Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Recent Advances in the Synthesis of 5′-deoxynucleoside Phosphonate Analogs

Author(s): Guang Huan Shen and Joon Hee Hong*

Volume 29, Issue 22, 2022

Published on: 17 January, 2022

Page: [3857 - 3921] Pages: 65

DOI: 10.2174/0929867328666211111162447

Price: $65

Abstract

The present review focuses on the synthesis of cyclic 5′-deoxynucleoside phosphonate analogs. The formation of various phosphonate alkyl moieties is accomplished through (i) Wittig (or HWE) type condensation to the nucleoside aldehyde moiety; (ii) nucleophilic displacement reaction using phosphonate anion or Lewis acid; (iii) Arbuzov reaction; (iv) olefin cross-metathesis between vinyl phosphonates and vinylated nucleosides; and (v) radical reaction and Pd catalyzed alkyne. For the coupling of nucleobases with cyclic moieties, the Mitsunobu reaction and Sonogashira-type cross-coupling are usually applied. For the coupling of furanose moieties with nucleobases, Vorbrüggentype condensation is generally applied. Addition reactions mediated by selenium ions are mainly applied for the coupling of carbocyclic moieties. Their biological activity results have been summarized.

Keywords: 5′-Deoxynucleoside phosphonates, antiviral agents, enzyme inhibitors, bioisostere, nucleoside, nucleoside- mimicking analogs.

[1]
Borbone, N.; Piccialli, G.; Roviello, G.N.; Oliviero, G. Nucleoside analogs and nucleoside precursors as drugs in the fight against SARS-CoV-2 and other coronaviruses. Molecules, 2021, 26(4), 986-986.
[http://dx.doi.org/10.3390/molecules26040986] [PMID: 33668428]
[2]
Holy, A. Phosphonomethoxyalkyl analogs of nucleotides. Curr. Pharm. Des., 2003, 9(31), 2567-2592.
[http://dx.doi.org/10.2174/1381612033453668] [PMID: 14529543]
[3]
De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877] [PMID: 16264436]
[4]
De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. Biochem. Pharmacol., 2011, 82(2), 99-109.
[http://dx.doi.org/10.1016/j.bcp.2011.03.027] [PMID: 21501598]
[5]
Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D.G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl. Acad. Sci. USA, 1991, 88(4), 1499-1503.
[http://dx.doi.org/10.1073/pnas.88.4.1499] [PMID: 1705039]
[6]
Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. Deoxythreosyl phosphonate nucleosides as selective anti-HIV agents. J. Am. Chem. Soc., 2005, 127(14), 5056-5065.
[http://dx.doi.org/10.1021/ja043045z] [PMID: 15810840]
[7]
Koh, Y.H.; Shim, J.H.; Wu, J.Z.; Zhong, W.; Hong, Z.; Girardet, J.L. Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus. J. Med. Chem., 2005, 48(8), 2867-2875.
[http://dx.doi.org/10.1021/jm049029u] [PMID: 15828825]
[8]
Kim, C.U.; Luh, B.Y.; Misco, P.F.; Bronson, J.J.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. Acyclic purine phosphonate analogues as antiviral agents. Synthesis and structure-activity relationships. J. Med. Chem., 1990, 33(4), 1207-1213.
[http://dx.doi.org/10.1021/jm00166a019] [PMID: 2157012]
[9]
D’Errico, S.; Borbone, N.; Catalanotti, B.; Secondo, A.; Petrozziello, T.; Piccialli, I.; Pannaccione, A.; Costantino, V.; Mayol, L.; Piccialli, G.; Oliviero, G. Synthesis and biological evaluation of a new structural simplified analogue of cADPR, a calcium-mobilizing secondary messenger firstly isolated from sea urchin eggs. Mar. Drugs, 2018, 16(3), 89-89.
[http://dx.doi.org/10.3390/md16030089] [PMID: 29534435]
[10]
Shen, G.H.; Hong, J.H. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues. Carbohydr. Res., 2018, 463, 47-106.
[http://dx.doi.org/10.1016/j.carres.2018.04.009] [PMID: 29772449]
[11]
Jones, G.H.; Moffatt, J.G. The synthesis of 6′-deoxyhomonucleoside-6′-phosphonic acids. J. Am. Chem. Soc., 1968, 90(19), 5336-5338.
[http://dx.doi.org/10.1021/ja01021a086] [PMID: 5670802]
[12]
Pfitzner, K.E.; Moffatt, J.G. The synthesis of nucleoside-5” aldehydes. J. Am. Chem. Soc., 1963, 85(19), 3027-3027.
[13]
Moffatt, J.G.; Pfitzner, K.E. Sulfoxide-Carbodiimide reactions. I. A facile oxidation of alcohols. J. Am. Chem. Soc., 1965, 87(24), 5661-5670.
[http://dx.doi.org/10.1021/ja00952a026]
[14]
Hamersma, J.W.; Snyder, E.I. Diimide reductions using potassium azodicarboxylate. J. Org. Chem., 1965, 30(11), 3985-3988.
[http://dx.doi.org/10.1021/jo01022a532]
[15]
Hollmann, J.; Schlimme, E. Darstellung und Konformationszuordnung einiger 5′-homologer Adenosinderivate. Liebigs Ann. Chem., 1984, (1), 98-107.
[http://dx.doi.org/10.1002/jlac.198419840111]
[16]
Montgomery, J.A.; Hewson, K. The synthesis of phosphonic acid analogues of purine ribonucleotides: an exception to the trans rule. Chem. Commun., 1969, (1), 15-16.
[http://dx.doi.org/10.1039/c29690000015]
[17]
Wadsworth, W.S.; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83(7), 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
[18]
Sato, T.; Shimadate, T.; Ishido, Y. Studies on nucleosides and nucleotides. VII-VIII. VII. A new method for synthesis of purine-ribonucleosides. Nippon Kakagu Zasshi, 1960, 81(9), 1440-1442.
[http://dx.doi.org/10.1246/nikkashi1948.81.9_1440]
[19]
Davoll, J.; Lowy, B.A. A new synthesis of purine nucleosides. The synthesis of adenosine, guanosine and 2,6-Diamino-9-β-D-ribofuranosylpurine. J. Am. Chem. Soc., 1951, 73(4), 1650-1655.
[http://dx.doi.org/10.1021/ja01148a071]
[20]
Kissman, H.M.; Baker, B.R. The synthesis of certain 5-Deoxy-D-ribofuranosylpurines. J. Am. Chem. Soc., 1957, 79(20), 5534-5540.
[http://dx.doi.org/10.1021/ja01577a055]
[21]
Jones, G.H.; Albrecht, H.P.; Damodaran, N.P.; Moffatt, J.G. Synthesis of isosteric phosphonate analogs of some biologically important phosphodiesters. J. Am. Chem. Soc., 1970, 92(18), 5510-5511.
[http://dx.doi.org/10.1021/ja00721a034] [PMID: 5449449]
[22]
Green, D.P.L.; Ravindranathan, T.; Reese, C.B.; Saffhill, R. The synthesis of oligoribonucleotides-8. The preparation of ribonucleoside 2′,5′-bisketals. Tetrahedron, 1970, 26(4), 1031-1041.
[http://dx.doi.org/10.1016/S0040-4020(01)98780-0] [PMID: 5443307]
[23]
Chládek, S.; Smrt, J. Oligonucleotidic compounds. VIII. Synthesis of adenylyl-(5′→3′)-uridine, adenylyl-(5′→3′)-cytidine, guanylyl-(5′→3′)-uridine, guanylyl(5′→3′)-cytidine, cytidylyl-(5′→3′)-cytidine, adenylyl-(5′→3′)-uridylyl-(5′→3′)-cytidine and related compounds. Collect. Czech. Chem. Commun., 1964, 29(1), 214-233.
[http://dx.doi.org/10.1135/cccc19640214]
[24]
Albrecht, H.P.; Jones, G.H.; Moffatt, J.G. 3′,-deoxy-3′,-(dihydroxyphosphinylmethyl) nucleosides. Isosteric phosphonate analogs of nucleoside 3′,-phosphates. J. Am. Chem. Soc., 1970, 92(18), 5511-5513.
[http://dx.doi.org/10.1021/ja00721a600] [PMID: 5449450]
[25]
Montgomery, J.A.; Laseter, A.G.; Hewson, K. The use of the wittig reaction in the modification of purine nucleosides. J. Heterocycl. Chem., 1974, 11(2), 211-218.
[http://dx.doi.org/10.1002/jhet.5570110219]
[26]
Jones, G.H.; Hamamura, E.K.; Moffatt, J.G. A new stable Wittig reagent suitable for the synthesis of α,β-unsaturated phosphonates. Tetrahedron Lett., 1968, 9(55), 5731-5734.
[http://dx.doi.org/10.1016/S0040-4039(00)76336-2]
[27]
Montgomery, J.A.; Thomas, H.J.; Kisliuk, R.L.; Gaumont, Y. Phosphonate analogue of 2′-deoxy-5-fluorouridylic acid. J. Med. Chem., 1979, 22(1), 109-111.
[http://dx.doi.org/10.1021/jm00187a024] [PMID: 423172]
[28]
Martin, J.C.; Verheyden, J.P.H. Synthesis of 4′-(Hydroxymethyl)Guanosine and a Phosphonate Analogue of Guanylic Acid. Nucleos. Nucleot., 1988, 7(3), 365-374.
[http://dx.doi.org/10.1080/07328318808068716]
[29]
Almer, H.; Classon, B.; Samuelsson, B.; Kvarnström, I. Synthesis of a phosphonomethyl analogue of 3′,-deoxy-3-fluorothymidine. Acta Chem. Scand., 1991, 45(7), 766-767.
[http://dx.doi.org/10.3891/acta.chem.scand.45-0766] [PMID: 1782107]
[30]
Parrish, J.P.; Lee, S.K.; Boojamra, C.G.; Hui, H.; Babusis, D.; Brown, B.; Shih, I-H.; Feng, J.Y.; Ray, A.S.; Mackman, R.L. Evaluation of 2′-α-fluorine modified nucleoside phosphonates as potential inhibitors of HCV polymerase. Bioorg. Med. Chem. Lett., 2013, 23(11), 3354-3357.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.095] [PMID: 23639543]
[31]
Sterzycki, R.; Mansuri, M.; Brankovan, V.; Buroker, R.; Ghazzouli, I.; Hitchcock, M.; Somrnadossi, J.P.; Martin, J.C. 1-(2,3-Dideoxy-3-Fluoro-β-D-Ribofuranosyl)Tine (FDDT). Improved preparation and evaluation as a potential anti-aids agent. Nucleos. Nucleot., 1989, 8(5-6), 1115-1117.
[http://dx.doi.org/10.1080/07328318908054302]
[32]
Freeman, G.A.; Rideout, J.L.; Miller, W.H.; Reardon, J.E. 3′,-Azido-3′,,5′-dideoxythymidine-5′-methylphosphonic acid diphosphate: synthesis and HIV-1 reverse transcriptase inhibition. J. Med. Chem., 1992, 35(17), 3192-3196.
[http://dx.doi.org/10.1021/jm00095a014] [PMID: 1380561]
[33]
Hill, J.A.; Freeman, G.A. An improved synthesis of [5′-3H]-3′,-Azido-3′,-Deoxythymidine Tritiated Zidovudine. J. Labelled Comp. Radiopharm., 1988, 25, 277-280.
[http://dx.doi.org/10.1002/jlcr.2580250306]
[34]
Hoard, D.E.; Ott, D.G. Conversion of Mono- and oligodeoxyribonucleotides to 5′-Triphosphates. J. Am. Chem. Soc., 1965, 87(8), 1785-1788.
[http://dx.doi.org/10.1021/ja01086a031] [PMID: 14289336]
[35]
Secrist, J.A.I.; Riggs, R.M.; Comber, R.N.; Montgomery, J.A. Synthesis of phosphonate analogues of Dideoxyadenosine (DDA)-, Dideoxycytidine (DDC)-, Dideoxyinosine (DDI)-, and Deoxythymidine (DDT)-5′-Monophosphates. Nucleos. Nucleot., 1992, 11, 947-956.
[http://dx.doi.org/10.1080/07328319208021749]
[36]
Riggs, R.M.; Comber, R.N.; Montgomery, J.A.; Secrist, J.A., III; Leeds, J.M.; Chaffee, S.; Hershfield, M.S. Phosphate modified analogues of 5′-O-Phosphorylated 2′,3′-Dideoxynucleosides: synthesis and anti-HIV activity. Nucleos. Nucleot., 1989, 8(5-6), 1119-1120.
[http://dx.doi.org/10.1080/07328318908054303]
[37]
Szabó, T.; Kers, A.; Stawinski, J. A new approach to the synthesis of the 5′-deoxy-5′-methylphosphonate linked thymidine oligonucleotide analogues. Nucleic Acids Res., 1995, 23(6), 893-900.
[http://dx.doi.org/10.1093/nar/23.6.893] [PMID: 7731801]
[38]
Reese, C.B.; Zard, L. Some observations relating to the oximate ion promoted unblocking of oligonucleotide aryl esters. Nucleic Acids Res., 1981, 9(18), 4611-4626.
[http://dx.doi.org/10.1093/nar/9.18.4611] [PMID: 7301585]
[39]
Mizuno, Y.; Endo, T. A novel type of neighboring group participation involving pyridine N-oxides in acylation and phosphorylation. J. Org. Chem., 1978, 43(4), 684-688.
[http://dx.doi.org/10.1021/jo00398a037]
[40]
Szabo, T.; Stawinski, J. Synthesis and some conformational features of the 5′-deoxy-5′-methylphosphonate linked dimer, 5′-deoxy-5′-C-(phosphonomethyl)thymidin-3′,-yl (thymidin-5′-yl)methylphosphonate. Tetrahedron, 1995, 51(14), 4145-4160.
[http://dx.doi.org/10.1016/0040-4020(95)00131-Q]
[41]
Xu, Y.; Flavin, M.T.; Xu, Z-Q. Preparation of new Wittig reagents and their application to the synthesis of α,β-Unsaturated Phosphonates. J. Org. Chem., 1996, 61(22), 7697-7701.
[http://dx.doi.org/10.1021/jo9608275] [PMID: 11667723]
[42]
Jung, K.Y.; Hohl, R.J.; Wiemer, A.J.; Wiemer, D.F. Synthesis of phosphonate derivatives of uridine, cytidine, and cytosine arabinoside. Bioorg. Med. Chem., 2000, 8(10), 2501-2509.
[http://dx.doi.org/10.1016/S0968-0896(00)00183-8] [PMID: 11058045]
[43]
Ogilvie, K.K.; Hakimelahi, G.H.; Proba, Z.A.; McGee, D.P.C. Silylated derivatives of arabinonucleosides. Tetrahedron Lett., 1982, 23(19), 1997-2000.
[http://dx.doi.org/10.1016/S0040-4039(00)87243-3]
[44]
Marcuccio, S.M.; Elmes, B.C.; Holan, G.; Middleton, E.J. Modified nucleosides. II.1 Economical synthesis of 2′,3′-Dideoxycytidine. Nucleosides Nucleotides, 1992, 11(10), 1695-1701.
[http://dx.doi.org/10.1080/07328319208017816]
[45]
Chen, X.; Jung, K-Y.; Wiemer, D.F.; Wiemer, A.J.; Hohl, R.J. Phosphonate analogues of cytosine arabinoside monophosphate. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1783-1786.
[http://dx.doi.org/10.1080/10426500212248]
[46]
Chen, X.; Wiemer, A.J.; Hohl, R.J.; Wiemer, D.F. Stereoselective synthesis of the 5′-hydroxy-5′-phosphonate derivatives of cytidine and cytosine arabinoside. J. Org. Chem., 2002, 67(26), 9331-9339.
[http://dx.doi.org/10.1021/jo020483k] [PMID: 12492335]
[47]
Raju, N.; Smee, D.F.; Robins, R.K.; Vaghefi, M.M. Synthesis and biological properties of purine and pyrimidine 5′-deoxy-5′-(dihydroxyphosphinyl)-β-D-ribofuranosyl analogues of AMP, GMP, IMP, and CMP. J. Med. Chem., 1989, 32(6), 1307-1313.
[http://dx.doi.org/10.1021/jm00126a027] [PMID: 2542559]
[48]
Harry-O’Kuru, R.E.; Smith, J.M.; Wolfe, M.S. A short, flexible route toward 2′-branched ribonucleosides. J. Org. Chem., 1997, 62, 1754-1759.
[http://dx.doi.org/10.1021/jo961893+]
[49]
Suk, D.H.; Bonnac, L.; Dykstra, C.C.; Pankiewicz, K.W.; Patterson, S.E. Rational design and synthesis of novel nucleotide anti-Giardia agents. Bioorg. Med. Chem. Lett., 2007, 17(7), 2064-2067.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.014] [PMID: 17258459]
[50]
Cosyn, L.; Van Calenbergh, S.; Joshi, B.V.; Ko, H.; Carter, R.L.; Kendall Harden, T.; Jacobson, K.A. Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives. Bioorg. Med. Chem. Lett., 2009, 19(11), 3002-3005.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.027] [PMID: 19419868]
[51]
Abbracchio, M.P.; Burnstock, G.; Boeynaems, J.M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Knight, G.E.; Fumagalli, M.; Gachet, C.; Jacobson, K.A.; Weisman, G.A. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev., 2006, 58(3), 281-341.
[http://dx.doi.org/10.1124/pr.58.3.3] [PMID: 16968944]
[52]
Jacobson, K.A.; Ivanov, A.A.; de Castro, S.; Harden, T.K.; Ko, H. Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal., 2009, 5(1), 75-89.
[http://dx.doi.org/10.1007/s11302-008-9106-2] [PMID: 18600475]
[53]
Gachet, C. P2 receptors, platelet function and pharmacological implications. Thromb. Haemost., 2008, 99(3), 466-472.
[http://dx.doi.org/10.1160/TH07-11-0673] [PMID: 18327393]
[54]
Nichols, K.K.; Yerxa, B.; Kellerman, D.J. Diquafosol tetrasodium: a novel dry eye therapy. Expert Opin. Investig. Drugs, 2004, 13(1), 47-54.
[http://dx.doi.org/10.1517/13543784.13.1.47] [PMID: 14680452]
[55]
Kim, B.S.; Kim, B.T.; Hwang, K.J. The synthesis of diverse adenosine 5′-phosphonate analogues as chain terminators against Hepatitis C virus. Bull. Korean Chem. Soc., 2010, 31(6), 1643-1648.
[http://dx.doi.org/10.5012/bkcs.2010.31.6.1643]
[56]
Kim, B.T.; Kim, S.K.; Lee, S.J.; Hwang, K.J. A convenient and versatile synthesis of 2′ (and 3′,)-Amino (and azido)-2′ (and 3′,)-deoxyadenosine as diverse synthetic precursors of cyclic Adenosine Diphosphate Ribose (cADPR). Bull. Korean Chem. Soc., 2004, 25(2), 243-248.
[http://dx.doi.org/10.5012/jkcs.2004.48.3.243]
[57]
Kim, B.S.; Kim, B.T.; Hwang, K.J. A practical method to cleave diphenyl phosphonate esters to their corresponding phosphonic acids in one step. Bull. Korean Chem. Soc., 2009, 30(6), 1391-1393.
[http://dx.doi.org/10.5012/bkcs.2009.30.6.1391]
[58]
Kumar, T.S.; Zhou, S.Y.; Joshi, B.V.; Balasubramanian, R.; Yang, T.; Liang, B.T.; Jacobson, K.A. Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5′-AMP as cardioprotective agents acting through a cardiac P2X receptor. J. Med. Chem., 2010, 53(6), 2562-2576.
[http://dx.doi.org/10.1021/jm9018542] [PMID: 20192270]
[59]
Joshi, B.V.; Melman, A.; Mackman, R.L.; Jacobson, K.A. Synthesis of ethyl (1S,2R,3S,4S,5S)-2,3-O-(isopropylidene)-4-hydroxy-bicyclo[3.1.0]hexane-carboxylate from L-ribose: a versatile chiral synthon for preparation of adenosine and P2 receptor ligands. Nucleosides Nucleotides Nucleic Acids, 2008, 27(3), 279-291.
[http://dx.doi.org/10.1080/15257770701845253] [PMID: 18260011]
[60]
Bichlmaier, I.; Kurkela, M.; Joshi, T.; Siiskonen, A.; Rüffer, T.; Lang, H.; Suchanova, B.; Vahermo, M.; Finel, M.; Yli-Kauhaluoma, J. Isoform-selective inhibition of the human UDP-glucuronosyltransferase 2B7 by isolongifolol derivatives. J. Med. Chem., 2007, 50(11), 2655-2664.
[http://dx.doi.org/10.1021/jm061204e] [PMID: 17474732]
[61]
Samadder, P.; Bittman, R.; Byun, H.S.; Arthur, G. Synthesis and use of novel ether phospholipid enantiomers to probe the molecular basis of the antitumor Effects of alkyllysophospholipids: correlation of differential activation of c-Jun NH(2)-terminal protein kinase with antiproliferative effects in neuronal tumor cells. J. Med. Chem., 2004, 47(10), 2710-2713.
[http://dx.doi.org/10.1021/jm0302748] [PMID: 15115414]
[62]
Salvatori, D.; Volpini, R.; Vincenzetti, S.; Vita, A.; Costanzi, S.; Lambertucci, C.; Cristalli, G.; Vittori, S. Adenine and deazaadenine nucleoside and deoxynucleoside analogues: Inhibition of viral replication of sheep MVV (in vitro model for HIV) and bovine BHV-1. Bioorg. Med. Chem., 2002, 10(9), 2973-2980.
[http://dx.doi.org/10.1016/S0968-0896(02)00131-1] [PMID: 12110319]
[63]
Hoffmann, M.F.H.; Bruckner, A.M.; Hupp, T.; Engels, B.; Diederichsen, U. Specific purine-purine base pairing in linear alanyl-peptide nucleic acids. Helv. Chim. Acta, 2000, 83, 2580-2593.
[http://dx.doi.org/10.1002/1522-2675(20000906)83:9<2580::AID-HLCA2580>3.0.CO;2-6]
[64]
Yang, A.; Sonin, D.; Jones, L.; Liang, B.T. beneficial role of cardiac P2X4 receptors in heart failure: rescuing the calsequestrin overexpression model of cardiomyopathy. Am. J. Physiol., 2004, 287, 1096-1103.
[65]
Jones, L.R.; Suzuki, Y.J.; Wang, W.; Kobayashi, Y.M.; Ramesh, V.; Franzini-Armstrong, C.; Cleemann, L.; Morad, M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest., 1998, 101(7), 1385-1393.
[http://dx.doi.org/10.1172/JCI1362] [PMID: 9525981]
[66]
Knollmann, B.C.; Knollmann-Ritschel, B.E.C.; Weissman, N.J.; Jones, L.R.; Morad, M. Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol., 2000, 525(Pt 2), 483-498.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00483.x] [PMID: 10835049]
[67]
Gallier, F.; Alexandre, J.A.; El Amri, C.; Deville-Bonne, D.; Peyrottes, S.; Périgaud, C. 5′,6′-nucleoside phosphonate analogues architecture: synthesis and comparative evaluation towards metabolic enzymes. ChemMedChem, 2011, 6(6), 1094-1106.
[http://dx.doi.org/10.1002/cmdc.201100068] [PMID: 21567966]
[68]
Miah, A.; Reese, C.B.; Song, Q.; Sturdy, Z.; Neidle, S.; Simpson, I.J.; Read, M.; Rayner, E. 2′,3′-Anhydrouridine. A useful synthetic intermediate. J. Chem. Soc. Perkin Trans. I, 1998, 1998(19), 3277-3283.
[http://dx.doi.org/10.1039/a803563f]
[69]
Van Poecke, S.; Barrett, M.O.; Santhosh Kumar, T.; Sinnaeve, D.; Martins, J.C.; Jacobson, K.A.; Kendall Harden, T.; Van Calenbergh, S. Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues. Bioorg. Med. Chem., 2012, 20(7), 2304-2315.
[http://dx.doi.org/10.1016/j.bmc.2012.02.012] [PMID: 22386981]
[70]
Pomeisl, K.; Holý, A.; Pohl, R. Pd-catalyzed Suzuki–Miyaura coupling reactions in the synthesis of 5-aryl-1-[2-(phosphonomethoxy)ethyl]uracils as potential multisubstrate inhibitors of thymidine phosphorylase. Tetrahedron Lett., 2007, 48(17), 3065-3067.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.107]
[71]
Verheyden, J.P.; Wagner, D.; Moffatt, J.G. Synthesis of some pyrimidine 2′-amino-2′-deoxynucleosides. J. Org. Chem., 1971, 36(2), 250-254.
[http://dx.doi.org/10.1021/jo00801a002] [PMID: 5545352]
[72]
Holy, A. Simple method for cleavage of Phosphonic acid diesters to monoesters. Synthesis, 1998, 1998(4), 381-385.
[http://dx.doi.org/10.1055/s-1998-2047]
[73]
Shatila, R.S.; Bouhadir, K.H. Two simple protocols for the preparation of diallylaminoethyl-substituted nucleic bases: a comparison. Tetrahedron Lett., 2006, 47(11), 1767-1770.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.035]
[74]
Poecke, S.V.; Sinnaeve, D.; Martins, J.C.; Balzarini, J.; Calenbergh, S.V. Synthesis of 5-substituted 2′-deoxyuridine-5′- phosphonate analogues and evaluation of their antiviral activity. Nucleosides Nucleotides Nucleic Acids, 2012, 31(3), 256-272.
[http://dx.doi.org/10.1080/15257770.2012.654876] [PMID: 22356239]
[75]
Fries, K.M.; Joswig, C.; Borch, R.F. Synthesis and biological evaluation of 5-fluoro-2′-deoxyuridine phosphoramidate analogs. J. Med. Chem., 1995, 38(14), 2672-2680.
[http://dx.doi.org/10.1021/jm00014a019] [PMID: 7629806]
[76]
Kim, C.U.; Misco, P.F.; Luh, B.Y.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. A new class of acyclic phosphonate nucleotide analogues: phosphonate isosteres of acyclovir and ganciclovir monophosphates as antiviral agents. J. Med. Chem., 1991, 34(7), 2286-2294.
[http://dx.doi.org/10.1021/jm00111a052] [PMID: 1648622]
[77]
Pradere, U.; Amblard, F.; Coats, S.J.; Schinazi, R.F.; Schinazi, R.F. Synthesis of 5′-methylene-phosphonate furanonucleoside prodrugs: application to D-2′-deoxy-2′-α-fluoro-2′-β-C-methyl nucleosides. Org. Lett., 2012, 14(17), 4426-4429.
[http://dx.doi.org/10.1021/ol301937v] [PMID: 22917194]
[78]
Dang, Q.; Zhang, Z.; He, S.; Liu, Y.; Chen, T.; Bogen, S.; Girijavallabhan, V.; Olsen, D.B.; Meinke, P.T. Syntheses of 4′-spirocyclic phosphono-nucleosides as potential inhibitors of hepatitis C virus NS5B Polymerase. Tetrahedron Lett., 2014, 55(31), 4407-4409.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.029]
[79]
Agnel, G.; Negishi, E. Highly stereo- and regiocontrolled cyclopentannulation via allylphosphonate conjugate addition and hydroboration-oxidation-elimination. Synthesis of pentalenic acid with virtually complete stereo- and regiocontrol. J. Am. Chem. Soc., 1991, 113(19), 7424-7426.
[http://dx.doi.org/10.1021/ja00019a051]
[80]
Maity, J.K.; Ghosh, R.; Drew, M.G.; Achari, B.; Mandal, S.B. Introduction of vinyl and hydroxymethyl functionalities at C-4 of glucose-derived substrates: synthesis of spirocyclic, bicyclic, and tricyclic nucleosides. J. Org. Chem., 2008, 73(11), 4305-4308.
[http://dx.doi.org/10.1021/jo8002826] [PMID: 18433176]
[81]
D’Errico, S.; Falanga, A.P.; Capasso, D.; Di Gaetano, S.; Marzano, M.; Terracciano, M.; Roviello, G.N.; Piccialli, G.; Oliviero, G.; Borbone, N. Probing the DNA reactivity and the anticancer properties of a novel Tubercidin-Pt(II) complex. Pharmaceutics, 2020, 12(7), 627-627.
[http://dx.doi.org/10.3390/pharmaceutics12070627] [PMID: 32635488]
[82]
Xia, J.; Piskorz, C.F.; Alderfer, J.L.; Locke, R.D.; Matta, K.L. Total synthesis of a sialylated and sulfated oligosaccharide from O-linked glycoproteins. Tetrahedron Lett., 2000, 41(16), 2773-2776.
[http://dx.doi.org/10.1016/S0040-4039(00)00261-6]
[83]
Hampton, A.; Sasaki, T.; Paul, B. Synthesis of 6′-cyano-6′-deoxyhomoadenosine-6′-phosphonic acid and its phosphoryl and pyrophosphoryl anhydrides and studies of their interactions with adenine nucleotide utilizing enzymes. J. Am. Chem. Soc., 1973, 95(13), 4404-4414.
[http://dx.doi.org/10.1021/ja00794a043] [PMID: 4350696]
[84]
Tanaka, H.; Fukui, M.; Haraguchi, K.; Masaki, M.; Miyasaka, T. Cleavage of a nucleosidic oxetane with carbanions: synthesis of a highly promising candidate for anti-HIV agents - a phosphonate isostere of AZT 5′-phosphate. Tetrahedron Lett., 1989, 30(19), 2567-2570.
[http://dx.doi.org/10.1016/S0040-4039(01)80452-4]
[85]
Eis, M.J.; Wrobel, J.E.; Ganem, B. Mechanism and synthetic utility of boron trifluoride etherate-promoted organolithium additions. J. Am. Chem. Soc., 1984, 106(12), 3693-3694.
[http://dx.doi.org/10.1021/ja00324a060]
[86]
Mete, A.; Hobbs, J.B.; Scopes, D.I.C.; Newton, R.F. Novel nucleoside analogues via direct attack of carbon: Nucleophiles on nucleosides containing epoxy-sugars. Tetrahedron Lett., 1985, 26(1), 97-100.
[http://dx.doi.org/10.1016/S0040-4039(00)98477-6]
[87]
Ashwell, M.; Jones, A.S.; Walker, R.T. The synthesis of some branched-chain-sugar nucleoside analogues. Nucleic Acids Res., 1987, 15(5), 2157-2166.
[http://dx.doi.org/10.1093/nar/15.5.2157] [PMID: 3562223]
[88]
Horwitz, J.R.; Chua, J.; Da Rooge, M.A.; Noel, M.; Klundt, I.L. Nucleosides. IX. The formation of 2′,2′-unsaturated pyrimidine nucleosides via a novel β-elimination reaction. J. Org. Chem., 1966, 31(1), 205-211.
[http://dx.doi.org/10.1021/jo01339a045] [PMID: 5900814]
[89]
Dauben, W.G.; Beasley, G.H.; Broadhurst, M.D.; Muller, B.; Peppard, D.J.; Pesnelle, P.; Suter, C. Synthesis of (+/-)-cembrene, a fourteen-membered ring diterpene. J. Am. Chem. Soc., 1975, 97(17), 4973-4980.
[http://dx.doi.org/10.1021/ja00850a035]
[90]
Wolff-Kugel, D.; Halazy, S. Synthesis of new Carbocyclic Phosphonate analogs of dideoxypurine nucleotides. Tetrahedron Lett., 1991, 32(44), 6341-6344.
[http://dx.doi.org/10.1016/0040-4039(91)80164-2]
[91]
Tomoda, S.; Usuki, Y. Fluoroselenenylation of alkenes. Chem. Lett., 1989, 18(7), 1235-1236.
[http://dx.doi.org/10.1246/cl.1989.1235]
[92]
Clive, D.L.J.; Chittattu, G.J.; Farina, V.; Kiel, W.A.; Menchen, S.M.; Russell, C.G.; Singh, A.; Wong, C.K.; Curtis, N.J. Organic tellurium and selenium chemistry. Reduction of tellurides, selenides, and selenoacetals with triphenyltin hydride. J. Am. Chem. Soc., 1980, 102(13), 4438-4447.
[http://dx.doi.org/10.1021/ja00533a024]
[93]
Jung, M.E.; Lyster, M.A. Quantitative dealkylation of alkyl ethers via treatment with trimethylsilyl iodide. A new method for ether hydrolysis. J. Org. Chem., 1977, 42(23), 3761-3764.
[http://dx.doi.org/10.1021/jo00443a033]
[94]
Kim, C.U.; Bronson, J.J.; Ferrara, M.; Martin, J.C. Synthesis and HIV activity of phosphonate isostere of d4T monophosphate. Bioorg. Med. Chem. Lett., 1992, 2, 367-370.
[http://dx.doi.org/10.1016/S0960-894X(00)80147-X]
[95]
Navé, J-F.; Wolff-Kugel, D.; Halazy, S. Carbocyclic phosphonate analogs of 2′,3′-dideoxyadenosine-5′-monophosphate as substrates of 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetate. Bioorg. Med. Chem. Lett., 1992, 2(12), 1483-1488.
[http://dx.doi.org/10.1016/S0960-894X(00)80413-8]
[96]
Wolff-Kugel, D.; Halazy, S. Studies towards the synthesis of the saturated and unsaturated Carbocyclic Methylene Phosphonate analogs of Dideoxyadenosine. Nucleos. Nucleot., 1993, 12(3-4), 279-294.
[http://dx.doi.org/10.1080/07328319308017826]
[97]
Barton, D.H.R.; Motherwell, W.B. New and selective reactions and reagents in natural product chemistry. Pure Appl. Chem., 1981, 53(6), 1081-1099.
[http://dx.doi.org/10.1351/pac198153061081]
[98]
Seela, F.; Muth, H.P.; Bindig, U. Synthesis of 6-substituted 7-carbapurine 2′,3′-dideoxynucleosides: solid-liquid phase-transfer glycosylation of 4-chloropyrrolo[2,3-d]pyrimidine and deoxygenation of its 2′-deoxyribofuranoside. Synthesis, 1988, 1988(9), 670-674.
[http://dx.doi.org/10.1055/s-1988-27667]
[99]
Robins, M.J.; Wilson, J.S. Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2′-deoxynucleosides. J. Am. Chem. Soc., 1981, 103(4), 932-933.
[http://dx.doi.org/10.1021/ja00394a033]
[100]
Legeret, B.; Sarakauskaite, Z.; Pradaux, F.; Saito, Y.; Tumkevicius, S.; Agrofoglio, L.A. Synthesis of carbocyclic phosphononucleosides. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 661-664.
[http://dx.doi.org/10.1081/NCN-100002345] [PMID: 11563086]
[101]
Saito, Y.; Escuret, V.; Durantel, D.; Zoulim, F.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of 1,2,3-triazolo-carbanucleoside analogues of ribavirin targeting an HCV in replicon. Bioorg. Med. Chem., 2003, 11(17), 3633-3639.
[http://dx.doi.org/10.1016/S0968-0896(03)00349-3] [PMID: 12901908]
[102]
Spurlock, L.A.; Fayter, R.G., Jr Nature of the carbonium ion. IX. 2-Oxa-6-norbornyl cation. J. Am. Chem. Soc., 1972, 94(8), 2707-2711.
[http://dx.doi.org/10.1021/ja00763a027]
[103]
David, F. Synthesis and solvolysis of syn- and anti-(6-oxabicyclo[3.1.0]hex-3-yl)methyl p-bromobenzenesulfonates. J. Org. Chem., 1981, 46(17), 3512-3519.
[http://dx.doi.org/10.1021/jo00330a027]
[104]
Hutchison, A.; Grim, M.; Chen, J. A short and stereoselective synthesis of (±)‐aristeromycin. J. Heterocycl. Chem., 1989, 26(2), 451-452.
[http://dx.doi.org/10.1002/jhet.5570260235]
[105]
Depres, J.P.; Greene, A.E. Improved selectivity in the preparation of some 1,1-difunctionalized 3-cyclopentenes. High yield synthesis of 3-cyclopentenecarboxylic acid. J. Org. Chem., 1984, 49(5), 928-931.
[http://dx.doi.org/10.1021/jo00179a035]
[106]
L’abbe, G. Decomposition and addition reactions of organic azides. Chem. Rev., 1969, 69(3), 345-363.
[http://dx.doi.org/10.1021/cr60259a004]
[107]
Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev., 1998, 98(2), 863-910.
[http://dx.doi.org/10.1021/cr970324e] [PMID: 11848917]
[108]
Barral, K.; Priet, S.; De Michelis, C.; Sire, J.; Neyts, J.; Balzarini, J.; Canard, B.; Alvarez, K. Synthesis and antiviral activity of boranophosphonate isosteres of AZT and d4T monophosphates. Eur. J. Med. Chem., 2010, 45(2), 849-856.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.012] [PMID: 19969396]
[109]
Barral, K.; Priet, S.; Sire, J.; Neyts, J.; Balzarini, J.; Canard, B.; Alvarez, K. Synthesis, in vitro antiviral evaluation, and stability studies of novel alpha-borano-nucleotide analogues of 9-[2-(phosphonomethoxy)ethyl]adenine and (R)-9-[2-(phosphonomethoxy)propyl]adenine. J. Med. Chem., 2006, 49(26), 7799-7806.
[http://dx.doi.org/10.1021/jm060030y] [PMID: 17181162]
[110]
Lavandera, I.; Fernández, S.; Ferrero, M.; Gotor, V. First regioselective enzymatic acylation of amino groups applied to pyrimidine 3′,,5′-diaminonucleoside derivatives. Improved synthesis of pyrimidine 3′,,5′-diamino-2′,3′,,5′-trideoxynucleosides. J. Org. Chem., 2001, 66(11), 4079-4082.
[http://dx.doi.org/10.1021/jo010048a] [PMID: 11375042]
[111]
Horwitz, J.P.; Chua, J.; Urbanski, J.A.; Noel, M. 1-(2′-Deoxy-3′,,5′-epoxy-β-D-threo-pentofuranosyl) thymine. J. Org. Chem., 1963, 28(4), 942-944.
[http://dx.doi.org/10.1021/jo01039a015]
[112]
Haraguchi, K.; Tanaka, H.; Miyasaka, T. Preparation of γ- and δ-Phenylselenenyl alcohols via ring cleavage of Oxetane and Oxolane. Synthesis, 1989, 1989(6), 434-436.
[http://dx.doi.org/10.1055/s-1989-27275]
[113]
Kvaernø, L.; Wightman, R.H.; Wengel, J. Synthesis of a novel bicyclic nucleoside restricted to an S-type conformation and initial evaluation of its hybridization properties when incorporated into oligodeoxynucleotides. J. Org. Chem., 2001, 66(15), 5106-5112.
[http://dx.doi.org/10.1021/jo015602v] [PMID: 11463263]
[114]
Dhotare, B.; Chattopadhyay, A. A simple and efficient synthesis of 3′,-Azido-3′,-deoxythymidine (AZT) employing a convergent route. Synthesis, 2001, 2001(9), 1337-1340.
[http://dx.doi.org/10.1055/s-2001-15234]
[115]
Wada, T.; Mochizuki, A.; Sato, Y.; Sekine, M. A convenient method for phosphorylation involving a facile oxidation of H-Phosphonate monoesters via bis(trimethylsilyl) phosphites. Tetrahedron Lett., 1998, 39(39), 7123-7126.
[http://dx.doi.org/10.1016/S0040-4039(98)01513-5]
[116]
He, K.; Porter, K.W.; Hasan, A. Briley and, J.D.; Shaw, B.R. Synthesis of 5-substituted 2′-deoxycytidine 5′-(alpha-P-borano)triphosphates, their incorporationinto DNA and effects on exonuclease. Nucleic Acids Res., 1999, 27(8), 1788-1794.
[http://dx.doi.org/10.1093/nar/27.8.1788] [PMID: 10101185]
[117]
Li, P.; Shaw, B.R. Synthesis of prodrug candidates: Conjugates of amino acid with nucleoside boranophosphate. Org. Lett., 2002, 4(12), 2009-2012.
[http://dx.doi.org/10.1021/ol025832b] [PMID: 12049504]
[118]
Chen, J.J.; Wei, Y.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral evaluation of trisubstituted indole N-nucleosides as analogues of 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole (TCRB). J. Med. Chem., 2000, 43(12), 2449-2456.
[http://dx.doi.org/10.1021/jm990320x] [PMID: 10882372]
[119]
Meurillon, M.; Chaloin, L.; Perogaud, C.; Peyrottes, S. Synthesis of Pyrimidine-containing Nucleoside β-(R/S)-Hydroxyphosphonate analogues. Eur. J. Org. Chem., 2011, (20-21), 3794-3802.
[http://dx.doi.org/10.1002/ejoc.201100219]
[120]
Epp, J.B.; Widlanski, T.S. Facile preparation of nucleoside-5′-carboxylic acids. J. Org. Chem., 1999, 64(1), 293-295.
[http://dx.doi.org/10.1021/jo981316g] [PMID: 11674117]
[121]
Dauban, P.; de Saint-Fuscien, C.; Acher, F.; Prézeau, L.; Brabet, I.; Pin, J.P.; Dodd, R.H. First enantiospecific synthesis of a 3,4-dihydroxy-L-glutamic acid [(3S,4S)-DHGA], a new mGluR1 agonist. Bioorg. Med. Chem. Lett., 2000, 10(2), 129-133.
[http://dx.doi.org/10.1016/S0960-894X(99)00641-1] [PMID: 10673095]
[122]
Maloney, K.M.; Chung, J.Y. A general procedure for the preparation of beta-ketophosphonates. J. Org. Chem., 2009, 74(19), 7574-7576.
[http://dx.doi.org/10.1021/jo901552k] [PMID: 19728703]
[123]
Milburn, R.R.; McRae, K.; Chan, J.; Tedrow, J.; Larsen, R.; Faul, M. A practical preparation of aryl β-ketophosphonates. Tetrahedron Lett., 2009, 50(8), 870-872.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.112]
[124]
Sung, W.L. Synthesis of 4-(1,2,4-triazol-1-yl)-pyrimidin-2(1H)-one ribonucleotide and its application in synthesis of oligoribonucleotides. J. Org. Chem., 1982, 47(19), 3623-3628.
[http://dx.doi.org/10.1021/jo00140a005]
[125]
Bouisset, T.; Gosselin, G.; Griffe, L.; Meillon, J.C.; Storer, R. Synthesis of 2′-C-methyl-branched isonucleosides. Tetrahedron, 2008, 64(28), 6657-6661.
[http://dx.doi.org/10.1016/j.tet.2008.05.022]
[126]
Chambert, S.; Gautier-Luneau, I.; Fontecave, M.; Décout, J.L. 2-(trimethylsilyl)ethanethiol in nucleoside chemistry. A short route for preparing thionucleosides and their methyl disulfides. J. Org. Chem., 2000, 65(1), 249-253.
[http://dx.doi.org/10.1021/jo9908492] [PMID: 10813923]
[127]
Cava, M.P.; Levinson, M.I. Thionation reactions of Lawesson’s. Tetrahedron, 1985, 41(22), 5061-5087.
[http://dx.doi.org/10.1016/S0040-4020(01)96753-5]
[128]
Hospital, A.; Meurillon, M.; Peyrottes, S.; Périgaud, C. An alternative pathway to ribonucleoside β-hydroxyphosphonate analogues and related prodrugs. Org. Lett., 2013, 15(18), 4778-4781.
[http://dx.doi.org/10.1021/ol402143y] [PMID: 24015803]
[129]
Schneider, C. Synthesis of 1,2-Difunctionalized fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides. Synthesis, 2006, 2006(23), 3919-3944.
[http://dx.doi.org/10.1055/s-2006-950348]
[130]
Giannessi, F.; Chiodi, P.; Marzi, M.; Minetti, P.; Pessotto, P.; De Angelis, F.; Tassoni, E.; Conti, R.; Giorgi, F.; Mabilia, M.; Dell’Uomo, N.; Muck, S.; Tinti, M.O.; Carminati, P.; Arduini, A. Reversible carnitine palmitoyltransferase inhibitors with broad chemical diversity as potential antidiabetic agents. J. Med. Chem., 2001, 44(15), 2383-2386.
[http://dx.doi.org/10.1021/jm010889+] [PMID: 11448219]
[131]
Guillerm, G.; Muzard, M.; Glapski, C.; Pilard, S. Inactivation of human S-adenosylhomocysteine hydrolase by covalent labeling of cysteine 195 with thionucleoside derivatives. Bioorg. Med. Chem. Lett., 2004, 14(23), 5803-5807.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.051] [PMID: 15501044]
[132]
Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber., 1981, 114(4), 1234-1255.
[http://dx.doi.org/10.1002/cber.19811140404]
[133]
Hioki, H.; Yoshio, S.; Motosue, M.; Oshita, Y.; Nakamura, Y.; Mishima, D.; Fukuyama, Y.; Kodama, M.; Ueda, K.; Katsu, T. Enantioselective total synthesis of eurylene, 14-deacetyl eurylene, and their 11-epimers: The relation between ionophoric nature and cytotoxicity. Org. Lett., 2004, 6(6), 961-964.
[http://dx.doi.org/10.1021/ol036471i] [PMID: 15012075]
[134]
Li, Z.; Racha, S.; Dan, L.; El-Subbagh, H.; Abushanab, E. A general and facile synthesis of beta- and gamma-hydroxy phosphonates from epoxides. J. Org. Chem., 1993, 58(21), 5779-5783.
[http://dx.doi.org/10.1021/jo00073a043]
[135]
Briggs, A.D.; Camplo, M.; Freeman, S.; Lundström, J.; Pring, B.G. S-Acylthioethyl prodrugs of phosphonoformate. Eur. J. Pharm. Sci., 1997, 5(4), 199-208.
[http://dx.doi.org/10.1016/S0928-0987(97)00281-9]
[136]
Padyukova, N.Sh. Karpeisky MYa; Kolobushkina, L.I.; Mikhailov, S.N. A new scheme for the synthesis of 5′-nucleotide phosphonate analogs. Nucleic Acids Symp. Ser., 1987, 28(18), 85-88.
[PMID: 3697157]
[137]
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev., 1981, 81(4), 415-430.
[http://dx.doi.org/10.1021/cr00044a004]
[138]
Petrov, A.A.; Dogadina, A.V.; Ionin, B.I.; Garibina, V.A.; Leonov, A.A. The arbuzov rearrangement with participation of halogenoacetylenes as a method of synthesis of ethynylphosphonates and other organophosphorus compounds. Russ. Chem. Rev., 1983, 52(11), 1030-1035.
[http://dx.doi.org/10.1070/RC1983v052n11ABEH002913]
[139]
Ioannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. Synthesis of some 3′,,5′-dideoxy-5′-C-phosphonomethyl nucleosides. Acta Chem. Scand., 1991, 45(7), 746-750.
[http://dx.doi.org/10.3891/acta.chem.scand.45-0746] [PMID: 1782106]
[140]
De Bernardo, S.; Tengi, J.P.; Sasso, G.; Weigele, M. Synthesis of (+)-negamycin from D-glucose. Tetrahedron Lett., 1988, 29(33), 4077-4080.
[http://dx.doi.org/10.1016/S0040-4039(00)80421-9]
[141]
Garegg, P.J.; Samuelsson, B. Novel reagent system for converting a hydroxy-group into an iodo-group in carbohydrates with inversion of configuration. J. Chem. Soc. Perkin Trans. I, 1980, 1980, 2866-2869.
[http://dx.doi.org/10.1039/p19800002866]
[142]
Mazur, A.; Tropp, B.E.; Engel, R. Isosteres of natural phosphates. Synthesis of a phosphonic acid analogue of an oligonucleotide. Tetrahedron, 1984, 40(20), 3949-3956.
[http://dx.doi.org/10.1016/0040-4020(84)85072-3]
[143]
Kraus, J.L. New phosphonate analogues of 3′,-Thia-2′,3′-dideoxycytidine(BCH-189) synthesis and Anti-HIV evaluation. Nucleosides Nucleotides, 1993, 12(2), 157-162.
[http://dx.doi.org/10.1080/07328319308021202]
[144]
Varlet, J.M.; Fabre, G.; Sauveur, F.; Collignon, N.; Savignac, P. Préparation et conversion D’ ω-formylalkylphosphonates en acides aminocarboxyalkylphosphoniques. Tetrahedron, 1981, 37(7), 1377-1384.
[http://dx.doi.org/10.1016/S0040-4020(01)92454-8]
[145]
Hesse, G.; Jorder, I. Mercapto‐acetaldehyd und Dioxy‐1.4‐dithian. Chem. Ber., 1952, 85(9-10), 924-932.
[http://dx.doi.org/10.1002/cber.19520850915]
[146]
Kraus, J.L.; Attardo, G. Synthesis of new 2,5-Substituted 1,3-Oxathiolanes. Intermediates in nucleoside chemistry. Synthesis, 1991, 1991(11), 1046-1048.
[http://dx.doi.org/10.1055/s-1991-26643]
[147]
Gi, H.J.; Xiang, Y.; Schinazi, R.F.; Zhao, K. Synthesis of dihydroisoxazole nucleoside and nucleotide analogs. J. Org. Chem., 1997, 62(1), 88-92.
[http://dx.doi.org/10.1021/jo961779r] [PMID: 11671367]
[148]
Kozikowski, A.P. The isoxazoline route to the molecules of nature. Acc. Chem. Res., 1984, 17(12), 410-416.
[http://dx.doi.org/10.1021/ar00108a001]
[149]
Larsen, K.E.; Torssell, K.B.G. An improved procedure for the preparation of 2-isoxazolines. Tetrahedron, 1984, 40(15), 2985-2988.
[http://dx.doi.org/10.1016/S0040-4020(01)91313-4]
[150]
Stevens, R.V.; Albizati, K.F. Synthesis and nucleophilic substitutions of 3-alkyl-5-chloroisoxazoles. Tetrahedron Lett., 1984, 25(41), 4587-4590.
[http://dx.doi.org/10.1016/S0040-4039(01)91206-7]
[151]
De Sarlo, F.; Guarna, A.; Brandi, A. Nitrile oxides cycloadditions to cinnamaldehyde. Facile dehydrogenation of 4‐formyl‐4,5‐dihydroisoxazoles. J. Heterocycl. Chem., 1983, 20(6), 1505-1507.
[http://dx.doi.org/10.1002/jhet.5570200613]
[152]
Pitha, J.; Ts’o, P.O.P. N-vinyl derivatives of substituted pyrimidines and purines. J. Org. Chem., 1968, 33(4), 1341-1344.
[http://dx.doi.org/10.1021/jo01268a006] [PMID: 5641024]
[153]
Xiang, Y.; Chen, J.; Schinazi, R.F.; Zhao, K. Synthesis and anti-HIV activity of dihydroisoxazole 6-chloropurine and adenine. Bioorg. Med. Chem. Lett., 1996, 6(9), 1051-1054.
[http://dx.doi.org/10.1016/0960-894X(96)00171-0]
[154]
Chiacchio, U.; Iannazzo, D.; Piperno, A.; Romeo, R.; Romeo, G.; Rescifina, A.; Saglimbeni, M. Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′,-aza-nucleosides. Bioorg. Med. Chem., 2006, 14(4), 955-959.
[http://dx.doi.org/10.1016/j.bmc.2005.09.024] [PMID: 16213735]
[155]
Gallier, F.; Peyrottes, S.; Perigaud, C. Ex-chiral-pool synthesis of β-hydroxyphosphonate nucleoside analogues. Eur. J. Org. Chem., 2007, 2007(6), 925-933.
[http://dx.doi.org/10.1002/ejoc.200600562]
[156]
Collins, J.C.; Hess, W.W.; Frank, F.J. Dipyridine-chromium(VI) oxide oxidation of alcohols in dichloromethane. Tetrahedron Lett., 1968, 9(30), 3363-3366.
[http://dx.doi.org/10.1016/S0040-4039(00)89494-0]
[157]
Piers, E.; Worster, P.M. Oxidation with chromium(VI) oxide - pyridine complex. A study of reaction parameters using cholesterol as substrate. Can. J. Chem., 1977, 55(4), 733-736.
[http://dx.doi.org/10.1139/v77-101]
[158]
Sowa, W.; Thopmas, G.H.S. The oxidation of 1,2:5,6-di-O-isopropylidene-D-glucose by dimethyl sulfoxide-acetic anhydride. Can. J. Chem., 1966, 44, 836-838.
[http://dx.doi.org/10.1139/v66-120]
[159]
David, S.; de Sennyey, G. Synthèse des 1-(5-désoxy-β-D-ribo-hexofuranosyl)cytosine et 1-(2,5-didésoxy-β-D-érythro-hexofuranosyl)cytosine, et de leurs phosphates. Contribution à l’étude de la spécificité d’une ribonucléotide-réductase de mammifère (rat). Carbohydr. Res., 1979, 77(1), 79-97.
[http://dx.doi.org/10.1016/S0008-6215(00)83795-7] [PMID: 519657]
[160]
Niedballa, U.; Vorbrüggen, H. A general synthesis of N-glycosides. 6. On the mechanism of the stannic chloride catalyzed silyl Hilbert-Johnson reaction. J. Org. Chem., 1976, 41(12), 2084-2086.
[http://dx.doi.org/10.1021/jo00874a002] [PMID: 932850]
[161]
Yu, X.J.; Li, G.X.; Qi, X.X.; Deng, Y.Q. Stereoselective synthesis of 9-β-d-arabianofuranosyl guanine and 2-amino-9-(β-d-arabianofuranosyl)purine. Bioorg. Med. Chem. Lett., 2005, 15(3), 683-685.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.029] [PMID: 15664837]
[162]
Meurillon, M.; Marton, Z.; Hospital, A.; Jordheim, L.P.; Béjaud, J.; Lionne, C.; Dumontet, C.; Périgaud, C.; Chaloin, L.; Peyrottes, S. Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur. J. Med. Chem., 2014, 77, 18-37.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.055] [PMID: 24607586]
[163]
Roy, S.K.; Tang, J.Y. Efficient large scale synthesis of 2′-O-alkyl pyrimidine ribonucleosides. Org. Process Res. Dev., 2000, 4, 170-171.
[http://dx.doi.org/10.1021/op990100t]
[164]
Robins, M.J.; Barr, P.J. Nucleic acid related compounds. 39. Efficient conversion of 5-iodo to 5-alkynyl and derived 5-substituted uracil bases and nucleosides. J. Org. Chem., 1983, 48(11), 1854-1862.
[http://dx.doi.org/10.1021/jo00159a012]
[165]
Rai, D.; Johar, M.; Manning, T.; Agrawal, B.; Kunimoto, D.Y.; Kumar, R. Design and studies of novel 5-substituted alkynylpyrimidine nucleosides as potent inhibitors of mycobacteria. J. Med. Chem., 2005, 48(22), 7012-7017.
[http://dx.doi.org/10.1021/jm058167w] [PMID: 16250660]
[166]
Ghilagaber, S.; Hunter, W.N.; Marquez, R. Efficient coupling of low boiling point alkynes and 5-iodonucleosides. Tetrahedron Lett., 2007, 48(3), 483-486.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.047]
[167]
Sartori, G.; Enderlin, G.; Hervé, G.; Len, C. Highly effective synthesis of C-5-Substituted 2′-Deoxyuridine using Suzuki-Miyaura cross-coupling in water. Synthesis, 2012, 2012(5), 767-772.
[168]
Nguyen Van, T.; Hospital, A.; Lionne, C.; Jordheim, L.P.; Dumontet, C.; Périgaud, C.; Chaloin, L.; Peyrottes, S. Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: Synthesis and biological evaluation. Beilstein J. Org. Chem., 2016, 12, 1476-1486.
[http://dx.doi.org/10.3762/bjoc.12.144] [PMID: 27559400]
[169]
St Amant, A.H.; Bean, L.A.; Guthrie, J.P.; Hudson, R.H. Click fleximers: a modular approach to purine base-expanded ribonucleoside analogues. Org. Biomol. Chem., 2012, 10(32), 6521-6525.
[http://dx.doi.org/10.1039/c2ob25678a] [PMID: 22752020]
[170]
Pesi, R.; Allegrini, S.; Careddu, M.G.; Filoni, D.N.; Camici, M.; Tozzi, M.G. Active and regulatory sites of cytosolic 5′-nucleotidase. FEBS J., 2010, 277(23), 4863-4872.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07891.x] [PMID: 21029378]
[171]
Walldén, K.; Nordlund, P. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5′-nucleotidase II. J. Mol. Biol., 2011, 408(4), 684-696.
[http://dx.doi.org/10.1016/j.jmb.2011.02.059] [PMID: 21396942]
[172]
Huang, Q.; Herdewijn, P. Synthesis of (E)-3′,-phosphonoalkenyl modified nucleoside phosphonates via a highly stereoselective olefin cross-metathesis reaction. J. Org. Chem., 2011, 76(10), 3742-3753.
[http://dx.doi.org/10.1021/jo200033p] [PMID: 21462931]
[173]
Moravcová, J.; Čapková, J.; Staněk, J. One-pot synthesis of 1,2-O-isopropylidene-α-D-xylofuranose. Carbohydr. Res., 1994, 263(1), 61-66.
[http://dx.doi.org/10.1016/0008-6215(94)00165-0]
[174]
Hernandez-García, L.; Quintero, L.; Sánchez, M.; Sartillo-Piscil, F. Beneficial effect of internal hydrogen bonding interactions on the β-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively. J. Org. Chem., 2007, 72(22), 8196-8201.
[http://dx.doi.org/10.1021/jo0709551] [PMID: 17900138]
[175]
Jin, D.Z.; Kwon, S.H.; Moon, H.R.; Gunaga, P.; Kim, H.O.; Kim, D.K.; Chun, M.W.; Jeong, L.S. Synthesis of D- and L-apio nucleoside analogues with 2′-hydroxyl group as potential anti-HIV agents. Bioorg. Med. Chem., 2004, 12(5), 1101-1109.
[http://dx.doi.org/10.1016/j.bmc.2003.12.002] [PMID: 14980622]
[176]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[177]
Jee, J-P.; Kim, S.; Hong, J.H. Synthesis and anti-hiv activity of novel 4′-Trifluoromethylated 5′-Deoxycarbocyclic nucleoside phosphonic acids. Nucleosides Nucleotides Nucleic Acids, 2015, 34(9), 620-638.
[http://dx.doi.org/10.1080/15257770.2015.1047028] [PMID: 26252631]
[178]
Kim, S.; Kim, E.; Lee, W.; Hee Hong, J. Synthesis and antiviral evaluation of novel 4′-trifluoromethylated 5′-deoxyapiosyl nucleoside phosphonic acids. Nucleosides Nucleotides Nucleic Acids, 2014, 33(12), 747-766.
[http://dx.doi.org/10.1080/15257770.2014.938753] [PMID: 25372991]
[179]
Rivkin, A.; Cho, Y.S.; Gabarda, A.E.; Yoshimura, F.; Danishefsky, S.J. Application of ring-closing metathesis reactions in the synthesis of epothilones. J. Nat. Prod., 2004, 67(2), 139-143.
[http://dx.doi.org/10.1021/np030540k] [PMID: 14987048]
[180]
Crimmins, M.T.; King, B.W.; Zuercher, W.J.; Choy, A.L. An efficient, general asymmetric aldol/ring-closing metathesis strategy. J. Org. Chem., 2000, 65, 8499-8509.
[http://dx.doi.org/10.1021/jo005535p] [PMID: 11112569]
[181]
Marshall, J.A.; Gung, W.Y. On the 1,3-Isomerization of nonracemic alpha-(Alkoxy)-. Allylstannanes. Tetrahedron Lett., 1989, 30(52), 7349-7352.
[http://dx.doi.org/10.1016/S0040-4039(00)70694-0]
[182]
Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem., 1978, 43, 2480-2482.
[http://dx.doi.org/10.1021/jo00406a041]
[183]
Maryanoff, B.E.; Reitz, A.B. The wittig olefination reaction and modifications involving Phosphoryl-stabilized Carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[184]
Kozikowski, A.P.; Wu, J.P. Protection of alcohol as their (p-Methoxybenzyloxy)Methyl ethers. Tetrahedron Lett., 1987, 28(43), 5125-5128.
[http://dx.doi.org/10.1016/S0040-4039(00)95608-9]
[185]
Diaz, Y.; Bravo, F.; Castillon, S. Synthesis of Purine and Pyrimidine Isodideoxynucleosides from (S)-Glycydol using Iodoetherification as key step. Synthesis of (S,S)-iso-ddA. J. Org. Chem., 1999, 64, 6508-6511.
[http://dx.doi.org/10.1021/jo990495e]
[186]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1981(1), 1-28.
[http://dx.doi.org/10.1055/s-1981-29317]
[187]
Montagu, A.; Pradére, U.; Roy, V.; Nolan, S.P.; Agrofoglio, L.A. Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-Phosphono-but-2-en-1-yl nucleosides. Tetrahedron, 2011, 67(29), 5319-5328.
[http://dx.doi.org/10.1016/j.tet.2011.05.017]
[188]
Hocková, D.; Holý, A.; Masojídková, M.; Keough, D.T.; de Jersey, J.; Guddat, L.W. Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorg. Med. Chem., 2009, 17(17), 6218-6232.
[http://dx.doi.org/10.1016/j.bmc.2009.07.044] [PMID: 19666228]
[189]
Kim, S.; Hong, J.H. Synthesis and biological evaluation of 9-deazaadenine 5′-deoxy-6′,6′-difluoro-carbocyclic c-nucleoside phosphonic acid derivatives. Nucleosides Nucleotides Nucleic Acids, 2015, 34(10), 708-728.
[http://dx.doi.org/10.1080/15257770.2015.1071847] [PMID: 26467263]
[190]
Choi, M.H.; Kim, H.D. Synthesis of novel carboacyclic nucleosides with vinyl bromide moiety as open-chain analogues of neplanocin A. Arch. Pharm. Res., 2003, 26(12), 990-996.
[http://dx.doi.org/10.1007/BF02994747] [PMID: 14723329]
[191]
Kim, E.; Shen, G.H.; Hong, J.H. Design and synthesis of carbocyclic versions of furanoid nucleoside phosphonic Acid analogues as potential anti-hiv agents. Nucleosides Nucleotides Nucleic Acids, 2011, 30(10), 798-813.
[http://dx.doi.org/10.1080/15257770.2011.605781] [PMID: 21967290]
[192]
Jeong, L.S.; Lee, J.A. Recent advances in the synthesis of the carbocyclic nucleosides as potential antiviral agents. Antivir. Chem. Chemother., 2004, 15(5), 235-250.
[http://dx.doi.org/10.1177/095632020401500502] [PMID: 15535045]
[193]
Amblard, F.; Nolan, S.P.; Agrofoglio, L.A. Metathesis strategy in nucleoside chemistry. Tetrahedron, 2005, 61, 7067-7080.
[http://dx.doi.org/10.1016/j.tet.2005.04.040]
[194]
Dess, D.B.; Martin, J.C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-i-5 species. J. Am. Chem. Soc., 1991, 113, 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[195]
Chun, B.K.; Song, G.Y.; Chu, C.K. Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds. J. Org. Chem., 2001, 66(14), 4852-4858.
[http://dx.doi.org/10.1021/jo010224f] [PMID: 11442416]
[196]
Lim, M.I.; Klein, R.S. Synthesis of “9-Deazaadenosine”; A new cytotoxic C-nucleoside isostere of adenosine. Tetrahedron Lett., 1981, 22(1), 25-28.
[http://dx.doi.org/10.1016/0040-4039(81)80031-7]
[197]
Kamath, V.P.; Ananth, S.; Bantia, S.; Morris, P.E., Jr Synthesis of a potent transition-state inhibitor of 5′-deoxy-5′-methylthioadenosine phosphorylase. J. Med. Chem., 2004, 47(6), 1322-1324.
[http://dx.doi.org/10.1021/jm030455+] [PMID: 14998321]
[198]
Kim, S.; Hong, J.H. Synthesis and anti-HIV activity of novel 2′-Deoxy-2′-β-Fluoro-threosyl nucleoside Phosphonic acid analogues. Nucleosides Nucleotides Nucleic Acids, 2015, 34(12), 815-833.
[http://dx.doi.org/10.1080/15257770.2015.1076840] [PMID: 26407633]
[199]
Fort, D.A.; Woltering, T.J.; Alker, A.M.; Bach, T. Photochemical reactions of Prop-2-enyl and Prop-2-ynyl substituted 4-Aminomethyl- and 4-Oxymethyl-2(5H)-Furanones. Heterocycles, 2004, 88, 1079-1100.
[200]
Corey, E.J.; Venkateswarlu, A. Protection of hydroxyl groups as tert-Butyldimethylsilyl derivatives. J. Am. Chem. Soc., 1972, 94, 6190-6172.
[http://dx.doi.org/10.1021/ja00772a043]
[201]
D’Errico, S.; Oliviero, G.; Borbone, N.; Di Gennaro, E.; Zotti, A.I.; Budillon, A.; Cerullo, V.; Nici, F.; Mayol, L.; Piccialli, V.; Piccialli, G. Synthesis and evaluation of the antiproliferative properties of a Tethered Tubercidin–Platinum(II) complex. Eur. J. Org. Chem., 2015, 2015(34), 7550-7556.
[http://dx.doi.org/10.1002/ejoc.201500998]
[202]
D’Errico, S.; Borbone, N.; Piccialli, V.; Di Gennaro, E.; Zotti, A.; Budillon, A.; Vitagliano, C.; Piccialli, I.; Oliviero, G. Synthesis and evaluation of the antitumor properties of a small collection of PtII complexes with 7-Deazaadenosine as scaffold. Eur. J. Org. Chem., 2017, 2017(33), 4935-4947.
[http://dx.doi.org/10.1002/ejoc.201700730]
[203]
Amey, R.L.; Martin, J.C. An alkoxyaryltrifluoroperiodinane. a stable heterocyclic derivative of pentacoordinated Organoiodine (V). J. Am. Chem. Soc., 1978, 100, 300-301.
[http://dx.doi.org/10.1021/ja00469a060]
[204]
Amey, R.L.; Martin, J.C. Synthesis and reactions of stable Alkoxyaryltrifluoroperiodinanes. A “Tamed” analog of Iodine Pentafluoride for use in oxidations of amines, alcohols, and other species. J. Am. Chem. Soc., 1979, 101, 5294-5299.
[http://dx.doi.org/10.1021/ja00512a030]
[205]
Robins, M.J.; Uznanski, B. Non-aqueous diazotization with t-butyl Nitrite. Introduction of Fluorine, Chlorine, and Bromine at C-2 of Purine nucleoside. Can. J. Chem., 1981, 59(17), 2608-2611.
[http://dx.doi.org/10.1139/v81-375]
[206]
Montgomery, J.A.; Hewson, K. Nucleosides of 2-fluoroadenine. J. Med. Chem., 1969, 12(3), 498-504.
[http://dx.doi.org/10.1021/jm00303a605] [PMID: 5788168]
[207]
Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods, 1988, 20(4), 309-321.
[http://dx.doi.org/10.1016/0166-0934(88)90134-6] [PMID: 2460479]
[208]
Barton, D.H.R.; Gero, S.D.; Quiclet-Sire, B.; Samadi, M. Stereoselectivity in radical reactions of 2′-Deoxynucleosides. A synthesis of an isostere of 3′,-Azido-3′,-Deoxythymidine 5′-Monophosphate (AZT-5′ Monophosphate). Tetrahedron Lett., 1989, 30(37), 4969-4972.
[http://dx.doi.org/10.1016/S0040-4039(01)80556-6]
[209]
Barton, D.H.R.; Crich, D.; Motherwell, W.B. New and improved methods for the radical decarboxylation of acids. J. Chem. Soc. Chem. Commun., 1983, 1983(17), 939-941.
[http://dx.doi.org/10.1039/c39830000939]
[210]
Barton, D.H.R.; Crich, D.; Motherwell, W.B. The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; A new method for the generation of carbon radicals from carboxylic acids. Tetrahedron, 1985, 41(19), 3901-3924.
[http://dx.doi.org/10.1016/S0040-4020(01)97173-X]
[211]
Barton, D.H.R.; Hervé, Y.; Potier, P.; Thierry, J. Synthesis of novel α-amino-acids and derivatives using radical chemistry: Synthesis of L- and D-α-amino-adipic acids, L-α. Tetrahedron, 1987, 43(19), 4297-4308.
[http://dx.doi.org/10.1016/S0040-4020(01)90305-9]
[212]
Barton, D.H.R.; Ge’ro, S.D.; Quiclet-Sire, B.; Samadi, M. Radical addition to vinyl phosphonates. a new synthesis of isosteric phosphonates and phosphonate analogues of α-amino acids. J. Chem. Soc. Chem. Commun., 1989, (15), 1000-1001.
[http://dx.doi.org/10.1039/C39890001000]
[213]
Fox, J.J.; Miller, N.C. Nucleosides. XVI. Further studies of Anhydronucleosides. J. Org. Chem., 1963, 28(4), 936-941.
[http://dx.doi.org/10.1021/jo01039a014]
[214]
Horwitz, J.P.; Chua, J.; Noel, M. Nucleosides. V. The Monomesylates of 1-(2′-Deoxy-β-D-lyxofuranosyl)thymine. J. Org. Chem., 1964, 29(7), 2076-2078.
[http://dx.doi.org/10.1021/jo01030a546]
[215]
Barton, D.H.R.; Géro, S.D.; Quiclet-Sire, B.; Samadi, M. New synthesis of sugar, nucleoside and α-amino acid phosphonates. Tetrahedron, 1992, 48(9), 1627-1636.
[http://dx.doi.org/10.1016/S0040-4020(01)88721-4]
[216]
Lera, M.; Hayes, C.J. A new one-Pot synthesis of alkynylphosphonates. Org. Lett., 2000, 2(24), 3873-3875.
[http://dx.doi.org/10.1021/ol0066173] [PMID: 11101441]
[217]
Meurillon, M.; Gallier, F.; Peyrottes, S.; Perigaud, C. Developing an efficient route to the synthesis of nucleoside 1-Alkynylphosphonates. Tetrahedron, 2009, 65, 6039-6046.
[http://dx.doi.org/10.1016/j.tet.2009.05.064]
[218]
Rosowsky, A.; Lazarus, H.; Yamashita, A. Nucleosides. 1. 9-(3′-Alkyl-3′-deoxy-beta-D-ribofuranosyl)adenines as lipophilic analogues of cordycepin. Synthesis and preliminary biological studies. J. Med. Chem., 1976, 19(11), 1265-1270.
[http://dx.doi.org/10.1021/jm00233a001] [PMID: 1087343]
[219]
Lavaire, S.; Plantier-Royon, R.; Portella, C.; de Monte, M.; Kirn, A.; Aubertin, A-M. 3′,-deoxy-3′,-C-trifluoromethyl nucleosides: synthesis and antiviral evaluation. Nucleos. Nucleot., 1998, 17(12), 2267-2280.
[http://dx.doi.org/10.1080/07328319808004316]
[220]
Magnani, A.; Mikuriya, Y. 9-α-D-Xylofuranosyladenine: Acetolysis of 3,5-di-O-acetyl-1,2-O-isopropylidene-α-D-xylofuranose. Carbohydr. Res., 1973, 28(1), 158-164.
[http://dx.doi.org/10.1016/S0008-6215(00)82876-1]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy