Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

New Mechanisms and Targets of Subarachnoid Hemorrhage: A Focus on Mitochondria

Author(s): Zeyu Zhang, Anke Zhang, Yibo Liu, Xiaoming Hu, Yuanjian Fang, Xiaoyu Wang, Yujie Luo, Cameron Lenahan and Sheng Chen*

Volume 20, Issue 7, 2022

Published on: 24 March, 2022

Page: [1278 - 1296] Pages: 19

DOI: 10.2174/1570159X19666211101103646

Price: $65

Abstract

Spontaneous subarachnoid hemorrhage (SAH) accounts for 5-10% of all strokes and is a subtype of hemorrhagic stroke that places a heavy burden on health care. Despite great progress in surgical clipping and endovascular treatment for ruptured aneurysms, cerebral vasospasm (CVS) and delayed cerebral ischemia (DCI) threaten the long-term outcomes of patients with SAH. Moreover, there are limited drugs available to reduce the risk of DCI and adverse outcomes in SAH patients. New insight suggests that early brain injury (EBI), which occurs within 72 h after the onset of SAH, may lay the foundation for further DCI development and poor outcomes. The mechanisms of EBI mainly include excitotoxicity, oxidative stress, neuroinflammation, blood-brain barrier (BBB) destruction, and cellular death. Mitochondria are a double-membrane organelle, and they play an important role in energy production, cell growth, differentiation, apoptosis, and survival. Mitochondrial dysfunction, which can lead to mitochondrial membrane potential (Δψm) collapse, overproduction of reactive oxygen species (ROS), release of apoptogenic proteins, disorders of mitochondrial dynamics, and activation of mitochondria-related inflammation, is considered a novel mechanism of EBI related to DCI as well as post-SAH outcomes. In addition, mitophagy is activated after SAH. In this review, we discuss the latest perspectives on the role of mitochondria in EBI and DCI after SAH. We emphasize the potential of mitochondria as therapeutic targets and summarize the promising therapeutic strategies targeting mitochondria for SAH.

Keywords: Subarachnoid hemorrhage, mitochondria, early brain injury, delayed cerebral ischemia, oxidative stress, apoptosis, mitophagy.

Graphical Abstract

[1]
Lawton MT, Vates GE. Subarachnoid Hemorrhage. N Engl J Med 2017; 377(3): 257-66.
[http://dx.doi.org/10.1056/NEJMcp1605827] [PMID: 28723321]
[2]
Macdonald RL, Schweizer TA. Spontaneous subarachnoid haemorrhage. Lancet 2017; 389(10069): 655-66.
[http://dx.doi.org/10.1016/S0140-6736(16)30668-7] [PMID: 27637674]
[3]
Neifert SN, Chapman EK, Martini ML, et al. Aneurysmal Subarachnoid Hemorrhage: the Last Decade. Transl Stroke Res 2020.
[PMID: 33078345]
[4]
Geraghty JR, Testai FD. Delayed Cerebral Ischemia after Subarachnoid Hemorrhage: Beyond Vasospasm and Towards a Multifactorial Pathophysiology. Curr Atheroscler Rep 2017; 19(12): 50.
[http://dx.doi.org/10.1007/s11883-017-0690-x] [PMID: 29063300]
[5]
Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double-blind, placebo-controlled phase 2 dose-finding trial. Stroke 2008; 39(11): 3015-21.
[http://dx.doi.org/10.1161/STROKEAHA.108.519942] [PMID: 18688013]
[6]
Macdonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelin receptor antagonist, in patients with aneurysmal subarachnoid haemorrhage undergoing surgical clipping: a randomised, double-blind, placebo-controlled phase 3 trial (CONSCIOUS-2). Lancet Neurol 2011; 10(7): 618-25.
[http://dx.doi.org/10.1016/S1474-4422(11)70108-9] [PMID: 21640651]
[7]
Fujii M, Yan J, Rolland WB, Soejima Y, Caner B, Zhang JH. Early brain injury, an evolving frontier in subarachnoid hemorrhage research. Transl Stroke Res 2013; 4(4): 432-46.
[http://dx.doi.org/10.1007/s12975-013-0257-2] [PMID: 23894255]
[8]
Luo X, Li L, Xu W, Cheng Y, Xie Z. HLY78 Attenuates Neuronal Apoptosis via the LRP6/GSK3β/β-Catenin Signaling Pathway After Subarachnoid Hemorrhage in Rats. Neurosci Bull 2020; 36(10): 1171-81.
[http://dx.doi.org/10.1007/s12264-020-00532-4] [PMID: 32562163]
[9]
Chen S, Wu H, Tang J, Zhang J, Zhang JH. Neurovascular events after subarachnoid hemorrhage: focusing on subcellular orga-nelles. Acta Neurochir Suppl (Wien) 2015; 120: 39-46.
[http://dx.doi.org/10.1007/978-3-319-04981-6_7] [PMID: 25366597]
[10]
Chen W, Huang J, Hu Y, Khoshnam SE, Sarkaki A. Mitochondrial transfer as a therapeutic strategy against ischemic Stroke. Transl Stroke Res 2020; 11(6): 1214-28.
[http://dx.doi.org/10.1007/s12975-020-00828-7] [PMID: 32592024]
[11]
Yang LQ, Chen M, Ren DL, Hu B. Dual oxidase mutant retards mauthner-cell axon regeneration at an early stage via modulating mitochondrial dynamics in zebrafish. Neurosci Bull 2020; 36(12): 1500-12.
[http://dx.doi.org/10.1007/s12264-020-00600-9] [PMID: 33123984]
[12]
Elfawy HA, Das B. Crosstalk between mitochondrial dysfunction, oxidative stress, and age related neurodegenerative disease: Etiolo-gies and therapeutic strategies. Life Sci 2019; 218: 165-84.
[http://dx.doi.org/10.1016/j.lfs.2018.12.029] [PMID: 30578866]
[13]
Chan DC. Mitochondria: dynamic organelles in disease, aging, and development. Cell 2006; 125(7): 1241-52.
[http://dx.doi.org/10.1016/j.cell.2006.06.010] [PMID: 16814712]
[14]
Kroemer G, Dallaporta B, Resche-Rigon M. The mitochondrial death/life regulator in apoptosis and necrosis. Annu Rev Physiol 1998; 60: 619-42.
[http://dx.doi.org/10.1146/annurev.physiol.60.1.619] [PMID: 9558479]
[15]
Lin MT, Beal MF. Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature 2006; 443(7113): 787-95.
[http://dx.doi.org/10.1038/nature05292] [PMID: 17051205]
[16]
Prakash YS, Pabelick CM, Sieck GC. Mitochondrial dysfunction in airway disease. Chest 2017; 152(3): 618-26.
[http://dx.doi.org/10.1016/j.chest.2017.03.020] [PMID: 28336486]
[17]
Forbes JM, Thorburn DR. Mitochondrial dysfunction in diabetic kidney disease. Nat Rev Nephrol 2018; 14(5): 291-312.
[http://dx.doi.org/10.1038/nrneph.2018.9] [PMID: 29456246]
[18]
Luo Y, Ma J, Lu W. The significance of mitochondrial dysfunction in cancer. Int J Mol Sci 2020; 21(16): E5598.
[http://dx.doi.org/10.3390/ijms21165598] [PMID: 32764295]
[19]
Sharma S, Akundi RS. Mitochondria: A connecting link in the major depressive disorder jigsaw. Curr Neuropharmacol 2019; 17(6): 550-62.
[http://dx.doi.org/10.2174/1570159X16666180302120322] [PMID: 29512466]
[20]
Quntanilla RA, Tapia-Monsalves C. The role of mitochondrial impairment in Alzheimer’s disease neurodegeneration: The tau connec-tion. Curr Neuropharmacol 2020; 18(11): 1076-91.
[http://dx.doi.org/10.2174/1570159X18666200525020259] [PMID: 32448104]
[21]
Marzatico F, Gaetani P, Silvani V, Lombardi D, Sinforiani E, Rodriguez y Baena R. Experimental isobaric subarachnoid hemor-rhage: regional mitochondrial function during the acute and late phase. Surg Neurol 1990; 34(5): 294-300.
[http://dx.doi.org/10.1016/0090-3019(90)90004-9] [PMID: 2218848]
[22]
Huang L, Wan J, Chen Y, et al. Inhibitory effects of p38 inhibitor against mitochondrial dys-function in the early brain injury after subarachnoid hemorrhage in mice. Brain Res 2013; 1517: 133-40.
[http://dx.doi.org/10.1016/j.brainres.2013.04.010] [PMID: 23603413]
[23]
Mo H, Chen Y, Huang L, Zhang H, Li J, Zhou W. Neuroprotective effect of tea polyphenols on oxyhemoglobin induced subarach-noid hemorrhage in mice. Oxid Med Cell Longev 2013; 2013: 743938.
[http://dx.doi.org/10.1155/2013/743938] [PMID: 23840920]
[24]
Zoerle T, Lombardo A, Colombo A, et al. Intracranial pressure after subarachnoid hemorrhage. Crit Care Med 2015; 43(1): 168-76.
[http://dx.doi.org/10.1097/CCM.0000000000000670] [PMID: 25318385]
[25]
Conzen C, Becker K, Albanna W, et al. The acute phase of experimental subarachnoid hemorrhage: intracranial pressure dynamics and their effect on cerebral blood flow and autoregulation. Transl Stroke Res 2019; 10(5): 566-82.
[http://dx.doi.org/10.1007/s12975-018-0674-3] [PMID: 30443885]
[26]
Huang CY, Wang LC, Wang HK, et al. Memantine alleviates brain injury and neurobehavioral deficits after experimental subarachnoid hemorrhage. Mol Neurobiol 2015; 51(3): 1038-52.
[http://dx.doi.org/10.1007/s12035-014-8767-9] [PMID: 24952609]
[27]
Yan H, Zhang D, Hao S, Li K, Hang CH. Role of mitochondrial calcium uniporter in early brain injury after experimental subarach-noid hemorrhage. Mol Neurobiol 2015; 52(3): 1637-47.
[http://dx.doi.org/10.1007/s12035-014-8942-z] [PMID: 25370932]
[28]
Xie Z, Lei B, Huang Q, et al. Neuroprotective effect of Cyclosporin A on the development of early brain injury in a subarachnoid hemorrhage model: a pilot study. Brain Res 2012; 1472: 113-23.
[http://dx.doi.org/10.1016/j.brainres.2012.06.053] [PMID: 22796593]
[29]
Lin QS, Wang WX, Lin YX, et al. Annexin A7 induction of neuronal apoptosis via effect on glutamate release in a rat model of subarachnoid hemorrhage. J Neurosurg 2019; 132(3): 777-87.
[http://dx.doi.org/10.3171/2018.9.JNS182003] [PMID: 30717037]
[30]
Zhang Z, Liu J, Fan C, et al. The GluN1/GluN2B NMDA receptor and metabotropic glutamate receptor 1 negative allosteric modulator has enhanced neuroprotection in a rat subarachnoid hemorrhage model. Exp Neurol 2018; 301(Pt A): 13-25.
[31]
Yang Y, Chen S, Zhang JM. The updated role of oxidative stress in subarachnoid hemorrhage. Curr Drug Deliv 2017; 14(6): 832-42.
[http://dx.doi.org/10.2174/1567201813666161025115531] [PMID: 27784210]
[32]
Figueroa S, Oset-Gasque MJ, Arce C, Martinez-Honduvilla CJ, González MP. Mitochondrial involvement in nitric oxide-induced cellular death in cortical neurons in culture. J Neurosci Res 2006; 83(3): 441-9.
[http://dx.doi.org/10.1002/jnr.20739] [PMID: 16397899]
[33]
Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ 2015; 22(3): 377-88.
[http://dx.doi.org/10.1038/cdd.2014.150] [PMID: 25257172]
[34]
Lu MC, Ji JA, Jiang ZY, You QD. The Keap1-Nrf2-ARE pathway as a potential preventive and therapeutic target: An update. Med Res Rev 2016; 36(5): 924-63.
[http://dx.doi.org/10.1002/med.21396] [PMID: 27192495]
[35]
Wu Q, Zhang XS, Wang HD, et al. Astaxanthin activates nuclear factor erythroid-related factor 2 and the antioxidant responsive element (Nrf2-ARE) pathway in the brain after subarachnoid hemorrhage in rats and atten-uates early brain injury. Mar Drugs 2014; 12(12): 6125-41.
[http://dx.doi.org/10.3390/md12126125] [PMID: 25528957]
[36]
Liu Y, Qiu J, Wang Z, et al. Dimethylfumarate alleviates early brain injury and secondary cognitive deficits after experimental subarachnoid hemorrhage via activation of Keap1-Nrf2-ARE system. J Neurosurg 2015; 123(4): 915-23.
[http://dx.doi.org/10.3171/2014.11.JNS132348] [PMID: 25614941]
[37]
Wang Z, Ji C, Wu L, et al. Tert-butylhydroquinone alleviates early brain injury and cognitive dysfunction after experimental subarachnoid hemorrhage: role of Keap1/Nrf2/ARE pathway. PLoS One 2014; 9(5): e97685.
[http://dx.doi.org/10.1371/journal.pone.0097685] [PMID: 24848277]
[38]
Gold R, Kappos L, Arnold DL, et al. Placebo-controlled phase 3 study of oral BG-12 for relapsing multiple sclerosis. N Engl J Med 2012; 367(12): 1098-107.
[http://dx.doi.org/10.1056/NEJMoa1114287] [PMID: 22992073]
[39]
Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature 1981; 290(5806): 457-65.
[http://dx.doi.org/10.1038/290457a0] [PMID: 7219534]
[40]
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94(3): 909-50.
[http://dx.doi.org/10.1152/physrev.00026.2013] [PMID: 24987008]
[41]
Zheng ZV, Lyu H, Lam SYE, Lam PK, Poon WS, Wong GKC. The dynamics of microglial polarization reveal the resident neuroinflammatory responses after subarachnoid hemorrhage. Transl Stroke Res 2020; 11(3): 433-49.
[http://dx.doi.org/10.1007/s12975-019-00728-5] [PMID: 31628642]
[42]
Lu Y, Zhang XS, Zhang ZH, et al. Peroxiredoxin 2 activates microglia by interacting with Toll-like receptor 4 after subarachnoid hemorrhage. J Neuroinflammation 2018; 15(1): 87.
[http://dx.doi.org/10.1186/s12974-018-1118-4] [PMID: 29554978]
[43]
Blackburn SL, Kumar PT, McBride D, et al. Unique contribution of haptoglobin and haptoglobin genotype in aneurysmal subarachnoid hemorrhage. Front Physiol 2018; 9: 592.
[http://dx.doi.org/10.3389/fphys.2018.00592] [PMID: 29904350]
[44]
Provencio JJ, Altay T, Smithason S, Moore SK, Ransohoff RM. Depletion of Ly6G/C(+) cells ameliorates delayed cerebral vaso-spasm in subarachnoid hemorrhage. J Neuroimmunol 2011; 232(1-2): 94-100.
[http://dx.doi.org/10.1016/j.jneuroim.2010.10.016] [PMID: 21059474]
[45]
Pang J, Peng J, Matei N, et al. Exerts a whole-brain protective property by promoting M1? Microglia quiescence after experimental subarachnoid hemorrhage in mice. Transl Stroke Res 2018; 9(6): 654-68.
[http://dx.doi.org/10.1007/s12975-018-0665-4] [PMID: 30225551]
[46]
Friedrich V, Flores R, Muller A, Bi W, Peerschke EI, Sehba FA. Reduction of neutrophil activity decreases early microvascular injury after subarachnoid haemorrhage. J Neuroinflammation 2011; 8: 103.
[http://dx.doi.org/10.1186/1742-2094-8-103] [PMID: 21854561]
[47]
Neulen A, Pantel T, Kosterhon M, et al. Neutrophils mediate early cerebral cortical hypoperfusion in a murine model of subarachnoid haemorrhage. Sci Rep 2019; 9(1): 8460.
[http://dx.doi.org/10.1038/s41598-019-44906-9] [PMID: 31186479]
[48]
O’Connor JJ. Targeting tumour necrosis factor-α in hypoxia and synaptic signalling. Ir J Med Sci 2013; 182(2): 157-62.
[http://dx.doi.org/10.1007/s11845-013-0911-4] [PMID: 23361632]
[49]
Meyer A, Laverny G, Bernardi L, et al. Mitochondria: An organelle of bacterial origin controlling inflammation. Front Immunol 2018; 9: 536.
[http://dx.doi.org/10.3389/fimmu.2018.00536] [PMID: 29725325]
[50]
Kanamaru H, Suzuki H. Potential therapeutic molecular targets for blood-brain barrier disruption after subarachnoid hemorrhage. Neural Regen Res 2019; 14(7): 1138-43.
[http://dx.doi.org/10.4103/1673-5374.251190] [PMID: 30804237]
[51]
Zhang C, Jiang M, Wang WQ, et al. Selective mGluR1 nega-tive allosteric modulator reduces blood-brain barrier permeability and cerebral edema after experimental subarachnoid hemorrhage. Transl Stroke Res 2020; 11(4): 799-811.
[http://dx.doi.org/10.1007/s12975-019-00758-z] [PMID: 31833035]
[52]
Chen S, Xu P, Fang Y, Lenahan C. The Updated Role of the Blood Brain Barrier in Subarachnoid Hemorrhage: From Basic and Clini-cal Studies. Curr Neuropharmacol 2020; 18(12): 1266-78.
[http://dx.doi.org/10.2174/1570159X18666200914161231] [PMID: 32928088]
[53]
Li Y, Wu P, Bihl JC, Shi H. Underlying mechanisms and potential therapeutic molecular targets in blood-brain barrier disruption after subarachnoid hemorrhage. Curr Neuropharmacol 2020; 18(12): 1168-79.
[http://dx.doi.org/10.2174/1570159X18666200106154203] [PMID: 31903882]
[54]
Zhang T, Xu S, Wu P, et al. Mitoquinone attenuates blood-brain barrier disruption through Nrf2/PHB2/OPA1 pathway after subarachnoid hemorrhage in rats. Exp Neurol 2019; 317: 1-9.
[http://dx.doi.org/10.1016/j.expneurol.2019.02.009] [PMID: 30779914]
[55]
Zhao H, Chen Y, Feng H. P2X7 receptor-associated programmed cell death in the pathophysiology of hemorrhagic stroke. Curr Neuropharmacol 2018; 16(9): 1282-95.
[http://dx.doi.org/10.2174/1570159X16666180516094500] [PMID: 29766811]
[56]
Sehba FA, Hou J, Pluta RM, Zhang JH. The importance of early brain injury after subarachnoid hemorrhage. Prog Neurobiol 2012; 97(1): 14-37.
[http://dx.doi.org/10.1016/j.pneurobio.2012.02.003] [PMID: 22414893]
[57]
Vergouwen MD, Vermeulen M, van Gijn J, et al. Definition of delayed cerebral ischemia after aneu-rysmal subarachnoid hemorrhage as an outcome event in clinical trials and observational studies: proposal of a multidisciplinary research group. Stroke 2010; 41(10): 2391-5.
[http://dx.doi.org/10.1161/STROKEAHA.110.589275] [PMID: 20798370]
[58]
Mori T, Nagata K, Town T, Tan J, Matsui T, Asano T. Intracisternal increase of superoxide anion production in a canine subarach-noid hemorrhage model. Stroke 2001; 32(3): 636-42.
[http://dx.doi.org/10.1161/01.STR.32.3.636] [PMID: 11239179]
[59]
Uekusa H, Miyazaki C, Kondo K, et al. Hydroperoxide in internal jugular venous blood re-flects occurrence of subarachnoid hemorrhage-induced delayed cerebral vasospasm. J Stroke Cerebrovasc Dis 2014; 23(9): 2217-24.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.04.002] [PMID: 25263433]
[60]
Wu L, Su Z, Zha L, et al. Tetramethylpyrazine nitrone reduces oxidative stress to alleviate cerebral vasospasm in experimental subarachnoid hemorrhage models. Neuromolecular Med 2019; 21(3): 262-74.
[http://dx.doi.org/10.1007/s12017-019-08543-9] [PMID: 31134485]
[61]
Macdonald RL. Delayed neurological deterioration after subarachnoid haemorrhage. Nat Rev Neurol 2014; 10(1): 44-58.
[http://dx.doi.org/10.1038/nrneurol.2013.246] [PMID: 24323051]
[62]
Yang JL, Mukda S, Chen SD. Diverse roles of mitochondria in ischemic stroke. Redox Biol 2018; 16: 263-75.
[http://dx.doi.org/10.1016/j.redox.2018.03.002] [PMID: 29549824]
[63]
Chen W, Guo C, Feng H, Chen Y. Mitochondria: Novel mechanisms and therapeutic targets for secondary brain injury after intracere-bral hemorrhage. Front Aging Neurosci 2021; 12: 615451.
[http://dx.doi.org/10.3389/fnagi.2020.615451] [PMID: 33584246]
[64]
Jacobsen A, Nielsen TH, Nilsson O, Schalén W, Nordström CH. Bedside diagnosis of mitochondrial dysfunction in aneurysmal subarachnoid hemorrhage. Acta Neurol Scand 2014; 130(3): 156-63.
[http://dx.doi.org/10.1111/ane.12258] [PMID: 24796605]
[65]
Chou SH, Lan J, Esposito E, et al. Extracellular Mitochondria in Cerebrospinal Fluid and Neurological Recovery After Subarachnoid Hemorrhage. Stroke 2017; 48(8): 2231-7.
[http://dx.doi.org/10.1161/STROKEAHA.117.017758] [PMID: 28663512]
[66]
Chen Y, Chen J, Sun X, et al. Evaluation of the neuroprotective effect of EGCG: a potential mecha-nism of mitochondrial dysfunction and mitochondrial dynamics after subarachnoid hemorrhage. Food Funct 2018; 9(12): 6349-59.
[http://dx.doi.org/10.1039/C8FO01497C] [PMID: 30452052]
[67]
Shi G, Cui L, Chen R, Liang S, Wang C, Wu P. TT01001 attenuates oxidative stress and neuronal apoptosis by preventing mi-toNEET-mediated mitochondrial dysfunction after subarachnoid hemorrhage in rats. Neuroreport 2020; 31(11): 845-50.
[http://dx.doi.org/10.1097/WNR.0000000000001492] [PMID: 32604395]
[68]
Hosmann A, Milivojev N, Dumitrescu S, Reinprecht A, Weidinger A, Kozlov AV. Cerebral nitric oxide and mitochondrial function in patients suffering aneurysmal subarachnoid hemorrhage-a translational approach. Acta Neurochir (Wien) 2021; 163(1): 139-49.
[http://dx.doi.org/10.1007/s00701-020-04536-x] [PMID: 32839865]
[69]
Chakrabarty RP, Chandel NS. Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell 2021; 28(3): 394-408.
[http://dx.doi.org/10.1016/j.stem.2021.02.011] [PMID: 33667360]
[70]
Peoples JN, Saraf A, Ghazal N, Pham TT, Kwong JQ. Mitochondrial dysfunction and oxidative stress in heart disease. Exp Mol Med 2019; 51(12): 1-13.
[http://dx.doi.org/10.1038/s12276-019-0355-7] [PMID: 31857574]
[71]
Boveris A, Chance B. The mitochondrial generation of hydrogen peroxide. General properties and effect of hyperbaric oxygen. Biochem J 1973; 134(3): 707-16.
[http://dx.doi.org/10.1042/bj1340707] [PMID: 4749271]
[72]
Koopman WJ, Nijtmans LG, Dieteren CE, et al. Mammalian mitochondrial complex I: biogenesis, regulation, and reactive oxygen species generation. Antioxid Redox Signal 2010; 12(12): 1431-70.
[http://dx.doi.org/10.1089/ars.2009.2743] [PMID: 19803744]
[73]
Guzy RD, Schumacker PT. Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 2006; 91(5): 807-19.
[http://dx.doi.org/10.1113/expphysiol.2006.033506] [PMID: 16857720]
[74]
Sidlauskaite E, Gibson JW, Megson IL, et al. Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol 2018; 16: 344-51.
[http://dx.doi.org/10.1016/j.redox.2018.03.012] [PMID: 29587245]
[75]
Zheng J, Shi L, Liang F, et al. Sirt3 ameliorates oxidative stress and mitochondrial dys-function after intracerebral hemorrhage in diabetic rats. Front Neurosci 2018; 12: 414.
[http://dx.doi.org/10.3389/fnins.2018.00414] [PMID: 29970985]
[76]
Wu X, Cui W, Guo W, et al. Acrolein aggravates secondary brain injury after intracerebral hemorrhage through Drp1-mediated mitochondrial oxidative damage in mice. Neurosci Bull 2020; 36(10): 1158-70.
[http://dx.doi.org/10.1007/s12264-020-00505-7] [PMID: 32436179]
[77]
Kunz A, Park L, Abe T, et al. Neurovascular protection by ischemic tolerance: role of nitric oxide and reactive oxygen species. J Neurosci 2007; 27(27): 7083-93.
[http://dx.doi.org/10.1523/JNEUROSCI.1645-07.2007] [PMID: 17611261]
[78]
Redza-Dutordoir M, Averill-Bates DA. Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 2016; 1863(12): 2977-92.
[http://dx.doi.org/10.1016/j.bbamcr.2016.09.012] [PMID: 27646922]
[79]
Shi L, Lei J, Xu H, et al. Hydrogen sulfide ameliorates subarachnoid hemorrhage-induced neuronal apoptosis via the ROS-MST1 pathway. Oncotarget 2017; 8(43): 73547-58.
[http://dx.doi.org/10.18632/oncotarget.20569] [PMID: 29088725]
[80]
Shi L, Liang F, Zheng J, et al. Melatonin regulates apoptosis and autophagy via ROS-MST1 pathway in subarachnoid hemorrhage. Front Mol Neurosci 2018; 11: 93.
[http://dx.doi.org/10.3389/fnmol.2018.00093] [PMID: 29632474]
[81]
Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage. J Cereb Blood Flow Metab 2006; 26(11): 1341-53.
[http://dx.doi.org/10.1038/sj.jcbfm.9600283] [PMID: 16482081]
[82]
Jeong SY, Seol DW. The role of mitochondria in apoptosis. BMB Rep 2008; 41(1): 11-22.
[http://dx.doi.org/10.5483/BMBRep.2008.41.1.011] [PMID: 18304445]
[83]
Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol 2020; 21(2): 85-100.
[http://dx.doi.org/10.1038/s41580-019-0173-8] [PMID: 31636403]
[84]
Crompton M. The mitochondrial permeability transition pore and its role in cell death. Biochem J 1999; 341(Pt 2): 233-49.
[http://dx.doi.org/10.1042/bj3410233] [PMID: 10393078]
[85]
Vucicevic K, Jakovljevic V, Colovic N, et al. Association of Bax expression and Bcl2/Bax ratio with clinical and molecular prognostic markers in chronic lymphocytic leukemia. J Med Biochem 2016; 35(2): 150-7.
[http://dx.doi.org/10.1515/jomb-2015-0017] [PMID: 28356875]
[86]
Zhang Y, Yang X, Ge X, Zhang F. Puerarin attenuates neurological deficits via Bcl-2/Bax/cleaved caspase-3 and Sirt3/SOD2 apoptotic pathways in subarachnoid hemorrhage mice. Biomed Pharmacother 2019; 109: 726-33.
[http://dx.doi.org/10.1016/j.biopha.2018.10.161] [PMID: 30551525]
[87]
Mo J, Enkhjargal B, Travis ZD, et al. AVE 0991 attenuates oxidative stress and neuronal apoptosis via Mas/PKA/CREB/UCP-2 pathway after subarach-noid hemorrhage in rats. Redox Biol 2019; 20: 75-86.
[http://dx.doi.org/10.1016/j.redox.2018.09.022] [PMID: 30296700]
[88]
Yu S, Zeng YJ, Sun XC. Neuroprotective effects of p53/microRNA 22 regulate inflammation and apoptosis in subarachnoid hemor-rhage. Int J Mol Med 2018; 41(4): 2406-12.
[http://dx.doi.org/10.3892/ijmm.2018.3392] [PMID: 29336471]
[89]
Matz PG, Fujimura M, Lewen A, Morita-Fujimura Y, Chan PH. Increased cytochrome c-mediated DNA fragmentation and cell death in manganese-superoxide dismutase-deficient mice after exposure to subarachnoid hemolysate. Stroke 2001; 32(2): 506-15.
[http://dx.doi.org/10.1161/01.STR.32.2.506] [PMID: 11157190]
[90]
Susin SA, Lorenzo HK, Zamzami N, et al. Molecular characterization of mitochondrial apoptosis-inducing factor. Nature 1999; 397(6718): 441-6.
[http://dx.doi.org/10.1038/17135] [PMID: 9989411]
[91]
Culmsee C, Zhu C, Landshamer S, et al. Apoptosis-inducing factor trig-gered by poly(ADP-ribose) polymerase and Bid mediates neuronal cell death after oxygen-glucose deprivation and focal cerebral ische-mia. J Neurosci 2005; 25(44): 10262-72.
[http://dx.doi.org/10.1523/JNEUROSCI.2818-05.2005] [PMID: 16267234]
[92]
Lang S, Yan X, Wang C, et al. The poly-ADP ribose polymerase-1/apoptosis-inducing factor path-way may help mediate the protective effect of electroacupuncture on early brain injury after subarachnoid hemorrhage. Neuroreport 2020; 31(8): 605-12.
[http://dx.doi.org/10.1097/WNR.0000000000001445] [PMID: 32301816]
[93]
Nakahira K, Haspel JA, Rathinam VA, et al. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol 2011; 12(3): 222-30.
[http://dx.doi.org/10.1038/ni.1980] [PMID: 21151103]
[94]
Liu Q, Zhang D, Hu D, Zhou X, Zhou Y. The role of mitochondria in NLRP3 inflammasome activation. Mol Immunol 2018; 103: 115-24.
[http://dx.doi.org/10.1016/j.molimm.2018.09.010] [PMID: 30248487]
[95]
Cao S, Shrestha S, Li J, et al. Melatonin-mediated mitophagy protects against early brain injury after subarachnoid hemorrhage through inhibition of NLRP3 inflammasome activation. Sci Rep 2017; 7(1): 2417.
[http://dx.doi.org/10.1038/s41598-017-02679-z] [PMID: 28546552]
[96]
Wang H, Liu C, Zhao Y, Gao G. Mitochondria regulation in ferroptosis. Eur J Cell Biol 2020; 99(1): 151058.
[http://dx.doi.org/10.1016/j.ejcb.2019.151058] [PMID: 31810634]
[97]
Cao Y, Li Y, He C, et al. Selective ferroptosis inhibitor liproxstatin-1 attenuates neurological deficits and neuroinflammation after subarach-noid hemorrhage. Neurosci Bull 2021; 37(4): 535-49.
[http://dx.doi.org/10.1007/s12264-020-00620-5] [PMID: 33421025]
[98]
Li Y, Liu Y, Wu P, et al. Inhibition of ferroptosis alleviates early brain injury after subarachnoid hemorrhage in vitro and in vivo via reduction of lipid peroxidation. Cell Mol Neurobiol 2021; 41(2): 263-78.
[http://dx.doi.org/10.1007/s10571-020-00850-1] [PMID: 32314126]
[99]
Qu XF, Liang TY, Wu DG, et al. Acyl-CoA synthetase long chain family member 4 plays detrimental role in early brain injury after subarachnoid hemorrhage in rats by inducing ferroptosis. CNS Neurosci Ther 2021; 27(4): 449-63.
[http://dx.doi.org/10.1111/cns.13548] [PMID: 33314758]
[100]
van der Bliek AM, Shen Q, Kawajiri S. Mechanisms of mitochondrial fission and fusion. Cold Spring Harb Perspect Biol 2013; 5(6): a011072.
[http://dx.doi.org/10.1101/cshperspect.a011072] [PMID: 23732471]
[101]
Westermann B. Mitochondrial fusion and fission in cell life and death. Nat Rev Mol Cell Biol 2010; 11(12): 872-84.
[http://dx.doi.org/10.1038/nrm3013] [PMID: 21102612]
[102]
Xu S, Wang P, Zhang H, et al. CaMKII induces permeability transi-tion through Drp1 phosphorylation during chronic β-AR stimulation. Nat Commun 2016; 7: 13189.
[http://dx.doi.org/10.1038/ncomms13189] [PMID: 27739424]
[103]
Ma R, Ma L, Weng W, et al. DUSP6 SUMOy-lation protects cells from oxidative damage via direct regulation of Drp1 dephosphorylation. Sci Adv 2020; 6(13): eaaz0361.
[http://dx.doi.org/10.1126/sciadv.aaz0361] [PMID: 32232156]
[104]
Weir HJ, Yao P, Huynh FK, et al. Dietary re-striction and AMPK increase lifespan via mitochondrial network and peroxisome remodeling. Cell Metab 2017; 26(6): 884-896.e5.
[http://dx.doi.org/10.1016/j.cmet.2017.09.024] [PMID: 29107506]
[105]
Zhou H, Zhu P, Wang J, Toan S, Ren J. DNA-PKcs promotes alcohol-related liver disease by activating Drp1-related mitochondrial fission and repressing FUNDC1-required mitophagy. Signal Transduct Target Ther 2019; 4: 56.
[http://dx.doi.org/10.1038/s41392-019-0094-1] [PMID: 31839999]
[106]
Rong R, Xia X, Peng H, et al. Cdk5-mediated Drp1 phos-phorylation drives mitochondrial defects and neuronal apoptosis in radiation-induced optic neuropathy. Cell Death Dis 2020; 11(9): 720.
[http://dx.doi.org/10.1038/s41419-020-02922-y] [PMID: 32883957]
[107]
Frank S, Gaume B, Bergmann-Leitner ES, et al. The role of dynamin-related protein 1, a mediator of mitochondrial fission, in apoptosis. Dev Cell 2001; 1(4): 515-25.
[http://dx.doi.org/10.1016/S1534-5807(01)00055-7] [PMID: 11703942]
[108]
Karbowski M, Lee YJ, Gaume B, et al. Spatial and temporal association of Bax with mitochondrial fission sites, Drp1, and Mfn2 during apoptosis. J Cell Biol 2002; 159(6): 931-8.
[http://dx.doi.org/10.1083/jcb.200209124] [PMID: 12499352]
[109]
Wu S, Zhou F, Zhang Z, Xing D. Mitochondrial oxidative stress causes mitochondrial fragmentation via differential modulation of mitochondrial fission-fusion proteins. FEBS J 2011; 278(6): 941-54.
[http://dx.doi.org/10.1111/j.1742-4658.2011.08010.x] [PMID: 21232014]
[110]
Li Y, Wu P, Dai J, et al. Inhibition of mTOR alleviates early brain injury after subarachnoid hemorrhage via relieving excessive mitochondrial fission. Cell Mol Neurobiol 2020; 40(4): 629-42.
[http://dx.doi.org/10.1007/s10571-019-00760-x] [PMID: 31728694]
[111]
Wu P, Li Y, Zhu S, et al. Mdivi-1 Allevi-ates early brain injury after experimental subarachnoid hemorrhage in rats, possibly via inhibition of Drp1-activated mitochondrial fission and oxidative stress. Neurochem Res 2017; 42(5): 1449-58.
[http://dx.doi.org/10.1007/s11064-017-2201-4] [PMID: 28210956]
[112]
Fan LF, He PY, Peng YC, et al. Mdivi-1 ameliorates early brain injury after subarachnoid hemorrhage via the suppression of inflammation-related blood-brain barrier disruption and endoplasmic reticulum stress-based apoptosis. Free Radic Biol Med 2017; 112: 336-49.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.08.003] [PMID: 28790012]
[113]
Chan DC. Mitochondrial dynamics and its involvement in disease. Annu Rev Pathol 2020; 15: 235-59.
[http://dx.doi.org/10.1146/annurev-pathmechdis-012419-032711] [PMID: 31585519]
[114]
Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem 2005; 280(28): 26185-92.
[http://dx.doi.org/10.1074/jbc.M503062200] [PMID: 15899901]
[115]
Züchner S, De Jonghe P, Jordanova A, et al. Axonal neuropathy with optic atrophy is caused by mutations in mitofusin 2. Ann Neurol 2006; 59(2): 276-81.
[http://dx.doi.org/10.1002/ana.20797] [PMID: 16437557]
[116]
Korwitz A, Merkwirth C, Richter-Dennerlein R, et al. Loss of OMA1 delays neurodegeneration by preventing stress-induced OPA1 processing in mitochondria. J Cell Biol 2016; 212(2): 157-66.
[http://dx.doi.org/10.1083/jcb.201507022] [PMID: 26783299]
[117]
Wu X, Luo J, Liu H, Cui W, Feng D, Qu Y. SIRT3 protects against early brain injury following subarachnoid hemorrhage via pro-moting mitochondrial fusion in an AMPK dependent manner. Chin Neurosurg J 2020; 6: 1.
[http://dx.doi.org/10.1186/s41016-019-0182-7] [PMID: 32922930]
[118]
Glick D, Barth S, Macleod KF. Autophagy: cellular and molecular mechanisms. J Pathol 2010; 221(1): 3-12.
[http://dx.doi.org/10.1002/path.2697] [PMID: 20225336]
[119]
Palikaras K, Tavernarakis N. Mitochondrial homeostasis: the interplay between mitophagy and mitochondrial biogenesis. Exp Gerontol 2014; 56: 182-8.
[http://dx.doi.org/10.1016/j.exger.2014.01.021] [PMID: 24486129]
[120]
Geisler S, Holmström KM, Skujat D, et al. PINK1/Parkin-mediated mitophagy is de-pendent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010; 12(2): 119-31.
[http://dx.doi.org/10.1038/ncb2012] [PMID: 20098416]
[121]
Eiyama A, Okamoto K. PINK1/Parkin-mediated mitophagy in mammalian cells. Curr Opin Cell Biol 2015; 33: 95-101.
[http://dx.doi.org/10.1016/j.ceb.2015.01.002] [PMID: 25697963]
[122]
McWilliams TG, Muqit MM. PINK1 and Parkin: emerging themes in mitochondrial homeostasis. Curr Opin Cell Biol 2017; 45: 83-91.
[http://dx.doi.org/10.1016/j.ceb.2017.03.013] [PMID: 28437683]
[123]
Guan R, Zou W, Dai X, et al. Mitophagy, a potential therapeutic target for stroke. J Biomed Sci 2018; 25(1): 87.
[http://dx.doi.org/10.1186/s12929-018-0487-4] [PMID: 30501621]
[124]
Yu D, Li M, Ni B, Kong J, Zhang Z. Induction of neuronal mitophagy in acute spinal cord injury in rats. Neurotox Res 2013; 24(4): 512-22.
[http://dx.doi.org/10.1007/s12640-013-9397-0] [PMID: 23637053]
[125]
Sun B, Yang S, Li S, Hang C. Melatonin upregulates nuclear factor erythroid-2 related factor 2 (Nrf2) and mediates mitophagy to pro-tect against early brain injury after subarachnoid hemorrhage. Med Sci Monit 2018; 24: 6422-30.
[http://dx.doi.org/10.12659/MSM.909221] [PMID: 30210141]
[126]
Zhang T, Wu P, Budbazar E, et al. Mitophagy reduces oxi-dative stress via Keap1 (Kelch-Like epichlorohydrin-associated protein 1)/Nrf2 (nuclear factor-E2-related factor 2)/PHB2 (prohibitin 2) pathway after subarachnoid hemorrhage in rats. Stroke 2019; 50(4): 978-88.
[http://dx.doi.org/10.1161/STROKEAHA.118.021590] [PMID: 30890112]
[127]
Yi S, Zheng B, Zhu Y, Cai Y, Sun H, Zhou J. Melatonin ameliorates excessive PINK1/Parkin-mediated mitophagy by enhancing SIRT1 expression in granulosa cells of PCOS. Am J Physiol Endocrinol Metab 2020; 319(1): E91-E101.
[http://dx.doi.org/10.1152/ajpendo.00006.2020] [PMID: 32343612]
[128]
Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol 2020; 11: 1649.
[http://dx.doi.org/10.3389/fimmu.2020.01649] [PMID: 32922385]
[129]
Chaudhry SR, Hafez A, Rezai Jahromi B, et al. Role of damage associated molec-ular pattern molecules (DAMPs) in aneurysmal subarachnoid hemorrhage (aSAH). Int J Mol Sci 2018; 19(7): E2035.
[http://dx.doi.org/10.3390/ijms19072035] [PMID: 30011792]
[130]
Wang HC, Yang TM, Lin WC, et al. The value of serial plasma and cerebrospinal fluid nuclear and mitochondrial deoxyribonucleic acid levels in aneurysmal subarachnoid hemorrhage. J Neurosurg 2013; 118(1): 13-9.
[http://dx.doi.org/10.3171/2012.8.JNS112093] [PMID: 23020765]
[131]
Chaudhry SR, Frede S, Seifert G, et al. Temporal profile of serum mitochondrial DNA (mtDNA) in patients with aneurysmal subarachnoid hemorrhage (aSAH). Mitochondrion 2019; 47: 218-26.
[http://dx.doi.org/10.1016/j.mito.2018.12.001] [PMID: 30529453]
[132]
Riley JS, Tait SW. Mitochondrial DNA in inflammation and immunity. EMBO Rep 2020; 21(4): e49799.
[http://dx.doi.org/10.15252/embr.201949799] [PMID: 32202065]
[133]
Peng Y, Zhuang J, Ying G, et al. Stimulator of IFN genes mediates neuroinflammatory injury by suppressing AMPK signal in experimental subarachnoid hemor-rhage. J Neuroinflammation 2020; 17(1): 165.
[http://dx.doi.org/10.1186/s12974-020-01830-4] [PMID: 32450897]
[134]
Xu P, Hong Y, Xie Y, et al. TREM-1 Exacerbates neu-roinflammatory injury via NLRP3 inflammasome-mediated pyroptosis in experimental subarachnoid hemorrhage. Transl Stroke Res 2021; 12(4): 643-59.
[http://dx.doi.org/10.1007/s12975-020-00840-x] [PMID: 32862402]
[135]
Youn DH, Kim BJ, Kim Y, Jeon JP. Extracellular mitochondrial dysfunction in cerebrospinal fluid of patients with delayed cerebral ischemia after aneurysmal subarachnoid hemorrhage. Neurocrit Care 2020; 33(2): 422-8.
[http://dx.doi.org/10.1007/s12028-019-00895-1] [PMID: 31898178]
[136]
Peeyush Kumar T, McBride DW, Dash PK, Matsumura K, Rubi A, Blackburn SL. Endothelial cell dysfunction and injury in sub-arachnoid hemorrhage. Mol Neurobiol 2019; 56(3): 1992-2006.
[http://dx.doi.org/10.1007/s12035-018-1213-7] [PMID: 29982982]
[137]
Sabri M, Ai J, Knight B, et al. Uncoupling of endothelial nitric oxide synthase after experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2011; 31(1): 190-9.
[http://dx.doi.org/10.1038/jcbfm.2010.76] [PMID: 20517322]
[138]
Seifert V, Löffler BM, Zimmermann M, Roux S, Stolke D. Endothelin concentrations in patients with aneurysmal subarachnoid hemorrhage. Correlation with cerebral vasospasm, delayed ischemic neurological deficits, and volume of hematoma. J Neurosurg 1995; 82(1): 55-62.
[http://dx.doi.org/10.3171/jns.1995.82.1.0055] [PMID: 7815135]
[139]
Findlay JM, Macdonald RL, Weir BK. Current concepts of pathophysiology and management of cerebral vasospasm following aneu-rysmal subarachnoid hemorrhage. Cerebrovasc Brain Metab Rev 1991; 3(4): 336-61.
[PMID: 1772740]
[140]
Chen HI, Stiefel MF, Oddo M, et al. Detection of cerebral compromise with multimodality monitoring in patients with subarachnoid hemorrhage. Neurosurgery 2011; 69(1): 53-63.
[http://dx.doi.org/10.1227/NEU.0b013e3182191451] [PMID: 21796073]
[141]
Wagner M, Jurcoane A, Hildebrand C, et al. Metabolic changes in patients with aneurysmal subarachnoid hemorrhage apart from perfusion deficits: neuronal mitochondrial injury? AJNR Am J Neuroradiol 2013; 34(8): 1535-41.
[http://dx.doi.org/10.3174/ajnr.A3420] [PMID: 23436053]
[142]
Wang Y, Liu Y, Li Y, et al. Protective effects of astaxanthin on subarachnoid hemorrhage-induced early brain injury: Reduction of cerebral vasospasm and improvement of neuron survival and mitochondrial function. Acta Histochem 2019; 121(1): 56-63.
[http://dx.doi.org/10.1016/j.acthis.2018.10.014] [PMID: 30392635]
[143]
Gao Y, Ding XS, Xu S, Wang W, Zuo QL, Kuai F. Neuroprotective effects of edaravone on early brain injury in rats after sub-arachnoid hemorrhage. Chin Med J (Engl) 2009; 122(16): 1935-40.
[PMID: 19781374]
[144]
Munakata A, Ohkuma H, Nakano T, Shimamura N, Asano K, Naraoka M. Effect of a free radical scavenger, edaravone, in the treatment of patients with aneurysmal subarachnoid hemorrhage. Neurosurgery 2009; 64(3): 423-8.
[http://dx.doi.org/10.1227/01.NEU.0000338067.83059.EB] [PMID: 19240603]
[145]
Georgieva E, Ivanova D, Zhelev Z, Bakalova R, Gulubova M, Aoki I. Mitochondrial dysfunction and redox imbalance as a diag-nostic marker of “free radical diseases”. Anticancer Res 2017; 37(10): 5373-81.
[PMID: 28982845]
[146]
Dey S, DeMazumder D, Sidor A, Foster DB, O’Rourke B. Mitochondrial ROS drive sudden cardiac death and chronic proteome remodeling in heart failure. Circ Res 2018; 123(3): 356-71.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312708] [PMID: 29898892]
[147]
Gane EJ, Weilert F, Orr DW, et al. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 2010; 30(7): 1019-26.
[http://dx.doi.org/10.1111/j.1478-3231.2010.02250.x] [PMID: 20492507]
[148]
Shen R, Zhou J, Li G, Chen W, Zhong W, Chen Z. SS31 attenuates oxidative stress and neuronal apoptosis in early brain injury following subarachnoid hemorrhage possibly by the mitochondrial pathway. Neurosci Lett 2020; 717: 134654.
[http://dx.doi.org/10.1016/j.neulet.2019.134654] [PMID: 31785308]
[149]
Geldenhuys WJ, Leeper TC, Carroll RT. mitoNEET as a novel drug target for mitochondrial dysfunction. Drug Discov Today 2014; 19(10): 1601-6.
[http://dx.doi.org/10.1016/j.drudis.2014.05.001] [PMID: 24814435]
[150]
Zhang T, Wu P, Zhang JH, et al. Do-cosahexaenoic acid alleviates oxidative stress-based apoptosis via improving mitochondrial dynamics in early brain injury after subarach-noid hemorrhage. Cell Mol Neurobiol 2018; 38(7): 1413-23.
[http://dx.doi.org/10.1007/s10571-018-0608-3] [PMID: 30084007]
[151]
Nakagawa I. Yokoyama, S.; Omoto, K.; Takeshima, Y.; Matsuda, R.; Nishimura, F.; Yamada, S.; Yokota, H.; Motoyama, Y.; Park, Y.S.; Nakase, H. ω-3 Fatty acids ethyl esters suppress cerebral vasospasm and improve clinical outcome following aneurysmal subarachnoid hemorrhage. World Neurosurg 2017; 99: 457-64.
[http://dx.doi.org/10.1016/j.wneu.2016.12.018] [PMID: 27993744]
[152]
Wang Z, Guo S, Wang J, Shen Y, Zhang J, Wu Q. Nrf2/HO-1 mediates the neuroprotective effect of mangiferin on early brain injury after subarachnoid hemorrhage by attenuating mitochondria-related apoptosis and neuroinflammation. Sci Rep 2017; 7(1): 11883.
[http://dx.doi.org/10.1038/s41598-017-12160-6] [PMID: 28928429]
[153]
Jyotshna; Khare, P.; Shanker, K. Mangiferin: A review of sources and interventions for biological activities. Biofactors 2016; 42(5): 504-14.
[http://dx.doi.org/10.1002/biof.1308] [PMID: 27658353]
[154]
Na L, Zhang Q, Jiang S, et al. Mangiferin supplementation improves serum lipid profiles in overweight patients with hyperlipidemia: a double-blind randomized controlled trial. Sci Rep 2015; 5: 10344.
[http://dx.doi.org/10.1038/srep10344] [PMID: 25989216]
[155]
Chen F, Lu J, Chen F, et al. Recombinant neuroglobin ameliorates early brain injury after subarachnoid hemorrhage via inhibiting the activation of mitochondria apoptotic pathway. Neurochem Int 2018; 112: 219-26.
[http://dx.doi.org/10.1016/j.neuint.2017.07.012] [PMID: 28774717]
[156]
Ling GQ, Li XF, Lei XH, et al. c Jun N terminal kinase inhibition attenuates early brain injury induced neuronal apoptosis via decreasing p53 phosphorylation and mitochondrial apoptotic pathway activation in subarachnoid hemor-rhage rats. Mol Med Rep 2019; 19(1): 327-37.
[PMID: 30431087]
[157]
Ryba M, Pastuszko M, Iwanska K, Bidzinski J, Dziewiecki C. Cyclosporine A prevents neurological deterioration of patients with SAH--a preliminary report. Acta Neurochir (Wien) 1991; 112(1-2): 25-7.
[http://dx.doi.org/10.1007/BF01402450] [PMID: 1763680]
[158]
Park S, Yamaguchi M, Zhou C, Calvert JW, Tang J, Zhang JH. Neurovascular protection reduces early brain injury after subarach-noid hemorrhage. Stroke 2004; 35(10): 2412-7.
[http://dx.doi.org/10.1161/01.STR.0000141162.29864.e9] [PMID: 15322302]
[159]
Zhou C, Yamaguchi M, Kusaka G, Schonholz C, Nanda A, Zhang JH. Caspase inhibitors prevent endothelial apoptosis and cere-bral vasospasm in dog model of experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2004; 24(4): 419-31.
[http://dx.doi.org/10.1097/00004647-200404000-00007] [PMID: 15087711]
[160]
Mandrioli J, D’Amico R, Zucchi E, et al. Rapamycin treatment for amyotrophic lateral sclerosis: Pro-tocol for a phase II randomized, double-blind, placebo-controlled, multicenter, clinical trial (RAP-ALS trial). Medicine (Baltimore) 2018; 97(24): e11119.
[http://dx.doi.org/10.1097/MD.0000000000011119] [PMID: 29901635]
[161]
Chen J, Wang L, Wu C, et al. Melatonin-enhanced autophagy protects against neural apop-tosis via a mitochondrial pathway in early brain injury following a subarachnoid hemorrhage. J Pineal Res 2014; 56(1): 12-9.
[http://dx.doi.org/10.1111/jpi.12086] [PMID: 24033352]
[162]
Andersen LP, Gögenur I, Rosenberg J, Reiter RJ. The safety of melatonin in humans. Clin Drug Investig 2016; 36(3): 169-75.
[http://dx.doi.org/10.1007/s40261-015-0368-5] [PMID: 26692007]
[163]
Gilard V, Ferracci FX, Langlois O, Derrey S, Proust F, Curey S. Effects of melatonin in the treatment of asthenia in aneurysmal subarachnoid hemorrhage. Neurochirurgie 2016; 62(6): 295-9.
[http://dx.doi.org/10.1016/j.neuchi.2016.06.010] [PMID: 27865517]
[164]
Jing CH, Wang L, Liu PP, Wu C, Ruan D, Chen G. Autophagy activation is associated with neuroprotection against apoptosis via a mitochondrial pathway in a rat model of subarachnoid hemorrhage. Neuroscience 2012; 213: 144-53.
[http://dx.doi.org/10.1016/j.neuroscience.2012.03.055] [PMID: 22521819]
[165]
Sun Y, Vashisht AA, Tchieu J, Wohlschlegel JA, Dreier L. Voltage-dependent anion channels (VDACs) recruit Parkin to defective mitochondria to promote mitochondrial autophagy. J Biol Chem 2012; 287(48): 40652-60.
[http://dx.doi.org/10.1074/jbc.M112.419721] [PMID: 23060438]
[166]
Li J, Lu J, Mi Y, et al. Voltage-dependent anion channels (VDACs) promote mitophagy to protect neu-ron from death in an early brain injury following a subarachnoid hemorrhage in rats. Brain Res 2014; 1573: 74-83.
[http://dx.doi.org/10.1016/j.brainres.2014.05.021] [PMID: 24880016]
[167]
Kirichok Y, Krapivinsky G, Clapham DE. The mitochondrial calcium uniporter is a highly selective ion channel. Nature 2004; 427(6972): 360-4.
[http://dx.doi.org/10.1038/nature02246] [PMID: 14737170]
[168]
Chen Y, Huang L, Zhang H, Diao X, Zhao S, Zhou W. Reduction in autophagy by (-)-epigallocatechin-3-gallate (EGCG): a potential mechanism of prevention of mitochondrial dysfunction after subarachnoid hemorrhage. Mol Neurobiol 2017; 54(1): 392-405.
[http://dx.doi.org/10.1007/s12035-015-9629-9] [PMID: 26742518]
[169]
Chen H, Chan DC. Mitochondrial dynamics-fusion, fission, movement, and mitophagy-in neurodegenerative diseases. Hum Mol Genet 2009; 18(R2): R169-76.
[http://dx.doi.org/10.1093/hmg/ddp326] [PMID: 19808793]
[170]
Huang L, Hou Y, Wang L, et al. p38 inhibitor protects mitochondrial dysfunction by induction of DJ-1 mitochondrial translocation after subarachnoid hemorrhage. J Mol Neurosci 2018; 66(2): 163-71.
[http://dx.doi.org/10.1007/s12031-018-1131-1] [PMID: 30242669]
[171]
Li S, Xiao X, Ni X, Ye Z, Zhao J, Hang C. Tetramethylpyrazine protects against early brain injury after experimental subarachnoid hemorrhage by affecting mitochondrial-dependent caspase-3 apoptotic pathway. Evid Based Complement Alternat Med 2017; 2017: 3514914.
[http://dx.doi.org/10.1155/2017/3514914] [PMID: 28337226]
[172]
Golpich M, Amini E, Mohamed Z, Azman Ali R, Mohamed Ibrahim N, Ahmadiani A. Mitochondrial dysfunction and biogenesis in neurodegenerative diseases: pathogenesis and treatment. CNS Neurosci Ther 2017; 23(1): 5-22.
[http://dx.doi.org/10.1111/cns.12655] [PMID: 27873462]
[173]
Valerio A, Bertolotti P, Delbarba A, et al. Glyco-gen synthase kinase-3 inhibition reduces ischemic cerebral damage, restores impaired mitochondrial biogenesis and prevents ROS produc-tion. J Neurochem 2011; 116(6): 1148-59.
[http://dx.doi.org/10.1111/j.1471-4159.2011.07171.x] [PMID: 21210815]
[174]
Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega AL, Pérez S. PGC-1α Inflammation, and Oxidative Stress: An Integrative View in Metabolism. Oxid Med Cell Longev 2020; 2020: 1452696.
[http://dx.doi.org/10.1155/2020/1452696] [PMID: 32215168]
[175]
Xu W, Yan J, Ocak U, et al. Melanocortin 1 receptor attenuates early brain injury following subarachnoid hemorrhage by controlling mitochondrial metabolism via AMPK/SIRT1/PGC-1α pathway in rats. Theranostics 2021; 11(2): 522-39.
[http://dx.doi.org/10.7150/thno.49426] [PMID: 33391490]
[176]
Zhou J, Yang Z, Shen R, et al. Resveratrol improves mitochondrial biogenesis function and activates PGC-1α pathway in a preclinical model of early brain injury following subarachnoid hemorrhage. Front Mol Biosci 2021; 8: 620683.
[http://dx.doi.org/10.3389/fmolb.2021.620683] [PMID: 33968980]
[177]
Singh AP, Singh R, Verma SS, et al. Health benefits of resveratrol: Evidence from clinical studies. Med Res Rev 2019; 39(5): 1851-91.
[http://dx.doi.org/10.1002/med.21565] [PMID: 30741437]
[178]
Chen J, Bai Q, Zhao Z, Sui H, Xie X. Resveratrol improves delayed r-tPA treatment outcome by reducing MMPs. Acta Neurol Scand 2016; 134(1): 54-60.
[http://dx.doi.org/10.1111/ane.12511] [PMID: 26455907]
[179]
Fan H, Ding R, Liu W, et al. Heat shock protein 22 modulates NRF1/TFAM-dependent mitochondrial biogenesis and DRP1-sparked mitochondrial apoptosis through AMPK-PGC1α signaling pathway to alleviate the early brain injury of subarachnoid hemorrhage in rats. Redox Biol 2021; 40: 101856.
[http://dx.doi.org/10.1016/j.redox.2021.101856] [PMID: 33472123]
[180]
Mattiasson G, Shamloo M, Gido G, et al. Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med 2003; 9(8): 1062-8.
[http://dx.doi.org/10.1038/nm903] [PMID: 12858170]
[181]
Hasan-Olive MM, Lauritzen KH, Ali M, Rasmussen LJ, Storm-Mathisen J, Bergersen LH. A Ketogenic Diet Improves Mitochon-drial Biogenesis and Bioenergetics via the PGC1α-SIRT3-UCP2 Axis. Neurochem Res 2019; 44(1): 22-37.
[http://dx.doi.org/10.1007/s11064-018-2588-6] [PMID: 30027365]
[182]
Tu T, Yin S, Pang J, et al. Irisin contributes to neuroprotec-tion by promoting mitochondrial biogenesis after experimental subarachnoid hemorrhage. Front Aging Neurosci 2021; 13: 640215.
[http://dx.doi.org/10.3389/fnagi.2021.640215] [PMID: 33613273]
[183]
Wu H, Guo P, Jin Z, et al. Serum levels of irisin predict short-term outcomes in ischemic stroke. Cytokine 2019; 122: 154303.
[http://dx.doi.org/10.1016/j.cyto.2018.02.017] [PMID: 29472066]
[184]
Liew SS, Qin X, Zhou J, Li L, Huang W, Yao SQ. smart design of nanomaterials for mitochondria-targeted nanotherapeutics. Angew Chem Int Ed Engl 2021; 60(5): 2232-56.
[http://dx.doi.org/10.1002/anie.201915826] [PMID: 32128948]
[185]
Qian K, Chen H, Qu C, et al. Mitochondria-targeted delocalized lipophilic cation complexed with human serum albumin for tumor cell imaging and treatment. Nanomedicine 2020; 23: 102087.
[http://dx.doi.org/10.1016/j.nano.2019.102087] [PMID: 31454551]
[186]
Han Y, Chu X, Cui L, et al. Neuronal mitochondria-targeted therapy for Alzheimer’s disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv 2020; 27(1): 502-18.
[http://dx.doi.org/10.1080/10717544.2020.1745328] [PMID: 32228100]
[187]
Zhang CX, Cheng Y, Liu DZ, et al. Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology 2019; 17(1): 18.
[http://dx.doi.org/10.1186/s12951-019-0451-9] [PMID: 30683110]
[188]
Zhang Y, Khalique A, Du X, et al. Biomimetic design of mitochondria-targeted hybrid nanozymes as superoxide scavengers. Adv Mater 2021; 33(9): e2006570.
[http://dx.doi.org/10.1002/adma.202006570] [PMID: 33480459]
[189]
Haddad S, Abánades Lázaro I, Fantham M, et al. Design of a functionalized metal-organic framework system for enhanced targeted delivery to mito-chondria. J Am Chem Soc 2020; 142(14): 6661-74.
[http://dx.doi.org/10.1021/jacs.0c00188] [PMID: 32182066]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy