Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Research Article

Thiophene Ring-opening Reactions III: One-Pot Synthesis and Antitumor Activity of 1,3,4-Thiadiazoline–Benzothiazolo[3,2-b]pyridazine Hybrids†

Author(s): Ahmad H. Abdullah, Jalal A. Zahra*, Salim S. Sabri, Firas F. Awwadi, Mohammed M. Abadleh, Qasem M. Abdallah and Mustafa M. El-Abadelah*

Volume 19, Issue 2, 2022

Published on: 29 November, 2021

Page: [279 - 290] Pages: 12

DOI: 10.2174/1570179418666211109112148

Price: $65

Abstract

Introduction: The preparation of model 6-chloro-5-nitrothieno[2,3-c]pyridazines incorporating (2'-halo-5'-nitrophenyl) entity is described. Interaction of these substrates with N'-(aryl)benzothiohydrazides, in the presence of triethylamine, followed a formal [4+1] annulation, furnishing the respective 1,3,4-thiadiazoline–benzothiazolo [3,2-b]pyridazine hybrids directly. This one-pot synthesis implies thiophene ring-opening and two consecutive intramolecular cyclizations. The structures of the synthesized new hybrids are supported by MS, NMR, and IR spectral data and further confirmed by single-crystal X-ray diffraction. These hybrids exhibit antiproliferative activity with notable selectivity against solid tumor cell lines (IC50: 4-18 μM).

Aims: This study aimed at exploring the scope and applicability of thiophene ring-opening reaction towards the synthesis of new thiadiazoline–[fused]tricyclic conjugates.

Background: α-Chloro-β-nitrothienopyridazine underwent ring-opening upon reacting with N'-(aryl)benzothiohydrazides generating 1,3,4-thiadiazoline–benzothiazolo[3,2-b]pyridazines.

Objective: This new thiophene ring-opening reaction is applied to the one-pot synthesis of thiadiazoline–benzothiazolo[3,2-b]pyridazine couples.

Method: A direct interaction of α-chloro-β-nitrothienopyridazine with N'-(aryl)benzothio-hydrazide at room temperature for 1-2 h occurred.

Result: a-Chloro-β-nitrothieno[2,3-c]pyridazines are suitable substrates for the facile synthesis of thiadiazoline–benzothiazolo[3,2-b]pyridazine hybrids.

Conclusion: This novel ring-opening reaction proceeds via formal [4+1] annulation and provides a versatile approach to various conjugated and/or fused five-membered heterocycles.

Keywords: Antitumor activity, N'-(Aryl)benzothiohydrazides, 6-chloro-5-nitrothieno[2, 3-c]pyridazines, formal [4+1] annulation, 1, 3, 4-thiadiazoline-[fused]tricyclic hybrids, heterocyclic rings.

« Previous
Graphical Abstract

[1]
Padwa, A.; Pearson, W.H. Synthetic Applications of 1,3-Dipolar Cycloaddition Chemistry towards Heterocycles and Natural Products; Wiley-Interscience: New York, 2002.
[http://dx.doi.org/10.1002/0471221902]
[2]
Torres, R.R., Ed.; The Pauson-Khand Reaction: Scope, Variations and Applications; Wiley-VCH: Weinheim, 2012.
[http://dx.doi.org/10.1002/9781119941934]
[3]
Chen, J.R.; Hu, X.Q.; Lu, L.Q.; Xiao, W.J. Formal [4+1] annulation reactions in the synthesis of carbocyclic and heterocyclic systems. Chem. Rev., 2015, 115(11), 5301-5365.
[http://dx.doi.org/10.1021/cr5006974] [PMID: 25992465]
[4]
Abadleh, M.M.; Abdullah, A.H.; Awwadi, F.F.; El-Abadelah, M.M. Thiophene ring-opening reactions. Direct access to the synthesis of 1,3,4-thiadiazoline-(condensed) pyridone hybrids. Tetrahedron, 2021, 83131957
[http://dx.doi.org/10.1016/j.tet.2021.131957]
[5]
El-Abadelah, M.M.; Kamal, M.R.; Tokan, W.M.; Jarrar, S.O. Synthesis and Properties of 1-Aryl-6-chloro-1,4-dihydro-4-oxothieno [2,3-c]pyridazine-3-carboxylic acids. J. prakt. Chemie Chem-Ztg., 1997, 339, 284-287.
[http://dx.doi.org/10.1002/prac.19973390150]
[6]
Jensen, K.A.; Miquel, L.F. Complexes de nickel avec la thiobenzhydrazide et avec des composés analogues. Acta Chem. Scand., 1952, 6, 189-194.
[http://dx.doi.org/10.3891/acta.chem.scand.06-0189]
[7]
Holmberg, B. Glycothiadiazolines. Ark. Kemi, 1954, 7, 517-528.
[8]
Scherowsky, G. Die synthese von 2.4-diaryl-1.3.4-thiadiazoliumsalzen. Tetrahedron Lett., 1971, 1, 4985-4988.
[http://dx.doi.org/10.1016/S0040-4039(01)97606-3]
[9]
Abadleh, M.M.; Arafat, T.; Abu-qatouseh, L.; El-abadelah, M.M.; Voelter, W. Facile synthesis of model 2,4-diaryl-1,3,4-thiadiazino[5,6-h]fluoroquinolones. Z. Naturforsch. B. Chem. Sci. (Camb.), 2019, 74, 507-512.
[http://dx.doi.org/10.1515/znb-2019-0023]
[10]
Vichai, V.; Kirtikara, K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat. Protoc., 2006, 1(3), 1112-1116.
[http://dx.doi.org/10.1038/nprot.2006.179] [PMID: 17406391]
[11]
P. R. O. CrysAlis. Agilent Technologies; Yarnton: England 2011.Available from:. https://www.agilent.com/cs/library/usermanuals/Public/CrysAlis_Pro_User_Manual.pdf
[12]
P. R. O. CrysAlis 1.171.40.82a. 2020.
[13]
Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H.H. OLEX2: a complete structure solution, refinement and analysis program. J. Appl. Cryst., 2009, 42, 339-341.
[http://dx.doi.org/10.1107/S0021889808042726]
[14]
Sheldrick, G.M. SHELXT - integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Adv., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053273314026370] [PMID: 25537383]
[15]
Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem., 2015, 71(Pt 1), 3-8.
[http://dx.doi.org/10.1107/S2053229614024218] [PMID: 25567568]
[16]
Mueller, J.L.; Gibson, M.S.; Hartman, J.S. Carbon-13 chemical shifts of alkene carbons in 2-acylidene-3,5-diaryl-2,3-dihydro-l,3,4-thiadiazoles and related benzothiazoles and -selenazoles, and their relationship to other push-pull alkenes. Can. J. Chem., 1996, 74, 1329-1334.
[http://dx.doi.org/10.1139/v96-148]
[17]
Mohammad, T.; Gibson, M.S. Dimeric and monomeric methine bases in the 1,3,4-thiadiazoline series. Phosphorus Sulfur Silicon Relat. Elem., 1992, 70, 243-253.
[http://dx.doi.org/10.1080/10426509208049173]
[18]
Pandya, N.; Basile, A.J.; Gupta, A.K.; Hand, P.; Maclaurin, C.L.; Mohammad, T.; Ratemi, E.S.; Gibson, M.S.; Richardson, M.F. 2-Acylidene-3,5-diaryl-2,3-dihydro-l,3,4-thiadiazoles and related compounds: a question of hypervalent S...O interactions. Can. J. Chem., 1993, 71, 561-571.
[http://dx.doi.org/10.1139/v93-078]
[19]
Vogel, L.; Wonner, P.; Huber, S.M. Chalcogen bonding: An overview. Angew. Chem. Int. Ed. Engl., 2019, 58(7), 1880-1891.
[http://dx.doi.org/10.1002/anie.201809432] [PMID: 30225899]
[20]
Aakeroy, C.B.; Bryce, D.L.; Desiraju, G.R.; Frontera, A.; Legon, A.C.; Nicotra, F.; Rissanen, K.; Scheiner, S.; Terraneo, G.; Metrangolo, P.; Resnati, G. Definition of the chalcogen bond (IUPAC Recommendations 2019). Pure Appl. Chem., 2019, 91, 1889-1892.
[21]
Srivastava, K.; Shah, P.; Singh, H.B.; Butcher, R.J. Isolation and structural characterization of some aryltellurium halides and their hydrolyzed products stabilized by an intramolecular Te•N interaction. Organometallics, 2011, 30, 534-546.
[http://dx.doi.org/10.1021/om1009022]
[22]
Srivastava, K.; Chakraborty, T.; Singh, H.B.; Butcher, R.J. Intramolecularly coordinated azobenzene selenium derivatives: effect of strength of the Se•N intramolecular interaction on luminescence. Dalton Trans., 2011, 40(17), 4489-4496.
[http://dx.doi.org/10.1039/c0dt01319f] [PMID: 21412554]
[23]
Kaskova, Z.M.; Tsarkova, A.S.; Yampolsky, I.V. 1001 lights: luciferins, luciferases, their mechanisms of action and applications in chemical analysis, biology and medicine. Chem. Soc. Rev., 2016, 45, 6048-6077.
[http://dx.doi.org/10.1039/C6CS00296J]
[24]
Gunawardana, G.P.; Koehn, F.E.; Lee, A.Y.; Clardy, J.; He, H.Y.; Faukner, D.J. Pyridoacridine alkaloids from deep-water marine sponges of the family Pachastrellidae: structure revision of dercitin and related compounds and correlation with the kuanoniamines. J. Org. Chem., 1992, 57, 1532-1526.
[http://dx.doi.org/10.1021/jo00031a035]
[25]
Bryson, H.M.; Fulton, B.; Benfield, P.; Riluzole, A. Riluzole. A review of its pharmacodynamic and pharmacokinetic properties and therapeutic potential in amyotrophic lateral sclerosis. Drugs, 1996, 52(4), 549-563.
[http://dx.doi.org/10.2165/00003495-199652040-00010] [PMID: 8891467]
[26]
Payaz, D.Ü.; Küçükbay, F.Z.; Küçükbay, H.; Angeli, A.; Supuran, C.T. Synthesis carbonic anhydrase enzyme inhibition and antioxidant activity of novel benzothiazole derivatives incorporating glycine, methionine, alanine, and phenylalanine moieties. J. Enzyme Inhib. Med. Chem., 2019, 34(1), 343-349.
[http://dx.doi.org/10.1080/14756366.2018.1553040] [PMID: 30734592]
[27]
Keri, R.S.; Patil, M.R.; Patil, S.A.; Budagumpi, S. A comprehensive review in current developments of benzothiazole-based molecules in medicinal chemistry. Eur. J. Med. Chem., 2015, 89, 207-251.
[http://dx.doi.org/10.1016/j.ejmech.2014.10.059] [PMID: 25462241]
[28]
Irfan, A.; Batool, F.; Zahra Naqvi, S.A.; Islam, A.; Osman, S.M.; Nocentini, A.; Alissa, S.A.; Supuran, C.T. Benzothiazole derivatives as anticancer agents. J. Enzyme Inhib. Med. Chem., 2020, 35(1), 265-279.
[http://dx.doi.org/10.1080/14756366.2019.1698036] [PMID: 31790602]
[29]
Imran, M.; Asif, M. Biologically Active Pyridazines and Pyridazinone Derivatives: A Scaffold for the Highly Functionalized Compounds. Russ. J. Bioorganic Chem., 2020, 46, 726-744.
[http://dx.doi.org/10.1134/S1068162020050155]
[30]
Haider, S.; Alam, M.S.; Hamid, H. 1,3,4-Thiadiazoles: A potent medicinal scaffold. Eur. J. Med. Chem., 2015, 92, 156-177.
[http://dx.doi.org/10.1016/j.ejmech.2014.12.035] [PMID: 25553540]
[31]
Hu, Y.; Li, C.Y.; Wang, X.M.; Yang, Y.H.; Zhu, H.L. 1,3,4-Thiadiazole: synthesis, reactions, and applications in medicinal, agricultural, and materials chemistry. Chem. Rev., 2014, 114(10), 5572-5610.
[http://dx.doi.org/10.1021/cr400131u] [PMID: 24716666]
[32]
Dawood, K.M.; Farghaly, T.A. Thiadiazole inhibitors: a patent review. Expert Opin. Ther. Pat., 2017, 27(4), 477-505.
[http://dx.doi.org/10.1080/13543776.2017.1272575 ] [PMID: 27976971]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy