15876533]
[58]
Cyrus, K.; Wehenkel, M.; Choi, E.Y.; Lee, H.; Swanson, H.; Kim, K.B. Jostling for position: optimizing linker location in the design of estrogen receptor-targeting PROTACs. ChemMedChem, 2010, 5(7), 979-985.
[http://dx.doi.org/10.1002/cmdc.201000146] [PMID: 20512796]
[59]
Cyrus, K.; Wehenkel, M.; Choi, E-Y.; Han, H-J.; Lee, H.; Swanson, H.; Kim, K-B. Impact of linker length on the activity of PROTACs. Mol. Biosyst., 2011, 7(2), 359-364.
[http://dx.doi.org/10.1039/C0MB00074D] [PMID: 20922213]
[60]
Cyrus, K.; Wehenkel, M.; Choi, E-Y.; Swanson, H.; Kim, K-B. Two-headed PROTAC: An effective new tool for targeted protein degradation. ChemBioChem, 2010, 11(11), 1531-1534.
[http://dx.doi.org/10.1002/cbic.201000222] [PMID: 20572252]
[61]
Jiang, Y.; Deng, Q.; Zhao, H.; Xie, M.; Chen, L.; Yin, F.; Qin, X.; Zheng, W.; Zhao, Y.; Li, Z. Development of stabilized peptide-based PROTACs against estrogen receptor α. ACS Chem. Biol., 2018, 13(3), 628-635.
[http://dx.doi.org/10.1021/acschembio.7b00985] [PMID: 29271628]
[62]
Dai, Y.; Yue, N.; Gong, J.; Liu, C.; Li, Q.; Zhou, J.; Huang, W.; Qian, H. Development of cell-permeable peptide-based PROTACs targeting estrogen receptor α. Eur. J. Med. Chem., 2020, 187, 111967.
[http://dx.doi.org/10.1016/j.ejmech.2019.111967] [PMID: 31865016]
[63]
Schneekloth, J.S., Jr; Fonseca, F.N.; Koldobskiy, M.; Mandal, A.; Deshaies, R.; Sakamoto, K.; Crews, C.M. Chemical genetic control of protein levels: Selective in vivo targeted degradation. J. Am. Chem. Soc., 2004, 126(12), 3748-3754.
[http://dx.doi.org/10.1021/ja039025z] [PMID: 15038727]
[64]
Lipinski, C.A.; Lombardo, F.; Dominy, B.W.; Feeney, P.J. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv. Drug Deliv. Rev., 2001, 46(1-3), 3-26.
[http://dx.doi.org/10.1016/S0169-409X(00)00129-0] [PMID: 11259830]
[65]
Galdeano, C.; Gadd, M.S.; Soares, P.; Scaffidi, S.; Van Molle, I.; Birced, I.; Hewitt, S.; Dias, D.M.; Ciulli, A. Structure-guided design and optimization of small molecules targeting the protein-protein interaction between the von Hippel-Lindau (VHL) E3 ubiquitin ligase and the hypoxia inducible factor (HIF) alpha subunit with in vitro nanomolar affinities. J. Med. Chem., 2014, 57(20), 8657-8663.
[http://dx.doi.org/10.1021/jm5011258] [PMID: 25166285]
[66]
Lu, G.; Middleton, R.E.; Sun, H.; Naniong, M.; Ott, C.J.; Mitsiades, C.S.; Wong, K-K.; Bradner, J.E.; Kaelin, W.G., Jr The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins. Science, 2014, 343(6168), 305-309.
[http://dx.doi.org/10.1126/science.1244917] [PMID: 24292623]
[67]
Krönke, J.; Fink, E.C.; Hollenbach, P.W.; MacBeth, K.J.; Hurst, S.N.; Udeshi, N.D.; Chamberlain, P.P.; Mani, D.R.; Man, H.W.; Gandhi, A.K.; Svinkina, T.; Schneider, R.K.; McConkey, M.; Järås, M.; Griffiths, E.; Wetzler, M.; Bullinger, L.; Cathers, B.E.; Carr, S.A.; Chopra, R.; Ebert, B.L. Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature, 2015, 523(7559), 183-188.
[http://dx.doi.org/10.1038/nature14610] [PMID: 26131937]
[68]
Buckley, D.L.; Gustafson, J.L.; Van Molle, I.; Roth, A.G.; Tae, H.S.; Gareiss, P.C.; Jorgensen, W.L.; Ciulli, A.; Crews, C.M. Small-molecule inhibitors of the interaction between the E3 ligase VHL and HIF1α. Angew. Chem. Int. Ed. Engl., 2012, 51(46), 11463-11467.
[http://dx.doi.org/10.1002/anie.201206231] [PMID: 23065727]
[69]
Toure, M.; Crews, C.M. Small-Molecule PROTACS: New Approaches to Protein Degradation. Angew. Chem. Int. Ed. Engl., 2016, 55(6), 1966-1973.
[http://dx.doi.org/10.1002/anie.201507978] [PMID: 26756721]
[70]
An, S.; Fu, L. Small-molecule PROTACs: An emerging and promising approach for the development of targeted therapy drugs. EBioMedicine, 2018, 36, 553-562.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.005] [PMID: 30224312]
[71]
Martín-Acosta, P.; Xiao, X. PROTACs to address the challenges facing small molecule inhibitors. Eur. J. Med. Chem., 2021, 210, 112993.
[http://dx.doi.org/10.1016/j.ejmech.2020.112993] [PMID: 33189436]
[72]
Gyrd-Hansen, M.; Meier, P. IAPs: From caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat. Rev. Cancer, 2010, 10(8), 561-574.
[http://dx.doi.org/10.1038/nrc2889] [PMID: 20651737]
[73]
Bertrand, M.J.; Lippens, S.; Staes, A.; Gilbert, B.; Roelandt, R.; De Medts, J.; Gevaert, K.; Declercq, W.; Vandenabeele, P. cIAP1/2 are direct E3 ligases conjugating diverse types of ubiquitin chains to receptor interacting proteins kinases 1 to 4 (RIP1-4). PLoS One, 2011, 6(9), e22356.
[http://dx.doi.org/10.1371/journal.pone.0022356] [PMID: 21931591]
[74]
Yang, Y.; Fang, S.; Jensen, J.P.; Weissman, A.M.; Ashwell, J.D. Ubiquitin protein ligase activity of IAPs and their degradation in proteasomes in response to apoptotic stimuli. Science, 2000, 288(5467), 874-877.
[http://dx.doi.org/10.1126/science.288.5467.874] [PMID: 10797013]
[75]
Park, S-M.; Yoon, J-B.; Lee, T.H. Receptor interacting protein is ubiquitinated by cellular inhibitor of apoptosis proteins (c-IAP1 and c-IAP2) in vitro. FEBS Lett., 2004, 566(1-3), 151-156.
[http://dx.doi.org/10.1016/j.febslet.2004.04.021] [PMID: 15147886]
[76]
Bertrand, M.J.M.; Milutinovic, S.; Dickson, K.M.; Ho, W.C.; Boudreault, A.; Durkin, J.; Gillard, J.W.; Jaquith, J.B.; Morris, S.J.; Barker, P.A. cIAP1 and cIAP2 facilitate cancer cell survival by functioning as E3 ligases that promote RIP1 ubiquitination. Mol. Cell, 2008, 30(6), 689-700.
[http://dx.doi.org/10.1016/j.molcel.2008.05.014] [PMID: 18570872]
[77]
Gyrd-Hansen, M.; Darding, M.; Miasari, M.; Santoro, M.M.; Zender, L.; Xue, W.; Tenev, T.; da Fonseca, P.C.A.; Zvelebil, M.; Bujnicki, J.M.; Lowe, S.; Silke, J.; Meier, P. IAPs contain an evolutionarily conserved ubiquitin-binding domain that regulates NF-kappaB as well as cell survival and oncogenesis. Nat. Cell Biol., 2008, 10(11), 1309-1317.
[http://dx.doi.org/10.1038/ncb1789] [PMID: 18931663]
[78]
Blankenship, J.W.; Varfolomeev, E.; Goncharov, T. Fedorova, Anna, V.; Kirkpatrick, Donald, S.; Izrael-Tomasevic, A.; Phu, L.; Arnott, D.; Aghajan, M.; Zobel, K.; Bazan, J.F.; Fairbrother, Wayne, J.; Deshayes, K.; Vucic, D. Ubiquitin binding modulates IAP antagonist-stimulated proteasomal degradation of c-IAP1 and c-IAP21. Biochem. J., 2008, 417(1), 149-165.
[http://dx.doi.org/10.1042/BJ20081885] [PMID: 18939944]
[79]
Itoh, Y.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Protein knockdown using methyl bestatin-ligand hybrid molecules: Design and synthesis of inducers of ubiquitination-mediated degradation of cellular retinoic acid-binding proteins. J. Am. Chem. Soc., 2010, 132(16), 5820-5826.
[http://dx.doi.org/10.1021/ja100691p] [PMID: 20369832]
[80]
Suda, H.; Takita, T.; Aoyagi, T.; Umezawa, H. The structure of bestatin. J. Antibiot. (Tokyo), 1976, 29(1), 100-101.
[http://dx.doi.org/10.7164/antibiotics.29.100] [PMID: 931786]
[81]
Sato, S.; Aoyama, H.; Miyachi, H.; Naito, M.; Hashimoto, Y. Demonstration of direct binding of cIAP1 degradation-promoting bestatin analogs to BIR3 domain: Synthesis and application of fluorescent bestatin ester analogs. Bioorg. Med. Chem. Lett., 2008, 18(11), 3354-3358.
[http://dx.doi.org/10.1016/j.bmcl.2008.04.031] [PMID: 18448338]
[82]
Muddana, S.S.; Peterson, B.R. Facile synthesis of cids: biotinylated estrone oximes efficiently heterodimerize estrogen receptor and streptavidin proteins in yeast three hybrid systems. Org. Lett., 2004, 6(9), 1409-1412.
[http://dx.doi.org/10.1021/ol0497537] [PMID: 15101754]
[83]
Itoh, Y.; Ishikawa, M.; Kitaguchi, R.; Sato, S.; Naito, M.; Hashimoto, Y. Development of target protein-selective degradation inducer for protein knockdown. Bioorg. Med. Chem., 2011, 19(10), 3229-3241.
[http://dx.doi.org/10.1016/j.bmc.2011.03.057] [PMID: 21515062]
[84]
Itoh, Y.; Kitaguchi, R.; Ishikawa, M.; Naito, M.; Hashimoto, Y. Design, synthesis and biological evaluation of nuclear receptor-degradation inducers. Bioorg. Med. Chem., 2011, 19(22), 6768-6778.
[http://dx.doi.org/10.1016/j.bmc.2011.09.041] [PMID: 22014751]
[85]
Demizu, Y.; Okuhira, K.; Motoi, H.; Ohno, A.; Shoda, T.; Fukuhara, K.; Okuda, H.; Naito, M.; Kurihara, M. Design and synthesis of estrogen receptor degradation inducer based on a protein knockdown strategy. Bioorg. Med. Chem. Lett., 2012, 22(4), 1793-1796.
[http://dx.doi.org/10.1016/j.bmcl.2011.11.086] [PMID: 22277276]
[86]
Okuhira, K.; Demizu, Y.; Hattori, T.; Ohoka, N.; Shibata, N.; Nishimaki-Mogami, T.; Okuda, H.; Kurihara, M.; Naito, M. Development of hybrid small molecules that induce degradation of estrogen receptor-alpha and necrotic cell death in breast cancer cells. Cancer Sci., 2013, 104(11), 1492-1498.
[http://dx.doi.org/10.1111/cas.12272] [PMID: 23992566]
[87]
Yang, L.; Kumar, B.; Shen, C.; Zhao, S.; Blakaj, D.; Li, T.; Romito, M.; Teknos, T.N.; Williams, T.M. LCL161, a SMAC-mimetic, preferentially radiosensitizes human papillomavirus-negative head and neck squamous cell carcinoma. Mol. Cancer Ther., 2019, 18(6), 1025-1035.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1157] [PMID: 31015310]
[88]
Korneluk, R.G.; Lacasse, E.C.; Beug, S.T.; Tang, V.A. SMAC protein mimetic compounds (SMCs) in combination with other therapeutic agents for the treatment of cancer. WO Patent, WO2015109391A1, 2015.
[89]
Okuhira, K.; Ohoka, N.; Sai, K.; Nishimaki-Mogami, T.; Itoh, Y.; Ishikawa, M.; Hashimoto, Y.; Naito, M. Specific degradation of CRABP-II via cIAP1-mediated ubiquitylation induced by hybrid molecules that crosslink cIAP1 and the target protein. FEBS Lett., 2011, 585(8), 1147-1152.
[http://dx.doi.org/10.1016/j.febslet.2011.03.019] [PMID: 21414315]
[90]
Ohoka, N.; Nagai, K.; Hattori, T.; Okuhira, K.; Shibata, N.; Cho, N.; Naito, M. Cancer cell death induced by novel small molecules degrading the TACC3 protein via the ubiquitin-proteasome pathway. Cell Death Dis., 2014, 5(11), e1513-e1513.
[http://dx.doi.org/10.1038/cddis.2014.471] [PMID: 25375378]
[91]
Fulda, S.; Vucic, D. Targeting IAP proteins for therapeutic intervention in cancer. Nat. Rev. Drug Discov., 2012, 11(2), 109-124.
[http://dx.doi.org/10.1038/nrd3627] [PMID: 22293567]
[92]
Varfolomeev, E.; Blankenship, J.W.; Wayson, S.M.; Fedorova, A.V.; Kayagaki, N.; Garg, P.; Zobel, K.; Dynek, J.N.; Elliott, L.O.; Wallweber, H.J.A.; Flygare, J.A.; Fairbrother, W.J.; Deshayes, K.; Dixit, V.M.; Vucic, D. IAP antagonists induce autoubiquitination of c-IAPs, NF-kappaB activation, and TNFalpha-dependent apoptosis. Cell, 2007, 131(4), 669-681.
[http://dx.doi.org/10.1016/j.cell.2007.10.030] [PMID: 18022362]
[93]
Vince, J.E.; Wong, W.W-L.; Khan, N.; Feltham, R.; Chau, D.; Ahmed, A.U.; Benetatos, C.A.; Chunduru, S.K.; Condon, S.M.; McKinlay, M.; Brink, R.; Leverkus, M.; Tergaonkar, V.; Schneider, P.; Callus, B.A.; Koentgen, F.; Vaux, D.L.; Silke, J. IAP antagonists target cIAP1 to induce TNFalpha-dependent apoptosis. Cell, 2007, 131(4), 682-693.
[http://dx.doi.org/10.1016/j.cell.2007.10.037] [PMID: 18022363]
[94]
Pedersen, J.; LaCasse, E.C.; Seidelin, J.B.; Coskun, M.; Nielsen, O.H. Inhibitors of apoptosis (IAPs) regulate intestinal immunity and inflammatory bowel disease (IBD) inflammation. Trends Mol. Med., 2014, 20(11), 652-665.
[http://dx.doi.org/10.1016/j.molmed.2014.09.006] [PMID: 25282548]
[95]
Ohoka, N.; Morita, Y.; Nagai, K.; Shimokawa, K.; Ujikawa, O.; Fujimori, I.; Ito, M.; Hayase, Y.; Okuhira, K.; Shibata, N.; Hattori, T.; Sameshima, T.; Sano, O.; Koyama, R.; Imaeda, Y.; Nara, H.; Cho, N.; Naito, M. Derivatization of inhibitor of apoptosis protein (IAP) ligands yields improved inducers of estrogen receptor α degradation. J. Biol. Chem., 2018, 293(18), 6776-6790.
[http://dx.doi.org/10.1074/jbc.RA117.001091] [PMID: 29545311]
[96]
Harling, J.D.; Smith, I.E.D. Preparation of IAP E3 ligase directed proteolysis targeting chimeric molecules. WO Patent, WO2016169989A1, 2016.
[97]
Duan, D.R.; Humphrey, J.S.; Chen, D.Y.; Weng, Y.; Sukegawa, J.; Lee, S.; Gnarra, J.R.; Linehan, W.M.; Klausner, R.D. Characterization of the VHL tumor suppressor gene product: localization, complex formation, and the effect of natural inactivating mutations. Proc. Natl. Acad. Sci. USA, 1995, 92(14), 6459-6463.
[http://dx.doi.org/10.1073/pnas.92.14.6459] [PMID: 7604013]
[98]
Pause, A.; Lee, S.; Worrell, R.A.; Chen, D.Y.T.; Burgess, W.H.; Linehan, W.M.; Klausner, R.D. The von Hippel-Lindau tumor-suppressor gene product forms a stable complex with human CUL-2, a member of the Cdc53 family of proteins. Proc. Natl. Acad. Sci. USA, 1997, 94(6), 2156-2161.
[http://dx.doi.org/10.1073/pnas.94.6.2156] [PMID: 9122164]
[99]
Iliopoulos, O.; Ohh, M.; Kaelin, W.G., Jr pVHL19 is a biologically active product of the von Hippel-Lindau gene arising from internal translation initiation. Proc. Natl. Acad. Sci. USA, 1998, 95(20), 11661-11666.
[http://dx.doi.org/10.1073/pnas.95.20.11661] [PMID: 9751722]
[100]
Gossage, L.; Eisen, T.; Maher, E.R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer, 2015, 15(1), 55-64.
[http://dx.doi.org/10.1038/nrc3844] [PMID: 25533676]
[101]
Lisztwan, J.; Imbert, G.; Wirbelauer, C.; Gstaiger, M.; Krek, W. The von Hippel-Lindau tumor suppressor protein is a component of an E3 ubiquitin-protein ligase activity. Genes Dev., 1999, 13(14), 1822-1833.
[http://dx.doi.org/10.1101/gad.13.14.1822] [PMID: 10421634]
[102]
Iwai, K.; Yamanaka, K.; Kamura, T.; Minato, N.; Conaway, R.C.; Conaway, J.W.; Klausner, R.D.; Pause, A. Identification of the von Hippel-lindau tumor-suppressor protein as part of an active E3 ubiquitin ligase complex. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12436-12441.
[http://dx.doi.org/10.1073/pnas.96.22.12436] [PMID: 10535940]
[103]
Krek, W. VHL takes HIF’s breath away. Nat. Cell Biol., 2000, 2(7), E121-E123.
[http://dx.doi.org/10.1038/35017129] [PMID: 10878820]
[104]
Chitrakar, A.; Budda, S.A.; Henderson, J.G.; Axtell, R.C.; Zenewicz, L.A. E3 Ubiquitin ligase Von Hippel-Lindau protein promotes Th17 differentiation. J. Immunol., 2020, 205(4), 1009-1023.
[http://dx.doi.org/10.4049/jimmunol.2000243] [PMID: 32690659]
[105]
Campos, S.A.; Harling, J.D.; Miah, A.H.; Smith, I.E.D. Proteolysis targeting chimeras (protacs) directed to the modulation of the estrogen receptor. WO Patent, WO2014108452A1, 2014.
[106]
Patch, R.J.; Searle, L.L.; Kim, A.J.; De, D.; Zhu, X.; Askari, H.B.; O’Neill, J.C.; Abad, M.C.; Rentzeperis, D.; Liu, J.; Kemmerer, M.; Lin, L.; Kasturi, J.; Geisler, J.G.; Lenhard, J.M.; Player, M.R.; Gaul, M.D. Identification of diaryl ether-based ligands for estrogen-related receptor α as potential antidiabetic agents. J. Med. Chem., 2011, 54(3), 788-808.
[http://dx.doi.org/10.1021/jm101063h] [PMID: 21218783]
[107]
Crews, C.M.; Buckley, D.; Ciulli, A.; Jorgensen, W.; Gareiss, P.C.; Van Molle, I.; Gustafson, J.; Tae, H.-S.; Michel, J.; Hoyer, D.W.; Roth, A.G.; Harling, J.D.; Smith, I.E.D.; Miah, A.H.; Campos, S.A.; Le, J. Preparation of hydroxyproline analogs as inhibitors of the VCB E3 ubiquitin ligase for treating especially anemia and ischemia. WO Patent, WO2013106646A2, 2013.
[108]
Meng, L.; Mohan, R.; Kwok, B.H.B.; Elofsson, M.; Sin, N.; Crews, C.M. Epoxomicin, a potent and selective proteasome inhibitor, exhibits in vivo antiinflammatory activity. Proc. Natl. Acad. Sci. USA, 1999, 96(18), 10403-10408.
[http://dx.doi.org/10.1073/pnas.96.18.10403] [PMID: 10468620]
[109]
Hu, J.; Hu, B.; Wang, M.; Xu, F.; Miao, B.; Yang, C-Y.; Wang, M.; Liu, Z.; Hayes, D.F.; Chinnaswamy, K.; Delproposto, J.; Stuckey, J.; Wang, S. Discovery of ERD-308 as a highly Potent Proteolysis Targeting Chimera (PROTAC) degrader of Estrogen Receptor (ER). J. Med. Chem., 2019, 62(3), 1420-1442.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01572] [PMID: 30990042]
[110]
Yang, B.; Kettle, J.G.; Hayhow, T.G.C.; Rasmusson, T.G.; Nissink, J.W.M.; Fallan, C.; Lamont, G.M. Preparation of dipeptides and their use in treating cancer. Patent, WO2019123367A1, 2019.
[111]
Kargbo, R.B. PROTAC-mediated degradation of estrogen receptor in the treatment of cancer. ACS Med. Chem. Lett., 2019, 10(10), 1367-1369.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00397] [PMID: 31620216]
[112]
Fan, J.; Liu, Ke. Novel compounds having estrogen receptor alpha degradation. US Patent, US20180208590, 2018.
[113]
Fan, J.; Liu, K. Preparation of hydroxyproline analogs for degradation of estrogen receptor alpha and their use for treating positive breast cancer. US Patent, WO2018013559A1, 2018.
[114]
Fan, J.; Liu, K. Novel compounds having estrogen receptor alpha degradation. US Patent, US20200024269, 2020.
[115]
Dragovich, P.S.; Adhikari, P.; Blake, R.A.; Blaquiere, N.; Chen, J.; Cheng, Y-X.; den Besten, W.; Han, J.; Hartman, S.J.; He, J.; He, M.; Rei Ingalla, E.; Kamath, A.V.; Kleinheinz, T.; Lai, T.; Leipold, D.D.; Li, C.S.; Liu, Q.; Lu, J.; Lu, Y.; Meng, F.; Meng, L.; Ng, C.; Peng, K.; Lewis Phillips, G.; Pillow, T.H.; Rowntree, R.K.; Sadowsky, J.D.; Sampath, D.; Staben, L.; Staben, S.T.; Wai, J.; Wan, K.; Wang, X.; Wei, B.; Wertz, I.E.; Xin, J.; Xu, K.; Yao, H.; Zang, R.; Zhang, D.; Zhou, H.; Zhao, Y. Antibody-mediated delivery of chimeric protein degraders which target estrogen receptor alpha (ERα). Bioorg. Med. Chem. Lett., 2020, 30(4), 126907.
[http://dx.doi.org/10.1016/j.bmcl.2019.126907] [PMID: 31902710]
[116]
Roberts, B.L.; Ma, Z-X.; Gao, A.; Leisten, E.D.; Yin, D.; Xu, W.; Tang, W. Two-stage strategy for development of proteolysis targeting chimeras and its application for estrogen receptor degraders. ACS Chem. Biol., 2020, 15(6), 1487-1496.
[http://dx.doi.org/10.1021/acschembio.0c00140] [PMID: 32255606]
[117]
Higgins, J.J.; Tal, A.L.; Sun, X.; Hauck, S.C.R.; Hao, J.; Kosofosky, B.E.; Rajadhyaksha, A.M. Temporal and spatial mouse brain expression of cereblon, an ionic channel regulator involved in human intelligence. J. Neurogenet., 2010, 24(1), 18-26.
[http://dx.doi.org/10.3109/01677060903567849] [PMID: 20131966]
[118]
Lopez-Girona, A.; Mendy, D.; Ito, T.; Miller, K.; Gandhi, A.K.; Kang, J.; Karasawa, S.; Carmel, G.; Jackson, P.; Abbasian, M.; Mahmoudi, A.; Cathers, B.; Rychak, E.; Gaidarova, S.; Chen, R.; Schafer, P.H.; Handa, H.; Daniel, T.O.; Evans, J.F.; Chopra, R. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11), 2326-2335.
[http://dx.doi.org/10.1038/leu.2012.119] [PMID: 22552008]
[119]
Jo, S.; Lee, K-H.; Song, S.; Jung, Y-K.; Park, C-S. Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J. Neurochem., 2005, 94(5), 1212-1224.
[http://dx.doi.org/10.1111/j.1471-4159.2005.03344.x] [PMID: 16045448]
[120]
Xin, W.; Xiaohua, N.; Peilin, C.; Xin, C.; Yaqiong, S.; Qihan, W. Primary function analysis of human mental retardation related gene CRBN. Mol. Biol. Rep., 2008, 35(2), 251-256.
[http://dx.doi.org/10.1007/s11033-007-9077-3] [PMID: 17380424]
[121]
Hohberger, B.; Enz, R. Cereblon is expressed in the retina and binds to voltage-gated chloride channels. FEBS Lett., 2009, 583(4), 633-637.
[http://dx.doi.org/10.1016/j.febslet.2009.01.018] [PMID: 19166841]
[122]
Lee, K.M.; Jo, S.; Kim, H.; Lee, J.; Park, C-S. Functional modulation of AMP-activated protein kinase by cereblon. Biochim. Biophys. Acta, 2011, 1813(3), 448-455.
[http://dx.doi.org/10.1016/j.bbamcr.2011.01.005] [PMID: 21232561]
[123]
Fischer, E.S.; Böhm, K.; Lydeard, J.R.; Yang, H.; Stadler, M.B.; Cavadini, S.; Nagel, J.; Serluca, F.; Acker, V.; Lingaraju, G.M.; Tichkule, R.B.; Schebesta, M.; Forrester, W.C.; Schirle, M.; Hassiepen, U.; Ottl, J.; Hild, M.; Beckwith, R.E.J.; Harper, J.W.; Jenkins, J.L.; Thomä, N.H. Structure of the DDB1-CRBN E3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512), 49-53.
[http://dx.doi.org/10.1038/nature13527] [PMID: 25043012]
[124]
Krajcovicova, S.; Jorda, R.; Hendrychova, D.; Krystof, V.; Soural, M. Solid-phase synthesis for thalidomide-based proteolysis-targeting chimeras (PROTAC). Chem. Commun. (Camb.), 2019, 55(7), 929-932.
[http://dx.doi.org/10.1039/C8CC08716D] [PMID: 30601480]
[125]
Chen, H.; Chen, F.; Pei, S.; Gou, S. Pomalidomide hybrids act as proteolysis targeting chimeras: Synthesis, anticancer activity and B-Raf degradation. Bioorg. Chem., 2019, 87, 191-199.
[http://dx.doi.org/10.1016/j.bioorg.2019.03.035] [PMID: 30901674]
[126]
Crew, A.P.; Qian, Y.; Dong, H.; Wang, J.; Crews, C.M. Preparation of indole derivatives as estrogen receptor degraders. US Patent, US20180072711A1, 2018.
[127]
Crew, A.P.; Qian, Y.; Dong, H.; Wang, J.; Hornberger, K.R.; Crews, C.M. Tetrahydronaphthalene and tetrahydroisoquinoline derivatives as estrogen receptor degraders and their preparation. WO Patent, WO2018102725A1, 2018.
[128]
Crew, A.P.; Crews, C.M.; Dong, H.; Hornberger, K.R.; Wang, J.; Qian, Y.; Zimmermann, K.; Berlin, M.; Snyder, L.B. Prepn. of cereblon E3 ligase ligands and bifunctional PROTAC compds. for targeting and degradation of androgen receptor, estrogen receptor alpha, bromodomain-contg. protein 4, and BRaf. US Patent, US20180228907A1, 2018.
[129]
Crew, A.P.; Berlin, M.; Dong, H.; Homberger, K.R.; Qian, Y.; Snyder, L.B.; Wang, J.; Zimmermann, K. Preparation of cereblon E3 ligase ligands and bifunctional PROTAC compounds comprising them for the degradation of targeted proteins including TANK-binding kinase 1, estrogen receptor alpha, bromodomain-containing protein 4 and tau protein. US Patent, US20180215731A1, 2018.
[130]
Crew, A.P.; Crews, C.M.; Dong, H.; Hornberger, K.R.; Wang, J.; Qian, Y.; Zimmermann, K.; Berlin, M.; Snyder, L.B. Prepn. of cereblon E3 ligase ligands and bifunctional PROTAC compds. for targeting and degradation of androgen receptor, estrogen receptor alpha, bromodomain-contg. protein 4, and BRaf. WO Patent, WO2019199816A1, 2019.
[131]
Flanagan, J.J.; Qian, Y.; Gough, S.M.; Andreoli, M.; Bookbinder, M.; Cadelina, G.; Bradley, J.; Rousseau, E.; Willard, R.; Pizzano, J.; Crews, C.; Crew, A.; Taylor, I.; Houston, J. Abstract P5-04-18: ARV-471, an oral estrogen receptor PROTAC degrader for breast cancer. Cancer Res., 2019, 79, 5-04.
[132]
Li, X.; Song, Y. Proteolysis-targeting chimera (PROTAC) for targeted protein degradation and cancer therapy. J. Hematol. Oncol., 2020, 13(1), 50.
[http://dx.doi.org/10.1186/s13045-020-00885-3] [PMID: 32404196]
[133]
Bethany, H. Arvinas unveils PROTAC structures. Chem. Eng. News, 2021, 99(14), 5.
[http://dx.doi.org/10.47287/cen-09914-scicon1]
[134]
Salvati, A.; Gigantino, V.; Nassa, G.; Mirici Cappa, V.; Ventola, G.M.; Cracas, D.G.C.; Mastrocinque, R.; Rizzo, F.; Tarallo, R.; Weisz, A.; Giurato, G. Global view of candidate therapeutic target genes in hormone-responsive breast cancer. Int. J. Mol. Sci., 2020, 21(11), 4068.
[http://dx.doi.org/10.3390/ijms21114068] [PMID: 32517194]
[135]
Bi, M.; Zhang, Z.; Jiang, Y-Z.; Xue, P.; Wang, H.; Lai, Z.; Fu, X.; De Angelis, C.; Gong, Y.; Gao, Z.; Ruan, J.; Jin, V.X.; Marangoni, E.; Montaudon, E.; Glass, C.K.; Li, W.; Huang, T.H-M.; Shao, Z-M.; Schiff, R.; Chen, L.; Liu, Z. Enhancer reprogramming driven by high-order assemblies of transcription factors promotes phenotypic plasticity and breast cancer endocrine resistance. Nat. Cell Biol., 2020, 22(6), 701-715.
[http://dx.doi.org/10.1038/s41556-020-0514-z] [PMID: 32424275]
[136]
Gombos, A. Selective oestrogen receptor degraders in breast cancer: A review and perspectives. Curr. Opin. Oncol., 2019, 31(5), 424-429.
[http://dx.doi.org/10.1097/CCO.0000000000000567] [PMID: 31335829]
[137]
Winter, G.E.; Buckley, D.L.; Paulk, J.; Roberts, J.M.; Souza, A.; Dhe-Paganon, S.; Bradner, J.E. DRUG DEVELOPMENT. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241), 1376-1381.
[http://dx.doi.org/10.1126/science.aab1433] [PMID: 25999370]
[138]
Sun, X.; Wang, J.; Yao, X.; Zheng, W.; Mao, Y.; Lan, T.; Wang, L.; Sun, Y.; Zhang, X.; Zhao, Q.; Zhao, J.; Xiao, R-P.; Zhang, X.; Ji, G.; Rao, Y. A chemical approach for global protein knockdown from mice to non-human primates. Cell Discov., 2019, 5(1), 10.
[http://dx.doi.org/10.1038/s41421-018-0079-1] [PMID: 30729032]
[139]
Lin, X.; Xiang, H.; Luo, G. Targeting estrogen receptor α for degradation with PROTACs: A promising approach to overcome endocrine resistance. Eur. J. Med. Chem., 2020, 206, 112689.
[http://dx.doi.org/10.1016/j.ejmech.2020.112689] [PMID: 32829249]
[140]
Gao, H.; Sun, X.; Rao, Y. PROTAC technology: Opportunities and challenges. ACS Med. Chem. Lett., 2020, 11(3), 237-240.
[http://dx.doi.org/10.1021/acsmedchemlett.9b00597] [PMID: 32184950]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy