Review Article

5′-脱氧核苷磷酸酯类似物的合成研究进展

卷 29, 期 22, 2022

发表于: 17 January, 2022

页: [3857 - 3921] 页: 65

弟呕挨: 10.2174/0929867328666211111162447

价格: $65

conference banner
摘要

本文主要论述了环5′-脱氧核苷磷酸酯类似物的合成。各种磷酸烷基部分的形成通过以下反应实现的: (i)Wittig(或HWE)缩合到核苷醛部分; (ii)使用膦酸根阴离子或路易斯酸进行亲核置换反应; (iii)Arbuzov反应; (iv)乙烯基膦酸盐和乙烯基化核苷之间的烯烃交叉复分解; (v)由基反应和钯催化炔烃 对于核酸碱基与环部分的偶联,通常采用Mitsunobu反应和Sonogashira型交叉偶联。对于呋喃糖部分与碱基的偶联,通常采用Vorbruggentype缩合。硒离子介导的加成反应主要用于碳环部分的偶联。在此我们总结了它们的生物活性结果。。

关键词: 5′-脱氧核苷磷酸盐,抗病毒药物,酶抑制剂,生物电子等排体,核苷,核苷类似物

[1]
Borbone, N.; Piccialli, G.; Roviello, G.N.; Oliviero, G. Nucleoside analogs and nucleoside precursors as drugs in the fight against SARS-CoV-2 and other coronaviruses. Molecules, 2021, 26(4), 986-986.
[http://dx.doi.org/10.3390/molecules26040986] [PMID: 33668428]
[2]
Holy, A. Phosphonomethoxyalkyl analogs of nucleotides. Curr. Pharm. Des., 2003, 9(31), 2567-2592.
[http://dx.doi.org/10.2174/1381612033453668] [PMID: 14529543]
[3]
De Clercq, E.; Holý, A. Acyclic nucleoside phosphonates: a key class of antiviral drugs. Nat. Rev. Drug Discov., 2005, 4(11), 928-940.
[http://dx.doi.org/10.1038/nrd1877] [PMID: 16264436]
[4]
De Clercq, E. The clinical potential of the acyclic (and cyclic) nucleoside phosphonates: the magic of the phosphonate bond. Biochem. Pharmacol., 2011, 82(2), 99-109.
[http://dx.doi.org/10.1016/j.bcp.2011.03.027] [PMID: 21501598]
[5]
Balzarini, J.; Hao, Z.; Herdewijn, P.; Johns, D.G.; De Clercq, E. Intracellular metabolism and mechanism of anti-retrovirus action of 9-(2-phosphonylmethoxyethyl)adenine, a potent anti-human immunodeficiency virus compound. Proc. Natl. Acad. Sci. USA, 1991, 88(4), 1499-1503.
[http://dx.doi.org/10.1073/pnas.88.4.1499] [PMID: 1705039]
[6]
Wu, T.; Froeyen, M.; Kempeneers, V.; Pannecouque, C.; Wang, J.; Busson, R.; De Clercq, E.; Herdewijn, P. Deoxythreosyl phosphonate nucleosides as selective anti-HIV agents. J. Am. Chem. Soc., 2005, 127(14), 5056-5065.
[http://dx.doi.org/10.1021/ja043045z] [PMID: 15810840]
[7]
Koh, Y.H.; Shim, J.H.; Wu, J.Z.; Zhong, W.; Hong, Z.; Girardet, J.L. Design, synthesis, and antiviral activity of adenosine 5′-phosphonate analogues as chain terminators against hepatitis C virus. J. Med. Chem., 2005, 48(8), 2867-2875.
[http://dx.doi.org/10.1021/jm049029u] [PMID: 15828825]
[8]
Kim, C.U.; Luh, B.Y.; Misco, P.F.; Bronson, J.J.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. Acyclic purine phosphonate analogues as antiviral agents. Synthesis and structure-activity relationships. J. Med. Chem., 1990, 33(4), 1207-1213.
[http://dx.doi.org/10.1021/jm00166a019] [PMID: 2157012]
[9]
D’Errico, S.; Borbone, N.; Catalanotti, B.; Secondo, A.; Petrozziello, T.; Piccialli, I.; Pannaccione, A.; Costantino, V.; Mayol, L.; Piccialli, G.; Oliviero, G. Synthesis and biological evaluation of a new structural simplified analogue of cADPR, a calcium-mobilizing secondary messenger firstly isolated from sea urchin eggs. Mar. Drugs, 2018, 16(3), 89-89.
[http://dx.doi.org/10.3390/md16030089] [PMID: 29534435]
[10]
Shen, G.H.; Hong, J.H. Recent advances in the synthesis of cyclic 5′-nornucleoside phosphonate analogues. Carbohydr. Res., 2018, 463, 47-106.
[http://dx.doi.org/10.1016/j.carres.2018.04.009] [PMID: 29772449]
[11]
Jones, G.H.; Moffatt, J.G. The synthesis of 6′-deoxyhomonucleoside-6′-phosphonic acids. J. Am. Chem. Soc., 1968, 90(19), 5336-5338.
[http://dx.doi.org/10.1021/ja01021a086] [PMID: 5670802]
[12]
Pfitzner, K.E.; Moffatt, J.G. The synthesis of nucleoside-5” aldehydes. J. Am. Chem. Soc., 1963, 85(19), 3027-3027.
[13]
Moffatt, J.G.; Pfitzner, K.E. Sulfoxide-Carbodiimide reactions. I. A facile oxidation of alcohols. J. Am. Chem. Soc., 1965, 87(24), 5661-5670.
[http://dx.doi.org/10.1021/ja00952a026]
[14]
Hamersma, J.W.; Snyder, E.I. Diimide reductions using potassium azodicarboxylate. J. Org. Chem., 1965, 30(11), 3985-3988.
[http://dx.doi.org/10.1021/jo01022a532]
[15]
Hollmann, J.; Schlimme, E. Darstellung und Konformationszuordnung einiger 5′-homologer Adenosinderivate. Liebigs Ann. Chem., 1984, (1), 98-107.
[http://dx.doi.org/10.1002/jlac.198419840111]
[16]
Montgomery, J.A.; Hewson, K. The synthesis of phosphonic acid analogues of purine ribonucleotides: an exception to the trans rule. Chem. Commun., 1969, (1), 15-16.
[http://dx.doi.org/10.1039/c29690000015]
[17]
Wadsworth, W.S.; Emmons, W.D. The utility of phosphonate carbanions in olefin synthesis. J. Am. Chem. Soc., 1961, 83(7), 1733-1738.
[http://dx.doi.org/10.1021/ja01468a042]
[18]
Sato, T.; Shimadate, T.; Ishido, Y. Studies on nucleosides and nucleotides. VII-VIII. VII. A new method for synthesis of purine-ribonucleosides. Nippon Kakagu Zasshi, 1960, 81(9), 1440-1442.
[http://dx.doi.org/10.1246/nikkashi1948.81.9_1440]
[19]
Davoll, J.; Lowy, B.A. A new synthesis of purine nucleosides. The synthesis of adenosine, guanosine and 2,6-Diamino-9-β-D-ribofuranosylpurine. J. Am. Chem. Soc., 1951, 73(4), 1650-1655.
[http://dx.doi.org/10.1021/ja01148a071]
[20]
Kissman, H.M.; Baker, B.R. The synthesis of certain 5-Deoxy-D-ribofuranosylpurines. J. Am. Chem. Soc., 1957, 79(20), 5534-5540.
[http://dx.doi.org/10.1021/ja01577a055]
[21]
Jones, G.H.; Albrecht, H.P.; Damodaran, N.P.; Moffatt, J.G. Synthesis of isosteric phosphonate analogs of some biologically important phosphodiesters. J. Am. Chem. Soc., 1970, 92(18), 5510-5511.
[http://dx.doi.org/10.1021/ja00721a034] [PMID: 5449449]
[22]
Green, D.P.L.; Ravindranathan, T.; Reese, C.B.; Saffhill, R. The synthesis of oligoribonucleotides-8. The preparation of ribonucleoside 2′,5′-bisketals. Tetrahedron, 1970, 26(4), 1031-1041.
[http://dx.doi.org/10.1016/S0040-4020(01)98780-0] [PMID: 5443307]
[23]
Chládek, S.; Smrt, J. Oligonucleotidic compounds. VIII. Synthesis of adenylyl-(5′→3′)-uridine, adenylyl-(5′→3′)-cytidine, guanylyl-(5′→3′)-uridine, guanylyl(5′→3′)-cytidine, cytidylyl-(5′→3′)-cytidine, adenylyl-(5′→3′)-uridylyl-(5′→3′)-cytidine and related compounds. Collect. Czech. Chem. Commun., 1964, 29(1), 214-233.
[http://dx.doi.org/10.1135/cccc19640214]
[24]
Albrecht, H.P.; Jones, G.H.; Moffatt, J.G. 3′,-deoxy-3′,-(dihydroxyphosphinylmethyl) nucleosides. Isosteric phosphonate analogs of nucleoside 3′,-phosphates. J. Am. Chem. Soc., 1970, 92(18), 5511-5513.
[http://dx.doi.org/10.1021/ja00721a600] [PMID: 5449450]
[25]
Montgomery, J.A.; Laseter, A.G.; Hewson, K. The use of the wittig reaction in the modification of purine nucleosides. J. Heterocycl. Chem., 1974, 11(2), 211-218.
[http://dx.doi.org/10.1002/jhet.5570110219]
[26]
Jones, G.H.; Hamamura, E.K.; Moffatt, J.G. A new stable Wittig reagent suitable for the synthesis of α,β-unsaturated phosphonates. Tetrahedron Lett., 1968, 9(55), 5731-5734.
[http://dx.doi.org/10.1016/S0040-4039(00)76336-2]
[27]
Montgomery, J.A.; Thomas, H.J.; Kisliuk, R.L.; Gaumont, Y. Phosphonate analogue of 2′-deoxy-5-fluorouridylic acid. J. Med. Chem., 1979, 22(1), 109-111.
[http://dx.doi.org/10.1021/jm00187a024] [PMID: 423172]
[28]
Martin, J.C.; Verheyden, J.P.H. Synthesis of 4′-(Hydroxymethyl)Guanosine and a Phosphonate Analogue of Guanylic Acid. Nucleos. Nucleot., 1988, 7(3), 365-374.
[http://dx.doi.org/10.1080/07328318808068716]
[29]
Almer, H.; Classon, B.; Samuelsson, B.; Kvarnström, I. Synthesis of a phosphonomethyl analogue of 3′,-deoxy-3-fluorothymidine. Acta Chem. Scand., 1991, 45(7), 766-767.
[http://dx.doi.org/10.3891/acta.chem.scand.45-0766] [PMID: 1782107]
[30]
Parrish, J.P.; Lee, S.K.; Boojamra, C.G.; Hui, H.; Babusis, D.; Brown, B.; Shih, I-H.; Feng, J.Y.; Ray, A.S.; Mackman, R.L. Evaluation of 2′-α-fluorine modified nucleoside phosphonates as potential inhibitors of HCV polymerase. Bioorg. Med. Chem. Lett., 2013, 23(11), 3354-3357.
[http://dx.doi.org/10.1016/j.bmcl.2013.03.095] [PMID: 23639543]
[31]
Sterzycki, R.; Mansuri, M.; Brankovan, V.; Buroker, R.; Ghazzouli, I.; Hitchcock, M.; Somrnadossi, J.P.; Martin, J.C. 1-(2,3-Dideoxy-3-Fluoro-β-D-Ribofuranosyl)Tine (FDDT). Improved preparation and evaluation as a potential anti-aids agent. Nucleos. Nucleot., 1989, 8(5-6), 1115-1117.
[http://dx.doi.org/10.1080/07328318908054302]
[32]
Freeman, G.A.; Rideout, J.L.; Miller, W.H.; Reardon, J.E. 3′,-Azido-3′,,5′-dideoxythymidine-5′-methylphosphonic acid diphosphate: synthesis and HIV-1 reverse transcriptase inhibition. J. Med. Chem., 1992, 35(17), 3192-3196.
[http://dx.doi.org/10.1021/jm00095a014] [PMID: 1380561]
[33]
Hill, J.A.; Freeman, G.A. An improved synthesis of [5′-3H]-3′,-Azido-3′,-Deoxythymidine Tritiated Zidovudine. J. Labelled Comp. Radiopharm., 1988, 25, 277-280.
[http://dx.doi.org/10.1002/jlcr.2580250306]
[34]
Hoard, D.E.; Ott, D.G. Conversion of Mono- and oligodeoxyribonucleotides to 5′-Triphosphates. J. Am. Chem. Soc., 1965, 87(8), 1785-1788.
[http://dx.doi.org/10.1021/ja01086a031] [PMID: 14289336]
[35]
Secrist, J.A.I.; Riggs, R.M.; Comber, R.N.; Montgomery, J.A. Synthesis of phosphonate analogues of Dideoxyadenosine (DDA)-, Dideoxycytidine (DDC)-, Dideoxyinosine (DDI)-, and Deoxythymidine (DDT)-5′-Monophosphates. Nucleos. Nucleot., 1992, 11, 947-956.
[http://dx.doi.org/10.1080/07328319208021749]
[36]
Riggs, R.M.; Comber, R.N.; Montgomery, J.A.; Secrist, J.A., III; Leeds, J.M.; Chaffee, S.; Hershfield, M.S. Phosphate modified analogues of 5′-O-Phosphorylated 2′,3′-Dideoxynucleosides: synthesis and anti-HIV activity. Nucleos. Nucleot., 1989, 8(5-6), 1119-1120.
[http://dx.doi.org/10.1080/07328318908054303]
[37]
Szabó, T.; Kers, A.; Stawinski, J. A new approach to the synthesis of the 5′-deoxy-5′-methylphosphonate linked thymidine oligonucleotide analogues. Nucleic Acids Res., 1995, 23(6), 893-900.
[http://dx.doi.org/10.1093/nar/23.6.893] [PMID: 7731801]
[38]
Reese, C.B.; Zard, L. Some observations relating to the oximate ion promoted unblocking of oligonucleotide aryl esters. Nucleic Acids Res., 1981, 9(18), 4611-4626.
[http://dx.doi.org/10.1093/nar/9.18.4611] [PMID: 7301585]
[39]
Mizuno, Y.; Endo, T. A novel type of neighboring group participation involving pyridine N-oxides in acylation and phosphorylation. J. Org. Chem., 1978, 43(4), 684-688.
[http://dx.doi.org/10.1021/jo00398a037]
[40]
Szabo, T.; Stawinski, J. Synthesis and some conformational features of the 5′-deoxy-5′-methylphosphonate linked dimer, 5′-deoxy-5′-C-(phosphonomethyl)thymidin-3′,-yl (thymidin-5′-yl)methylphosphonate. Tetrahedron, 1995, 51(14), 4145-4160.
[http://dx.doi.org/10.1016/0040-4020(95)00131-Q]
[41]
Xu, Y.; Flavin, M.T.; Xu, Z-Q. Preparation of new Wittig reagents and their application to the synthesis of α,β-Unsaturated Phosphonates. J. Org. Chem., 1996, 61(22), 7697-7701.
[http://dx.doi.org/10.1021/jo9608275] [PMID: 11667723]
[42]
Jung, K.Y.; Hohl, R.J.; Wiemer, A.J.; Wiemer, D.F. Synthesis of phosphonate derivatives of uridine, cytidine, and cytosine arabinoside. Bioorg. Med. Chem., 2000, 8(10), 2501-2509.
[http://dx.doi.org/10.1016/S0968-0896(00)00183-8] [PMID: 11058045]
[43]
Ogilvie, K.K.; Hakimelahi, G.H.; Proba, Z.A.; McGee, D.P.C. Silylated derivatives of arabinonucleosides. Tetrahedron Lett., 1982, 23(19), 1997-2000.
[http://dx.doi.org/10.1016/S0040-4039(00)87243-3]
[44]
Marcuccio, S.M.; Elmes, B.C.; Holan, G.; Middleton, E.J. Modified nucleosides. II.1 Economical synthesis of 2′,3′-Dideoxycytidine. Nucleosides Nucleotides, 1992, 11(10), 1695-1701.
[http://dx.doi.org/10.1080/07328319208017816]
[45]
Chen, X.; Jung, K-Y.; Wiemer, D.F.; Wiemer, A.J.; Hohl, R.J. Phosphonate analogues of cytosine arabinoside monophosphate. Phosphorus Sulfur Silicon Relat. Elem., 2002, 177(6-7), 1783-1786.
[http://dx.doi.org/10.1080/10426500212248]
[46]
Chen, X.; Wiemer, A.J.; Hohl, R.J.; Wiemer, D.F. Stereoselective synthesis of the 5′-hydroxy-5′-phosphonate derivatives of cytidine and cytosine arabinoside. J. Org. Chem., 2002, 67(26), 9331-9339.
[http://dx.doi.org/10.1021/jo020483k] [PMID: 12492335]
[47]
Raju, N.; Smee, D.F.; Robins, R.K.; Vaghefi, M.M. Synthesis and biological properties of purine and pyrimidine 5′-deoxy-5′-(dihydroxyphosphinyl)-β-D-ribofuranosyl analogues of AMP, GMP, IMP, and CMP. J. Med. Chem., 1989, 32(6), 1307-1313.
[http://dx.doi.org/10.1021/jm00126a027] [PMID: 2542559]
[48]
Harry-O’Kuru, R.E.; Smith, J.M.; Wolfe, M.S. A short, flexible route toward 2′-branched ribonucleosides. J. Org. Chem., 1997, 62, 1754-1759.
[http://dx.doi.org/10.1021/jo961893+]
[49]
Suk, D.H.; Bonnac, L.; Dykstra, C.C.; Pankiewicz, K.W.; Patterson, S.E. Rational design and synthesis of novel nucleotide anti-Giardia agents. Bioorg. Med. Chem. Lett., 2007, 17(7), 2064-2067.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.014] [PMID: 17258459]
[50]
Cosyn, L.; Van Calenbergh, S.; Joshi, B.V.; Ko, H.; Carter, R.L.; Kendall Harden, T.; Jacobson, K.A. Synthesis and P2Y receptor activity of nucleoside 5′-phosphonate derivatives. Bioorg. Med. Chem. Lett., 2009, 19(11), 3002-3005.
[http://dx.doi.org/10.1016/j.bmcl.2009.04.027] [PMID: 19419868]
[51]
Abbracchio, M.P.; Burnstock, G.; Boeynaems, J.M.; Barnard, E.A.; Boyer, J.L.; Kennedy, C.; Knight, G.E.; Fumagalli, M.; Gachet, C.; Jacobson, K.A.; Weisman, G.A. International Union of Pharmacology LVIII: Update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol. Rev., 2006, 58(3), 281-341.
[http://dx.doi.org/10.1124/pr.58.3.3] [PMID: 16968944]
[52]
Jacobson, K.A.; Ivanov, A.A.; de Castro, S.; Harden, T.K.; Ko, H. Development of selective agonists and antagonists of P2Y receptors. Purinergic Signal., 2009, 5(1), 75-89.
[http://dx.doi.org/10.1007/s11302-008-9106-2] [PMID: 18600475]
[53]
Gachet, C. P2 receptors, platelet function and pharmacological implications. Thromb. Haemost., 2008, 99(3), 466-472.
[http://dx.doi.org/10.1160/TH07-11-0673] [PMID: 18327393]
[54]
Nichols, K.K.; Yerxa, B.; Kellerman, D.J. Diquafosol tetrasodium: a novel dry eye therapy. Expert Opin. Investig. Drugs, 2004, 13(1), 47-54.
[http://dx.doi.org/10.1517/13543784.13.1.47] [PMID: 14680452]
[55]
Kim, B.S.; Kim, B.T.; Hwang, K.J. The synthesis of diverse adenosine 5′-phosphonate analogues as chain terminators against Hepatitis C virus. Bull. Korean Chem. Soc., 2010, 31(6), 1643-1648.
[http://dx.doi.org/10.5012/bkcs.2010.31.6.1643]
[56]
Kim, B.T.; Kim, S.K.; Lee, S.J.; Hwang, K.J. A convenient and versatile synthesis of 2′ (and 3′,)-Amino (and azido)-2′ (and 3′,)-deoxyadenosine as diverse synthetic precursors of cyclic Adenosine Diphosphate Ribose (cADPR). Bull. Korean Chem. Soc., 2004, 25(2), 243-248.
[http://dx.doi.org/10.5012/jkcs.2004.48.3.243]
[57]
Kim, B.S.; Kim, B.T.; Hwang, K.J. A practical method to cleave diphenyl phosphonate esters to their corresponding phosphonic acids in one step. Bull. Korean Chem. Soc., 2009, 30(6), 1391-1393.
[http://dx.doi.org/10.5012/bkcs.2009.30.6.1391]
[58]
Kumar, T.S.; Zhou, S.Y.; Joshi, B.V.; Balasubramanian, R.; Yang, T.; Liang, B.T.; Jacobson, K.A. Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5′-AMP as cardioprotective agents acting through a cardiac P2X receptor. J. Med. Chem., 2010, 53(6), 2562-2576.
[http://dx.doi.org/10.1021/jm9018542] [PMID: 20192270]
[59]
Joshi, B.V.; Melman, A.; Mackman, R.L.; Jacobson, K.A. Synthesis of ethyl (1S,2R,3S,4S,5S)-2,3-O-(isopropylidene)-4-hydroxy-bicyclo[3.1.0]hexane-carboxylate from L-ribose: a versatile chiral synthon for preparation of adenosine and P2 receptor ligands. Nucleosides Nucleotides Nucleic Acids, 2008, 27(3), 279-291.
[http://dx.doi.org/10.1080/15257770701845253] [PMID: 18260011]
[60]
Bichlmaier, I.; Kurkela, M.; Joshi, T.; Siiskonen, A.; Rüffer, T.; Lang, H.; Suchanova, B.; Vahermo, M.; Finel, M.; Yli-Kauhaluoma, J. Isoform-selective inhibition of the human UDP-glucuronosyltransferase 2B7 by isolongifolol derivatives. J. Med. Chem., 2007, 50(11), 2655-2664.
[http://dx.doi.org/10.1021/jm061204e] [PMID: 17474732]
[61]
Samadder, P.; Bittman, R.; Byun, H.S.; Arthur, G. Synthesis and use of novel ether phospholipid enantiomers to probe the molecular basis of the antitumor Effects of alkyllysophospholipids: correlation of differential activation of c-Jun NH(2)-terminal protein kinase with antiproliferative effects in neuronal tumor cells. J. Med. Chem., 2004, 47(10), 2710-2713.
[http://dx.doi.org/10.1021/jm0302748] [PMID: 15115414]
[62]
Salvatori, D.; Volpini, R.; Vincenzetti, S.; Vita, A.; Costanzi, S.; Lambertucci, C.; Cristalli, G.; Vittori, S. Adenine and deazaadenine nucleoside and deoxynucleoside analogues: Inhibition of viral replication of sheep MVV (in vitro model for HIV) and bovine BHV-1. Bioorg. Med. Chem., 2002, 10(9), 2973-2980.
[http://dx.doi.org/10.1016/S0968-0896(02)00131-1] [PMID: 12110319]
[63]
Hoffmann, M.F.H.; Bruckner, A.M.; Hupp, T.; Engels, B.; Diederichsen, U. Specific purine-purine base pairing in linear alanyl-peptide nucleic acids. Helv. Chim. Acta, 2000, 83, 2580-2593.
[http://dx.doi.org/10.1002/1522-2675(20000906)83:9<2580::AID-HLCA2580>3.0.CO;2-6]
[64]
Yang, A.; Sonin, D.; Jones, L.; Liang, B.T. beneficial role of cardiac P2X4 receptors in heart failure: rescuing the calsequestrin overexpression model of cardiomyopathy. Am. J. Physiol., 2004, 287, 1096-1103.
[65]
Jones, L.R.; Suzuki, Y.J.; Wang, W.; Kobayashi, Y.M.; Ramesh, V.; Franzini-Armstrong, C.; Cleemann, L.; Morad, M. Regulation of Ca2+ signaling in transgenic mouse cardiac myocytes overexpressing calsequestrin. J. Clin. Invest., 1998, 101(7), 1385-1393.
[http://dx.doi.org/10.1172/JCI1362] [PMID: 9525981]
[66]
Knollmann, B.C.; Knollmann-Ritschel, B.E.C.; Weissman, N.J.; Jones, L.R.; Morad, M. Remodelling of ionic currents in hypertrophied and failing hearts of transgenic mice overexpressing calsequestrin. J. Physiol., 2000, 525(Pt 2), 483-498.
[http://dx.doi.org/10.1111/j.1469-7793.2000.t01-1-00483.x] [PMID: 10835049]
[67]
Gallier, F.; Alexandre, J.A.; El Amri, C.; Deville-Bonne, D.; Peyrottes, S.; Périgaud, C. 5′,6′-nucleoside phosphonate analogues architecture: synthesis and comparative evaluation towards metabolic enzymes. ChemMedChem, 2011, 6(6), 1094-1106.
[http://dx.doi.org/10.1002/cmdc.201100068] [PMID: 21567966]
[68]
Miah, A.; Reese, C.B.; Song, Q.; Sturdy, Z.; Neidle, S.; Simpson, I.J.; Read, M.; Rayner, E. 2′,3′-Anhydrouridine. A useful synthetic intermediate. J. Chem. Soc. Perkin Trans. I, 1998, 1998(19), 3277-3283.
[http://dx.doi.org/10.1039/a803563f]
[69]
Van Poecke, S.; Barrett, M.O.; Santhosh Kumar, T.; Sinnaeve, D.; Martins, J.C.; Jacobson, K.A.; Kendall Harden, T.; Van Calenbergh, S. Synthesis and P2Y2 receptor agonist activities of uridine 5′-phosphonate analogues. Bioorg. Med. Chem., 2012, 20(7), 2304-2315.
[http://dx.doi.org/10.1016/j.bmc.2012.02.012] [PMID: 22386981]
[70]
Pomeisl, K.; Holý, A.; Pohl, R. Pd-catalyzed Suzuki–Miyaura coupling reactions in the synthesis of 5-aryl-1-[2-(phosphonomethoxy)ethyl]uracils as potential multisubstrate inhibitors of thymidine phosphorylase. Tetrahedron Lett., 2007, 48(17), 3065-3067.
[http://dx.doi.org/10.1016/j.tetlet.2007.02.107]
[71]
Verheyden, J.P.; Wagner, D.; Moffatt, J.G. Synthesis of some pyrimidine 2′-amino-2′-deoxynucleosides. J. Org. Chem., 1971, 36(2), 250-254.
[http://dx.doi.org/10.1021/jo00801a002] [PMID: 5545352]
[72]
Holy, A. Simple method for cleavage of Phosphonic acid diesters to monoesters. Synthesis, 1998, 1998(4), 381-385.
[http://dx.doi.org/10.1055/s-1998-2047]
[73]
Shatila, R.S.; Bouhadir, K.H. Two simple protocols for the preparation of diallylaminoethyl-substituted nucleic bases: a comparison. Tetrahedron Lett., 2006, 47(11), 1767-1770.
[http://dx.doi.org/10.1016/j.tetlet.2006.01.035]
[74]
Poecke, S.V.; Sinnaeve, D.; Martins, J.C.; Balzarini, J.; Calenbergh, S.V. Synthesis of 5-substituted 2′-deoxyuridine-5′- phosphonate analogues and evaluation of their antiviral activity. Nucleosides Nucleotides Nucleic Acids, 2012, 31(3), 256-272.
[http://dx.doi.org/10.1080/15257770.2012.654876] [PMID: 22356239]
[75]
Fries, K.M.; Joswig, C.; Borch, R.F. Synthesis and biological evaluation of 5-fluoro-2′-deoxyuridine phosphoramidate analogs. J. Med. Chem., 1995, 38(14), 2672-2680.
[http://dx.doi.org/10.1021/jm00014a019] [PMID: 7629806]
[76]
Kim, C.U.; Misco, P.F.; Luh, B.Y.; Hitchcock, M.J.; Ghazzouli, I.; Martin, J.C. A new class of acyclic phosphonate nucleotide analogues: phosphonate isosteres of acyclovir and ganciclovir monophosphates as antiviral agents. J. Med. Chem., 1991, 34(7), 2286-2294.
[http://dx.doi.org/10.1021/jm00111a052] [PMID: 1648622]
[77]
Pradere, U.; Amblard, F.; Coats, S.J.; Schinazi, R.F.; Schinazi, R.F. Synthesis of 5′-methylene-phosphonate furanonucleoside prodrugs: application to D-2′-deoxy-2′-α-fluoro-2′-β-C-methyl nucleosides. Org. Lett., 2012, 14(17), 4426-4429.
[http://dx.doi.org/10.1021/ol301937v] [PMID: 22917194]
[78]
Dang, Q.; Zhang, Z.; He, S.; Liu, Y.; Chen, T.; Bogen, S.; Girijavallabhan, V.; Olsen, D.B.; Meinke, P.T. Syntheses of 4′-spirocyclic phosphono-nucleosides as potential inhibitors of hepatitis C virus NS5B Polymerase. Tetrahedron Lett., 2014, 55(31), 4407-4409.
[http://dx.doi.org/10.1016/j.tetlet.2014.06.029]
[79]
Agnel, G.; Negishi, E. Highly stereo- and regiocontrolled cyclopentannulation via allylphosphonate conjugate addition and hydroboration-oxidation-elimination. Synthesis of pentalenic acid with virtually complete stereo- and regiocontrol. J. Am. Chem. Soc., 1991, 113(19), 7424-7426.
[http://dx.doi.org/10.1021/ja00019a051]
[80]
Maity, J.K.; Ghosh, R.; Drew, M.G.; Achari, B.; Mandal, S.B. Introduction of vinyl and hydroxymethyl functionalities at C-4 of glucose-derived substrates: synthesis of spirocyclic, bicyclic, and tricyclic nucleosides. J. Org. Chem., 2008, 73(11), 4305-4308.
[http://dx.doi.org/10.1021/jo8002826] [PMID: 18433176]
[81]
D’Errico, S.; Falanga, A.P.; Capasso, D.; Di Gaetano, S.; Marzano, M.; Terracciano, M.; Roviello, G.N.; Piccialli, G.; Oliviero, G.; Borbone, N. Probing the DNA reactivity and the anticancer properties of a novel Tubercidin-Pt(II) complex. Pharmaceutics, 2020, 12(7), 627-627.
[http://dx.doi.org/10.3390/pharmaceutics12070627] [PMID: 32635488]
[82]
Xia, J.; Piskorz, C.F.; Alderfer, J.L.; Locke, R.D.; Matta, K.L. Total synthesis of a sialylated and sulfated oligosaccharide from O-linked glycoproteins. Tetrahedron Lett., 2000, 41(16), 2773-2776.
[http://dx.doi.org/10.1016/S0040-4039(00)00261-6]
[83]
Hampton, A.; Sasaki, T.; Paul, B. Synthesis of 6′-cyano-6′-deoxyhomoadenosine-6′-phosphonic acid and its phosphoryl and pyrophosphoryl anhydrides and studies of their interactions with adenine nucleotide utilizing enzymes. J. Am. Chem. Soc., 1973, 95(13), 4404-4414.
[http://dx.doi.org/10.1021/ja00794a043] [PMID: 4350696]
[84]
Tanaka, H.; Fukui, M.; Haraguchi, K.; Masaki, M.; Miyasaka, T. Cleavage of a nucleosidic oxetane with carbanions: synthesis of a highly promising candidate for anti-HIV agents - a phosphonate isostere of AZT 5′-phosphate. Tetrahedron Lett., 1989, 30(19), 2567-2570.
[http://dx.doi.org/10.1016/S0040-4039(01)80452-4]
[85]
Eis, M.J.; Wrobel, J.E.; Ganem, B. Mechanism and synthetic utility of boron trifluoride etherate-promoted organolithium additions. J. Am. Chem. Soc., 1984, 106(12), 3693-3694.
[http://dx.doi.org/10.1021/ja00324a060]
[86]
Mete, A.; Hobbs, J.B.; Scopes, D.I.C.; Newton, R.F. Novel nucleoside analogues via direct attack of carbon: Nucleophiles on nucleosides containing epoxy-sugars. Tetrahedron Lett., 1985, 26(1), 97-100.
[http://dx.doi.org/10.1016/S0040-4039(00)98477-6]
[87]
Ashwell, M.; Jones, A.S.; Walker, R.T. The synthesis of some branched-chain-sugar nucleoside analogues. Nucleic Acids Res., 1987, 15(5), 2157-2166.
[http://dx.doi.org/10.1093/nar/15.5.2157] [PMID: 3562223]
[88]
Horwitz, J.R.; Chua, J.; Da Rooge, M.A.; Noel, M.; Klundt, I.L. Nucleosides. IX. The formation of 2′,2′-unsaturated pyrimidine nucleosides via a novel β-elimination reaction. J. Org. Chem., 1966, 31(1), 205-211.
[http://dx.doi.org/10.1021/jo01339a045] [PMID: 5900814]
[89]
Dauben, W.G.; Beasley, G.H.; Broadhurst, M.D.; Muller, B.; Peppard, D.J.; Pesnelle, P.; Suter, C. Synthesis of (+/-)-cembrene, a fourteen-membered ring diterpene. J. Am. Chem. Soc., 1975, 97(17), 4973-4980.
[http://dx.doi.org/10.1021/ja00850a035]
[90]
Wolff-Kugel, D.; Halazy, S. Synthesis of new Carbocyclic Phosphonate analogs of dideoxypurine nucleotides. Tetrahedron Lett., 1991, 32(44), 6341-6344.
[http://dx.doi.org/10.1016/0040-4039(91)80164-2]
[91]
Tomoda, S.; Usuki, Y. Fluoroselenenylation of alkenes. Chem. Lett., 1989, 18(7), 1235-1236.
[http://dx.doi.org/10.1246/cl.1989.1235]
[92]
Clive, D.L.J.; Chittattu, G.J.; Farina, V.; Kiel, W.A.; Menchen, S.M.; Russell, C.G.; Singh, A.; Wong, C.K.; Curtis, N.J. Organic tellurium and selenium chemistry. Reduction of tellurides, selenides, and selenoacetals with triphenyltin hydride. J. Am. Chem. Soc., 1980, 102(13), 4438-4447.
[http://dx.doi.org/10.1021/ja00533a024]
[93]
Jung, M.E.; Lyster, M.A. Quantitative dealkylation of alkyl ethers via treatment with trimethylsilyl iodide. A new method for ether hydrolysis. J. Org. Chem., 1977, 42(23), 3761-3764.
[http://dx.doi.org/10.1021/jo00443a033]
[94]
Kim, C.U.; Bronson, J.J.; Ferrara, M.; Martin, J.C. Synthesis and HIV activity of phosphonate isostere of d4T monophosphate. Bioorg. Med. Chem. Lett., 1992, 2, 367-370.
[http://dx.doi.org/10.1016/S0960-894X(00)80147-X]
[95]
Navé, J-F.; Wolff-Kugel, D.; Halazy, S. Carbocyclic phosphonate analogs of 2′,3′-dideoxyadenosine-5′-monophosphate as substrates of 5-phosphoribosyl-1-pyrophosphate (PRPP) synthetate. Bioorg. Med. Chem. Lett., 1992, 2(12), 1483-1488.
[http://dx.doi.org/10.1016/S0960-894X(00)80413-8]
[96]
Wolff-Kugel, D.; Halazy, S. Studies towards the synthesis of the saturated and unsaturated Carbocyclic Methylene Phosphonate analogs of Dideoxyadenosine. Nucleos. Nucleot., 1993, 12(3-4), 279-294.
[http://dx.doi.org/10.1080/07328319308017826]
[97]
Barton, D.H.R.; Motherwell, W.B. New and selective reactions and reagents in natural product chemistry. Pure Appl. Chem., 1981, 53(6), 1081-1099.
[http://dx.doi.org/10.1351/pac198153061081]
[98]
Seela, F.; Muth, H.P.; Bindig, U. Synthesis of 6-substituted 7-carbapurine 2′,3′-dideoxynucleosides: solid-liquid phase-transfer glycosylation of 4-chloropyrrolo[2,3-d]pyrimidine and deoxygenation of its 2′-deoxyribofuranoside. Synthesis, 1988, 1988(9), 670-674.
[http://dx.doi.org/10.1055/s-1988-27667]
[99]
Robins, M.J.; Wilson, J.S. Smooth and efficient deoxygenation of secondary alcohols. A general procedure for the conversion of ribonucleosides to 2′-deoxynucleosides. J. Am. Chem. Soc., 1981, 103(4), 932-933.
[http://dx.doi.org/10.1021/ja00394a033]
[100]
Legeret, B.; Sarakauskaite, Z.; Pradaux, F.; Saito, Y.; Tumkevicius, S.; Agrofoglio, L.A. Synthesis of carbocyclic phosphononucleosides. Nucleosides Nucleotides Nucleic Acids, 2001, 20(4-7), 661-664.
[http://dx.doi.org/10.1081/NCN-100002345] [PMID: 11563086]
[101]
Saito, Y.; Escuret, V.; Durantel, D.; Zoulim, F.; Schinazi, R.F.; Agrofoglio, L.A. Synthesis of 1,2,3-triazolo-carbanucleoside analogues of ribavirin targeting an HCV in replicon. Bioorg. Med. Chem., 2003, 11(17), 3633-3639.
[http://dx.doi.org/10.1016/S0968-0896(03)00349-3] [PMID: 12901908]
[102]
Spurlock, L.A.; Fayter, R.G., Jr Nature of the carbonium ion. IX. 2-Oxa-6-norbornyl cation. J. Am. Chem. Soc., 1972, 94(8), 2707-2711.
[http://dx.doi.org/10.1021/ja00763a027]
[103]
David, F. Synthesis and solvolysis of syn- and anti-(6-oxabicyclo[3.1.0]hex-3-yl)methyl p-bromobenzenesulfonates. J. Org. Chem., 1981, 46(17), 3512-3519.
[http://dx.doi.org/10.1021/jo00330a027]
[104]
Hutchison, A.; Grim, M.; Chen, J. A short and stereoselective synthesis of (±)‐aristeromycin. J. Heterocycl. Chem., 1989, 26(2), 451-452.
[http://dx.doi.org/10.1002/jhet.5570260235]
[105]
Depres, J.P.; Greene, A.E. Improved selectivity in the preparation of some 1,1-difunctionalized 3-cyclopentenes. High yield synthesis of 3-cyclopentenecarboxylic acid. J. Org. Chem., 1984, 49(5), 928-931.
[http://dx.doi.org/10.1021/jo00179a035]
[106]
L’abbe, G. Decomposition and addition reactions of organic azides. Chem. Rev., 1969, 69(3), 345-363.
[http://dx.doi.org/10.1021/cr60259a004]
[107]
Gothelf, K.V.; Jørgensen, K.A. Asymmetric 1,3-dipolar cycloaddition reactions. Chem. Rev., 1998, 98(2), 863-910.
[http://dx.doi.org/10.1021/cr970324e] [PMID: 11848917]
[108]
Barral, K.; Priet, S.; De Michelis, C.; Sire, J.; Neyts, J.; Balzarini, J.; Canard, B.; Alvarez, K. Synthesis and antiviral activity of boranophosphonate isosteres of AZT and d4T monophosphates. Eur. J. Med. Chem., 2010, 45(2), 849-856.
[http://dx.doi.org/10.1016/j.ejmech.2009.11.012] [PMID: 19969396]
[109]
Barral, K.; Priet, S.; Sire, J.; Neyts, J.; Balzarini, J.; Canard, B.; Alvarez, K. Synthesis, in vitro antiviral evaluation, and stability studies of novel alpha-borano-nucleotide analogues of 9-[2-(phosphonomethoxy)ethyl]adenine and (R)-9-[2-(phosphonomethoxy)propyl]adenine. J. Med. Chem., 2006, 49(26), 7799-7806.
[http://dx.doi.org/10.1021/jm060030y] [PMID: 17181162]
[110]
Lavandera, I.; Fernández, S.; Ferrero, M.; Gotor, V. First regioselective enzymatic acylation of amino groups applied to pyrimidine 3′,,5′-diaminonucleoside derivatives. Improved synthesis of pyrimidine 3′,,5′-diamino-2′,3′,,5′-trideoxynucleosides. J. Org. Chem., 2001, 66(11), 4079-4082.
[http://dx.doi.org/10.1021/jo010048a] [PMID: 11375042]
[111]
Horwitz, J.P.; Chua, J.; Urbanski, J.A.; Noel, M. 1-(2′-Deoxy-3′,,5′-epoxy-β-D-threo-pentofuranosyl) thymine. J. Org. Chem., 1963, 28(4), 942-944.
[http://dx.doi.org/10.1021/jo01039a015]
[112]
Haraguchi, K.; Tanaka, H.; Miyasaka, T. Preparation of γ- and δ-Phenylselenenyl alcohols via ring cleavage of Oxetane and Oxolane. Synthesis, 1989, 1989(6), 434-436.
[http://dx.doi.org/10.1055/s-1989-27275]
[113]
Kvaernø, L.; Wightman, R.H.; Wengel, J. Synthesis of a novel bicyclic nucleoside restricted to an S-type conformation and initial evaluation of its hybridization properties when incorporated into oligodeoxynucleotides. J. Org. Chem., 2001, 66(15), 5106-5112.
[http://dx.doi.org/10.1021/jo015602v] [PMID: 11463263]
[114]
Dhotare, B.; Chattopadhyay, A. A simple and efficient synthesis of 3′,-Azido-3′,-deoxythymidine (AZT) employing a convergent route. Synthesis, 2001, 2001(9), 1337-1340.
[http://dx.doi.org/10.1055/s-2001-15234]
[115]
Wada, T.; Mochizuki, A.; Sato, Y.; Sekine, M. A convenient method for phosphorylation involving a facile oxidation of H-Phosphonate monoesters via bis(trimethylsilyl) phosphites. Tetrahedron Lett., 1998, 39(39), 7123-7126.
[http://dx.doi.org/10.1016/S0040-4039(98)01513-5]
[116]
He, K.; Porter, K.W.; Hasan, A. Briley and, J.D.; Shaw, B.R. Synthesis of 5-substituted 2′-deoxycytidine 5′-(alpha-P-borano)triphosphates, their incorporationinto DNA and effects on exonuclease. Nucleic Acids Res., 1999, 27(8), 1788-1794.
[http://dx.doi.org/10.1093/nar/27.8.1788] [PMID: 10101185]
[117]
Li, P.; Shaw, B.R. Synthesis of prodrug candidates: Conjugates of amino acid with nucleoside boranophosphate. Org. Lett., 2002, 4(12), 2009-2012.
[http://dx.doi.org/10.1021/ol025832b] [PMID: 12049504]
[118]
Chen, J.J.; Wei, Y.; Drach, J.C.; Townsend, L.B. Synthesis and antiviral evaluation of trisubstituted indole N-nucleosides as analogues of 2,5,6-trichloro-1-(beta-D-ribofuranosyl)benzimidazole (TCRB). J. Med. Chem., 2000, 43(12), 2449-2456.
[http://dx.doi.org/10.1021/jm990320x] [PMID: 10882372]
[119]
Meurillon, M.; Chaloin, L.; Perogaud, C.; Peyrottes, S. Synthesis of Pyrimidine-containing Nucleoside β-(R/S)-Hydroxyphosphonate analogues. Eur. J. Org. Chem., 2011, (20-21), 3794-3802.
[http://dx.doi.org/10.1002/ejoc.201100219]
[120]
Epp, J.B.; Widlanski, T.S. Facile preparation of nucleoside-5′-carboxylic acids. J. Org. Chem., 1999, 64(1), 293-295.
[http://dx.doi.org/10.1021/jo981316g] [PMID: 11674117]
[121]
Dauban, P.; de Saint-Fuscien, C.; Acher, F.; Prézeau, L.; Brabet, I.; Pin, J.P.; Dodd, R.H. First enantiospecific synthesis of a 3,4-dihydroxy-L-glutamic acid [(3S,4S)-DHGA], a new mGluR1 agonist. Bioorg. Med. Chem. Lett., 2000, 10(2), 129-133.
[http://dx.doi.org/10.1016/S0960-894X(99)00641-1] [PMID: 10673095]
[122]
Maloney, K.M.; Chung, J.Y. A general procedure for the preparation of beta-ketophosphonates. J. Org. Chem., 2009, 74(19), 7574-7576.
[http://dx.doi.org/10.1021/jo901552k] [PMID: 19728703]
[123]
Milburn, R.R.; McRae, K.; Chan, J.; Tedrow, J.; Larsen, R.; Faul, M. A practical preparation of aryl β-ketophosphonates. Tetrahedron Lett., 2009, 50(8), 870-872.
[http://dx.doi.org/10.1016/j.tetlet.2008.11.112]
[124]
Sung, W.L. Synthesis of 4-(1,2,4-triazol-1-yl)-pyrimidin-2(1H)-one ribonucleotide and its application in synthesis of oligoribonucleotides. J. Org. Chem., 1982, 47(19), 3623-3628.
[http://dx.doi.org/10.1021/jo00140a005]
[125]
Bouisset, T.; Gosselin, G.; Griffe, L.; Meillon, J.C.; Storer, R. Synthesis of 2′-C-methyl-branched isonucleosides. Tetrahedron, 2008, 64(28), 6657-6661.
[http://dx.doi.org/10.1016/j.tet.2008.05.022]
[126]
Chambert, S.; Gautier-Luneau, I.; Fontecave, M.; Décout, J.L. 2-(trimethylsilyl)ethanethiol in nucleoside chemistry. A short route for preparing thionucleosides and their methyl disulfides. J. Org. Chem., 2000, 65(1), 249-253.
[http://dx.doi.org/10.1021/jo9908492] [PMID: 10813923]
[127]
Cava, M.P.; Levinson, M.I. Thionation reactions of Lawesson’s. Tetrahedron, 1985, 41(22), 5061-5087.
[http://dx.doi.org/10.1016/S0040-4020(01)96753-5]
[128]
Hospital, A.; Meurillon, M.; Peyrottes, S.; Périgaud, C. An alternative pathway to ribonucleoside β-hydroxyphosphonate analogues and related prodrugs. Org. Lett., 2013, 15(18), 4778-4781.
[http://dx.doi.org/10.1021/ol402143y] [PMID: 24015803]
[129]
Schneider, C. Synthesis of 1,2-Difunctionalized fine chemicals through catalytic, enantioselective ring-opening reactions of epoxides. Synthesis, 2006, 2006(23), 3919-3944.
[http://dx.doi.org/10.1055/s-2006-950348]
[130]
Giannessi, F.; Chiodi, P.; Marzi, M.; Minetti, P.; Pessotto, P.; De Angelis, F.; Tassoni, E.; Conti, R.; Giorgi, F.; Mabilia, M.; Dell’Uomo, N.; Muck, S.; Tinti, M.O.; Carminati, P.; Arduini, A. Reversible carnitine palmitoyltransferase inhibitors with broad chemical diversity as potential antidiabetic agents. J. Med. Chem., 2001, 44(15), 2383-2386.
[http://dx.doi.org/10.1021/jm010889+] [PMID: 11448219]
[131]
Guillerm, G.; Muzard, M.; Glapski, C.; Pilard, S. Inactivation of human S-adenosylhomocysteine hydrolase by covalent labeling of cysteine 195 with thionucleoside derivatives. Bioorg. Med. Chem. Lett., 2004, 14(23), 5803-5807.
[http://dx.doi.org/10.1016/j.bmcl.2004.09.051] [PMID: 15501044]
[132]
Vorbrüggen, H.; Krolikiewicz, K.; Bennua, B. Nucleoside synthesis with trimethylsilyl triflate and perchlorate as catalysts. Chem. Ber., 1981, 114(4), 1234-1255.
[http://dx.doi.org/10.1002/cber.19811140404]
[133]
Hioki, H.; Yoshio, S.; Motosue, M.; Oshita, Y.; Nakamura, Y.; Mishima, D.; Fukuyama, Y.; Kodama, M.; Ueda, K.; Katsu, T. Enantioselective total synthesis of eurylene, 14-deacetyl eurylene, and their 11-epimers: The relation between ionophoric nature and cytotoxicity. Org. Lett., 2004, 6(6), 961-964.
[http://dx.doi.org/10.1021/ol036471i] [PMID: 15012075]
[134]
Li, Z.; Racha, S.; Dan, L.; El-Subbagh, H.; Abushanab, E. A general and facile synthesis of beta- and gamma-hydroxy phosphonates from epoxides. J. Org. Chem., 1993, 58(21), 5779-5783.
[http://dx.doi.org/10.1021/jo00073a043]
[135]
Briggs, A.D.; Camplo, M.; Freeman, S.; Lundström, J.; Pring, B.G. S-Acylthioethyl prodrugs of phosphonoformate. Eur. J. Pharm. Sci., 1997, 5(4), 199-208.
[http://dx.doi.org/10.1016/S0928-0987(97)00281-9]
[136]
Padyukova, N.Sh. Karpeisky MYa; Kolobushkina, L.I.; Mikhailov, S.N. A new scheme for the synthesis of 5′-nucleotide phosphonate analogs. Nucleic Acids Symp. Ser., 1987, 28(18), 85-88.
[PMID: 3697157]
[137]
Bhattacharya, A.K.; Thyagarajan, G. Michaelis-Arbuzov rearrangement. Chem. Rev., 1981, 81(4), 415-430.
[http://dx.doi.org/10.1021/cr00044a004]
[138]
Petrov, A.A.; Dogadina, A.V.; Ionin, B.I.; Garibina, V.A.; Leonov, A.A. The arbuzov rearrangement with participation of halogenoacetylenes as a method of synthesis of ethynylphosphonates and other organophosphorus compounds. Russ. Chem. Rev., 1983, 52(11), 1030-1035.
[http://dx.doi.org/10.1070/RC1983v052n11ABEH002913]
[139]
Ioannidis, P.; Classon, B.; Samuelsson, B.; Kvarnström, I. Synthesis of some 3′,,5′-dideoxy-5′-C-phosphonomethyl nucleosides. Acta Chem. Scand., 1991, 45(7), 746-750.
[http://dx.doi.org/10.3891/acta.chem.scand.45-0746] [PMID: 1782106]
[140]
De Bernardo, S.; Tengi, J.P.; Sasso, G.; Weigele, M. Synthesis of (+)-negamycin from D-glucose. Tetrahedron Lett., 1988, 29(33), 4077-4080.
[http://dx.doi.org/10.1016/S0040-4039(00)80421-9]
[141]
Garegg, P.J.; Samuelsson, B. Novel reagent system for converting a hydroxy-group into an iodo-group in carbohydrates with inversion of configuration. J. Chem. Soc. Perkin Trans. I, 1980, 1980, 2866-2869.
[http://dx.doi.org/10.1039/p19800002866]
[142]
Mazur, A.; Tropp, B.E.; Engel, R. Isosteres of natural phosphates. Synthesis of a phosphonic acid analogue of an oligonucleotide. Tetrahedron, 1984, 40(20), 3949-3956.
[http://dx.doi.org/10.1016/0040-4020(84)85072-3]
[143]
Kraus, J.L. New phosphonate analogues of 3′,-Thia-2′,3′-dideoxycytidine(BCH-189) synthesis and Anti-HIV evaluation. Nucleosides Nucleotides, 1993, 12(2), 157-162.
[http://dx.doi.org/10.1080/07328319308021202]
[144]
Varlet, J.M.; Fabre, G.; Sauveur, F.; Collignon, N.; Savignac, P. Préparation et conversion D’ ω-formylalkylphosphonates en acides aminocarboxyalkylphosphoniques. Tetrahedron, 1981, 37(7), 1377-1384.
[http://dx.doi.org/10.1016/S0040-4020(01)92454-8]
[145]
Hesse, G.; Jorder, I. Mercapto‐acetaldehyd und Dioxy‐1.4‐dithian. Chem. Ber., 1952, 85(9-10), 924-932.
[http://dx.doi.org/10.1002/cber.19520850915]
[146]
Kraus, J.L.; Attardo, G. Synthesis of new 2,5-Substituted 1,3-Oxathiolanes. Intermediates in nucleoside chemistry. Synthesis, 1991, 1991(11), 1046-1048.
[http://dx.doi.org/10.1055/s-1991-26643]
[147]
Gi, H.J.; Xiang, Y.; Schinazi, R.F.; Zhao, K. Synthesis of dihydroisoxazole nucleoside and nucleotide analogs. J. Org. Chem., 1997, 62(1), 88-92.
[http://dx.doi.org/10.1021/jo961779r] [PMID: 11671367]
[148]
Kozikowski, A.P. The isoxazoline route to the molecules of nature. Acc. Chem. Res., 1984, 17(12), 410-416.
[http://dx.doi.org/10.1021/ar00108a001]
[149]
Larsen, K.E.; Torssell, K.B.G. An improved procedure for the preparation of 2-isoxazolines. Tetrahedron, 1984, 40(15), 2985-2988.
[http://dx.doi.org/10.1016/S0040-4020(01)91313-4]
[150]
Stevens, R.V.; Albizati, K.F. Synthesis and nucleophilic substitutions of 3-alkyl-5-chloroisoxazoles. Tetrahedron Lett., 1984, 25(41), 4587-4590.
[http://dx.doi.org/10.1016/S0040-4039(01)91206-7]
[151]
De Sarlo, F.; Guarna, A.; Brandi, A. Nitrile oxides cycloadditions to cinnamaldehyde. Facile dehydrogenation of 4‐formyl‐4,5‐dihydroisoxazoles. J. Heterocycl. Chem., 1983, 20(6), 1505-1507.
[http://dx.doi.org/10.1002/jhet.5570200613]
[152]
Pitha, J.; Ts’o, P.O.P. N-vinyl derivatives of substituted pyrimidines and purines. J. Org. Chem., 1968, 33(4), 1341-1344.
[http://dx.doi.org/10.1021/jo01268a006] [PMID: 5641024]
[153]
Xiang, Y.; Chen, J.; Schinazi, R.F.; Zhao, K. Synthesis and anti-HIV activity of dihydroisoxazole 6-chloropurine and adenine. Bioorg. Med. Chem. Lett., 1996, 6(9), 1051-1054.
[http://dx.doi.org/10.1016/0960-894X(96)00171-0]
[154]
Chiacchio, U.; Iannazzo, D.; Piperno, A.; Romeo, R.; Romeo, G.; Rescifina, A.; Saglimbeni, M. Synthesis and biological evaluation of phosphonated carbocyclic 2′-oxa-3′,-aza-nucleosides. Bioorg. Med. Chem., 2006, 14(4), 955-959.
[http://dx.doi.org/10.1016/j.bmc.2005.09.024] [PMID: 16213735]
[155]
Gallier, F.; Peyrottes, S.; Perigaud, C. Ex-chiral-pool synthesis of β-hydroxyphosphonate nucleoside analogues. Eur. J. Org. Chem., 2007, 2007(6), 925-933.
[http://dx.doi.org/10.1002/ejoc.200600562]
[156]
Collins, J.C.; Hess, W.W.; Frank, F.J. Dipyridine-chromium(VI) oxide oxidation of alcohols in dichloromethane. Tetrahedron Lett., 1968, 9(30), 3363-3366.
[http://dx.doi.org/10.1016/S0040-4039(00)89494-0]
[157]
Piers, E.; Worster, P.M. Oxidation with chromium(VI) oxide - pyridine complex. A study of reaction parameters using cholesterol as substrate. Can. J. Chem., 1977, 55(4), 733-736.
[http://dx.doi.org/10.1139/v77-101]
[158]
Sowa, W.; Thopmas, G.H.S. The oxidation of 1,2:5,6-di-O-isopropylidene-D-glucose by dimethyl sulfoxide-acetic anhydride. Can. J. Chem., 1966, 44, 836-838.
[http://dx.doi.org/10.1139/v66-120]
[159]
David, S.; de Sennyey, G. Synthèse des 1-(5-désoxy-β-D-ribo-hexofuranosyl)cytosine et 1-(2,5-didésoxy-β-D-érythro-hexofuranosyl)cytosine, et de leurs phosphates. Contribution à l’étude de la spécificité d’une ribonucléotide-réductase de mammifère (rat). Carbohydr. Res., 1979, 77(1), 79-97.
[http://dx.doi.org/10.1016/S0008-6215(00)83795-7] [PMID: 519657]
[160]
Niedballa, U.; Vorbrüggen, H. A general synthesis of N-glycosides. 6. On the mechanism of the stannic chloride catalyzed silyl Hilbert-Johnson reaction. J. Org. Chem., 1976, 41(12), 2084-2086.
[http://dx.doi.org/10.1021/jo00874a002] [PMID: 932850]
[161]
Yu, X.J.; Li, G.X.; Qi, X.X.; Deng, Y.Q. Stereoselective synthesis of 9-β-d-arabianofuranosyl guanine and 2-amino-9-(β-d-arabianofuranosyl)purine. Bioorg. Med. Chem. Lett., 2005, 15(3), 683-685.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.029] [PMID: 15664837]
[162]
Meurillon, M.; Marton, Z.; Hospital, A.; Jordheim, L.P.; Béjaud, J.; Lionne, C.; Dumontet, C.; Périgaud, C.; Chaloin, L.; Peyrottes, S. Structure-activity relationships of β-hydroxyphosphonate nucleoside analogues as cytosolic 5′-nucleotidase II potential inhibitors: synthesis, in vitro evaluation and molecular modeling studies. Eur. J. Med. Chem., 2014, 77, 18-37.
[http://dx.doi.org/10.1016/j.ejmech.2014.02.055] [PMID: 24607586]
[163]
Roy, S.K.; Tang, J.Y. Efficient large scale synthesis of 2′-O-alkyl pyrimidine ribonucleosides. Org. Process Res. Dev., 2000, 4, 170-171.
[http://dx.doi.org/10.1021/op990100t]
[164]
Robins, M.J.; Barr, P.J. Nucleic acid related compounds. 39. Efficient conversion of 5-iodo to 5-alkynyl and derived 5-substituted uracil bases and nucleosides. J. Org. Chem., 1983, 48(11), 1854-1862.
[http://dx.doi.org/10.1021/jo00159a012]
[165]
Rai, D.; Johar, M.; Manning, T.; Agrawal, B.; Kunimoto, D.Y.; Kumar, R. Design and studies of novel 5-substituted alkynylpyrimidine nucleosides as potent inhibitors of mycobacteria. J. Med. Chem., 2005, 48(22), 7012-7017.
[http://dx.doi.org/10.1021/jm058167w] [PMID: 16250660]
[166]
Ghilagaber, S.; Hunter, W.N.; Marquez, R. Efficient coupling of low boiling point alkynes and 5-iodonucleosides. Tetrahedron Lett., 2007, 48(3), 483-486.
[http://dx.doi.org/10.1016/j.tetlet.2006.11.047]
[167]
Sartori, G.; Enderlin, G.; Hervé, G.; Len, C. Highly effective synthesis of C-5-Substituted 2′-Deoxyuridine using Suzuki-Miyaura cross-coupling in water. Synthesis, 2012, 2012(5), 767-772.
[168]
Nguyen Van, T.; Hospital, A.; Lionne, C.; Jordheim, L.P.; Dumontet, C.; Périgaud, C.; Chaloin, L.; Peyrottes, S. Beta-hydroxyphosphonate ribonucleoside analogues derived from 4-substituted-1,2,3-triazoles as IMP/GMP mimics: Synthesis and biological evaluation. Beilstein J. Org. Chem., 2016, 12, 1476-1486.
[http://dx.doi.org/10.3762/bjoc.12.144] [PMID: 27559400]
[169]
St Amant, A.H.; Bean, L.A.; Guthrie, J.P.; Hudson, R.H. Click fleximers: a modular approach to purine base-expanded ribonucleoside analogues. Org. Biomol. Chem., 2012, 10(32), 6521-6525.
[http://dx.doi.org/10.1039/c2ob25678a] [PMID: 22752020]
[170]
Pesi, R.; Allegrini, S.; Careddu, M.G.; Filoni, D.N.; Camici, M.; Tozzi, M.G. Active and regulatory sites of cytosolic 5′-nucleotidase. FEBS J., 2010, 277(23), 4863-4872.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07891.x] [PMID: 21029378]
[171]
Walldén, K.; Nordlund, P. Structural basis for the allosteric regulation and substrate recognition of human cytosolic 5′-nucleotidase II. J. Mol. Biol., 2011, 408(4), 684-696.
[http://dx.doi.org/10.1016/j.jmb.2011.02.059] [PMID: 21396942]
[172]
Huang, Q.; Herdewijn, P. Synthesis of (E)-3′,-phosphonoalkenyl modified nucleoside phosphonates via a highly stereoselective olefin cross-metathesis reaction. J. Org. Chem., 2011, 76(10), 3742-3753.
[http://dx.doi.org/10.1021/jo200033p] [PMID: 21462931]
[173]
Moravcová, J.; Čapková, J.; Staněk, J. One-pot synthesis of 1,2-O-isopropylidene-α-D-xylofuranose. Carbohydr. Res., 1994, 263(1), 61-66.
[http://dx.doi.org/10.1016/0008-6215(94)00165-0]
[174]
Hernandez-García, L.; Quintero, L.; Sánchez, M.; Sartillo-Piscil, F. Beneficial effect of internal hydrogen bonding interactions on the β-fragmentation of primary alkoxyl radicals. Two-step conversion of D-xylo- and D-ribofuranoses into L-threose and D-erythrose, respectively. J. Org. Chem., 2007, 72(22), 8196-8201.
[http://dx.doi.org/10.1021/jo0709551] [PMID: 17900138]
[175]
Jin, D.Z.; Kwon, S.H.; Moon, H.R.; Gunaga, P.; Kim, H.O.; Kim, D.K.; Chun, M.W.; Jeong, L.S. Synthesis of D- and L-apio nucleoside analogues with 2′-hydroxyl group as potential anti-HIV agents. Bioorg. Med. Chem., 2004, 12(5), 1101-1109.
[http://dx.doi.org/10.1016/j.bmc.2003.12.002] [PMID: 14980622]
[176]
Scholl, M.; Ding, S.; Lee, C.W.; Grubbs, R.H. Synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org. Lett., 1999, 1(6), 953-956.
[http://dx.doi.org/10.1021/ol990909q] [PMID: 10823227]
[177]
Jee, J-P.; Kim, S.; Hong, J.H. Synthesis and anti-hiv activity of novel 4′-Trifluoromethylated 5′-Deoxycarbocyclic nucleoside phosphonic acids. Nucleosides Nucleotides Nucleic Acids, 2015, 34(9), 620-638.
[http://dx.doi.org/10.1080/15257770.2015.1047028] [PMID: 26252631]
[178]
Kim, S.; Kim, E.; Lee, W.; Hee Hong, J. Synthesis and antiviral evaluation of novel 4′-trifluoromethylated 5′-deoxyapiosyl nucleoside phosphonic acids. Nucleosides Nucleotides Nucleic Acids, 2014, 33(12), 747-766.
[http://dx.doi.org/10.1080/15257770.2014.938753] [PMID: 25372991]
[179]
Rivkin, A.; Cho, Y.S.; Gabarda, A.E.; Yoshimura, F.; Danishefsky, S.J. Application of ring-closing metathesis reactions in the synthesis of epothilones. J. Nat. Prod., 2004, 67(2), 139-143.
[http://dx.doi.org/10.1021/np030540k] [PMID: 14987048]
[180]
Crimmins, M.T.; King, B.W.; Zuercher, W.J.; Choy, A.L. An efficient, general asymmetric aldol/ring-closing metathesis strategy. J. Org. Chem., 2000, 65, 8499-8509.
[http://dx.doi.org/10.1021/jo005535p] [PMID: 11112569]
[181]
Marshall, J.A.; Gung, W.Y. On the 1,3-Isomerization of nonracemic alpha-(Alkoxy)-. Allylstannanes. Tetrahedron Lett., 1989, 30(52), 7349-7352.
[http://dx.doi.org/10.1016/S0040-4039(00)70694-0]
[182]
Mancuso, A.J.; Huang, S.L.; Swern, D. Oxidation of long-chain and related alcohols to carbonyls by dimethyl sulfoxide “activated” by oxalyl chloride. J. Org. Chem., 1978, 43, 2480-2482.
[http://dx.doi.org/10.1021/jo00406a041]
[183]
Maryanoff, B.E.; Reitz, A.B. The wittig olefination reaction and modifications involving Phosphoryl-stabilized Carbanions. Stereochemistry, mechanism, and selected synthetic aspects. Chem. Rev., 1989, 89(4), 863-927.
[http://dx.doi.org/10.1021/cr00094a007]
[184]
Kozikowski, A.P.; Wu, J.P. Protection of alcohol as their (p-Methoxybenzyloxy)Methyl ethers. Tetrahedron Lett., 1987, 28(43), 5125-5128.
[http://dx.doi.org/10.1016/S0040-4039(00)95608-9]
[185]
Diaz, Y.; Bravo, F.; Castillon, S. Synthesis of Purine and Pyrimidine Isodideoxynucleosides from (S)-Glycydol using Iodoetherification as key step. Synthesis of (S,S)-iso-ddA. J. Org. Chem., 1999, 64, 6508-6511.
[http://dx.doi.org/10.1021/jo990495e]
[186]
Mitsunobu, O. The use of diethyl azodicarboxylate and triphenylphosphine in synthesis and transformation of natural products. Synthesis, 1981, 1981(1), 1-28.
[http://dx.doi.org/10.1055/s-1981-29317]
[187]
Montagu, A.; Pradére, U.; Roy, V.; Nolan, S.P.; Agrofoglio, L.A. Expeditious convergent procedure for the preparation of bis(POC) prodrugs of new (E)-4-Phosphono-but-2-en-1-yl nucleosides. Tetrahedron, 2011, 67(29), 5319-5328.
[http://dx.doi.org/10.1016/j.tet.2011.05.017]
[188]
Hocková, D.; Holý, A.; Masojídková, M.; Keough, D.T.; de Jersey, J.; Guddat, L.W. Synthesis of branched 9-[2-(2-phosphonoethoxy)ethyl]purines as a new class of acyclic nucleoside phosphonates which inhibit Plasmodium falciparum hypoxanthine-guanine-xanthine phosphoribosyltransferase. Bioorg. Med. Chem., 2009, 17(17), 6218-6232.
[http://dx.doi.org/10.1016/j.bmc.2009.07.044] [PMID: 19666228]
[189]
Kim, S.; Hong, J.H. Synthesis and biological evaluation of 9-deazaadenine 5′-deoxy-6′,6′-difluoro-carbocyclic c-nucleoside phosphonic acid derivatives. Nucleosides Nucleotides Nucleic Acids, 2015, 34(10), 708-728.
[http://dx.doi.org/10.1080/15257770.2015.1071847] [PMID: 26467263]
[190]
Choi, M.H.; Kim, H.D. Synthesis of novel carboacyclic nucleosides with vinyl bromide moiety as open-chain analogues of neplanocin A. Arch. Pharm. Res., 2003, 26(12), 990-996.
[http://dx.doi.org/10.1007/BF02994747] [PMID: 14723329]
[191]
Kim, E.; Shen, G.H.; Hong, J.H. Design and synthesis of carbocyclic versions of furanoid nucleoside phosphonic Acid analogues as potential anti-hiv agents. Nucleosides Nucleotides Nucleic Acids, 2011, 30(10), 798-813.
[http://dx.doi.org/10.1080/15257770.2011.605781] [PMID: 21967290]
[192]
Jeong, L.S.; Lee, J.A. Recent advances in the synthesis of the carbocyclic nucleosides as potential antiviral agents. Antivir. Chem. Chemother., 2004, 15(5), 235-250.
[http://dx.doi.org/10.1177/095632020401500502] [PMID: 15535045]
[193]
Amblard, F.; Nolan, S.P.; Agrofoglio, L.A. Metathesis strategy in nucleoside chemistry. Tetrahedron, 2005, 61, 7067-7080.
[http://dx.doi.org/10.1016/j.tet.2005.04.040]
[194]
Dess, D.B.; Martin, J.C. A Useful 12-I-5 Triacetoxyperiodinane (the Dess-Martin Periodinane) for the selective oxidation of primary or secondary alcohols and a variety of related 12-i-5 species. J. Am. Chem. Soc., 1991, 113, 7277-7287.
[http://dx.doi.org/10.1021/ja00019a027]
[195]
Chun, B.K.; Song, G.Y.; Chu, C.K. Stereocontrolled syntheses of carbocyclic C-nucleosides and related compounds. J. Org. Chem., 2001, 66(14), 4852-4858.
[http://dx.doi.org/10.1021/jo010224f] [PMID: 11442416]
[196]
Lim, M.I.; Klein, R.S. Synthesis of “9-Deazaadenosine”; A new cytotoxic C-nucleoside isostere of adenosine. Tetrahedron Lett., 1981, 22(1), 25-28.
[http://dx.doi.org/10.1016/0040-4039(81)80031-7]
[197]
Kamath, V.P.; Ananth, S.; Bantia, S.; Morris, P.E., Jr Synthesis of a potent transition-state inhibitor of 5′-deoxy-5′-methylthioadenosine phosphorylase. J. Med. Chem., 2004, 47(6), 1322-1324.
[http://dx.doi.org/10.1021/jm030455+] [PMID: 14998321]
[198]
Kim, S.; Hong, J.H. Synthesis and anti-HIV activity of novel 2′-Deoxy-2′-β-Fluoro-threosyl nucleoside Phosphonic acid analogues. Nucleosides Nucleotides Nucleic Acids, 2015, 34(12), 815-833.
[http://dx.doi.org/10.1080/15257770.2015.1076840] [PMID: 26407633]
[199]
Fort, D.A.; Woltering, T.J.; Alker, A.M.; Bach, T. Photochemical reactions of Prop-2-enyl and Prop-2-ynyl substituted 4-Aminomethyl- and 4-Oxymethyl-2(5H)-Furanones. Heterocycles, 2004, 88, 1079-1100.
[200]
Corey, E.J.; Venkateswarlu, A. Protection of hydroxyl groups as tert-Butyldimethylsilyl derivatives. J. Am. Chem. Soc., 1972, 94, 6190-6172.
[http://dx.doi.org/10.1021/ja00772a043]
[201]
D’Errico, S.; Oliviero, G.; Borbone, N.; Di Gennaro, E.; Zotti, A.I.; Budillon, A.; Cerullo, V.; Nici, F.; Mayol, L.; Piccialli, V.; Piccialli, G. Synthesis and evaluation of the antiproliferative properties of a Tethered Tubercidin–Platinum(II) complex. Eur. J. Org. Chem., 2015, 2015(34), 7550-7556.
[http://dx.doi.org/10.1002/ejoc.201500998]
[202]
D’Errico, S.; Borbone, N.; Piccialli, V.; Di Gennaro, E.; Zotti, A.; Budillon, A.; Vitagliano, C.; Piccialli, I.; Oliviero, G. Synthesis and evaluation of the antitumor properties of a small collection of PtII complexes with 7-Deazaadenosine as scaffold. Eur. J. Org. Chem., 2017, 2017(33), 4935-4947.
[http://dx.doi.org/10.1002/ejoc.201700730]
[203]
Amey, R.L.; Martin, J.C. An alkoxyaryltrifluoroperiodinane. a stable heterocyclic derivative of pentacoordinated Organoiodine (V). J. Am. Chem. Soc., 1978, 100, 300-301.
[http://dx.doi.org/10.1021/ja00469a060]
[204]
Amey, R.L.; Martin, J.C. Synthesis and reactions of stable Alkoxyaryltrifluoroperiodinanes. A “Tamed” analog of Iodine Pentafluoride for use in oxidations of amines, alcohols, and other species. J. Am. Chem. Soc., 1979, 101, 5294-5299.
[http://dx.doi.org/10.1021/ja00512a030]
[205]
Robins, M.J.; Uznanski, B. Non-aqueous diazotization with t-butyl Nitrite. Introduction of Fluorine, Chlorine, and Bromine at C-2 of Purine nucleoside. Can. J. Chem., 1981, 59(17), 2608-2611.
[http://dx.doi.org/10.1139/v81-375]
[206]
Montgomery, J.A.; Hewson, K. Nucleosides of 2-fluoroadenine. J. Med. Chem., 1969, 12(3), 498-504.
[http://dx.doi.org/10.1021/jm00303a605] [PMID: 5788168]
[207]
Pauwels, R.; Balzarini, J.; Baba, M.; Snoeck, R.; Schols, D.; Herdewijn, P.; Desmyter, J.; De Clercq, E. Rapid and automated tetrazolium-based colorimetric assay for the detection of anti-HIV compounds. J. Virol. Methods, 1988, 20(4), 309-321.
[http://dx.doi.org/10.1016/0166-0934(88)90134-6] [PMID: 2460479]
[208]
Barton, D.H.R.; Gero, S.D.; Quiclet-Sire, B.; Samadi, M. Stereoselectivity in radical reactions of 2′-Deoxynucleosides. A synthesis of an isostere of 3′,-Azido-3′,-Deoxythymidine 5′-Monophosphate (AZT-5′ Monophosphate). Tetrahedron Lett., 1989, 30(37), 4969-4972.
[http://dx.doi.org/10.1016/S0040-4039(01)80556-6]
[209]
Barton, D.H.R.; Crich, D.; Motherwell, W.B. New and improved methods for the radical decarboxylation of acids. J. Chem. Soc. Chem. Commun., 1983, 1983(17), 939-941.
[http://dx.doi.org/10.1039/c39830000939]
[210]
Barton, D.H.R.; Crich, D.; Motherwell, W.B. The invention of new radical chain reactions. Part VIII. Radical chemistry of thiohydroxamic esters; A new method for the generation of carbon radicals from carboxylic acids. Tetrahedron, 1985, 41(19), 3901-3924.
[http://dx.doi.org/10.1016/S0040-4020(01)97173-X]
[211]
Barton, D.H.R.; Hervé, Y.; Potier, P.; Thierry, J. Synthesis of novel α-amino-acids and derivatives using radical chemistry: Synthesis of L- and D-α-amino-adipic acids, L-α. Tetrahedron, 1987, 43(19), 4297-4308.
[http://dx.doi.org/10.1016/S0040-4020(01)90305-9]
[212]
Barton, D.H.R.; Ge’ro, S.D.; Quiclet-Sire, B.; Samadi, M. Radical addition to vinyl phosphonates. a new synthesis of isosteric phosphonates and phosphonate analogues of α-amino acids. J. Chem. Soc. Chem. Commun., 1989, (15), 1000-1001.
[http://dx.doi.org/10.1039/C39890001000]
[213]
Fox, J.J.; Miller, N.C. Nucleosides. XVI. Further studies of Anhydronucleosides. J. Org. Chem., 1963, 28(4), 936-941.
[http://dx.doi.org/10.1021/jo01039a014]
[214]
Horwitz, J.P.; Chua, J.; Noel, M. Nucleosides. V. The Monomesylates of 1-(2′-Deoxy-β-D-lyxofuranosyl)thymine. J. Org. Chem., 1964, 29(7), 2076-2078.
[http://dx.doi.org/10.1021/jo01030a546]
[215]
Barton, D.H.R.; Géro, S.D.; Quiclet-Sire, B.; Samadi, M. New synthesis of sugar, nucleoside and α-amino acid phosphonates. Tetrahedron, 1992, 48(9), 1627-1636.
[http://dx.doi.org/10.1016/S0040-4020(01)88721-4]
[216]
Lera, M.; Hayes, C.J. A new one-Pot synthesis of alkynylphosphonates. Org. Lett., 2000, 2(24), 3873-3875.
[http://dx.doi.org/10.1021/ol0066173] [PMID: 11101441]
[217]
Meurillon, M.; Gallier, F.; Peyrottes, S.; Perigaud, C. Developing an efficient route to the synthesis of nucleoside 1-Alkynylphosphonates. Tetrahedron, 2009, 65, 6039-6046.
[http://dx.doi.org/10.1016/j.tet.2009.05.064]
[218]
Rosowsky, A.; Lazarus, H.; Yamashita, A. Nucleosides. 1. 9-(3′-Alkyl-3′-deoxy-beta-D-ribofuranosyl)adenines as lipophilic analogues of cordycepin. Synthesis and preliminary biological studies. J. Med. Chem., 1976, 19(11), 1265-1270.
[http://dx.doi.org/10.1021/jm00233a001] [PMID: 1087343]
[219]
Lavaire, S.; Plantier-Royon, R.; Portella, C.; de Monte, M.; Kirn, A.; Aubertin, A-M. 3′,-deoxy-3′,-C-trifluoromethyl nucleosides: synthesis and antiviral evaluation. Nucleos. Nucleot., 1998, 17(12), 2267-2280.
[http://dx.doi.org/10.1080/07328319808004316]
[220]
Magnani, A.; Mikuriya, Y. 9-α-D-Xylofuranosyladenine: Acetolysis of 3,5-di-O-acetyl-1,2-O-isopropylidene-α-D-xylofuranose. Carbohydr. Res., 1973, 28(1), 158-164.
[http://dx.doi.org/10.1016/S0008-6215(00)82876-1]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy