Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Effects of Histone Modification in Major Depressive Disorder

Author(s): Man-Si Wu, Xiao-Juan Li, Chen-Yue Liu, Qiuyue Xu, Jun-Qing Huang, Simeng Gu and Jia-Xu Chen*

Volume 20, Issue 7, 2022

Published on: 28 March, 2022

Page: [1261 - 1277] Pages: 17

DOI: 10.2174/1570159X19666210922150043

Price: $65

Abstract

Major depressive disorder (MDD) is a disease associated with many factors; specifically, environmental, genetic, psychological, and biological factors play critical roles. Recent studies have demonstrated that histone modification may occur in the human brain in response to severely stressful events, resulting in transcriptional changes and the development of MDD. In this review, we discuss five different histone modifications, histone methylation, histone acetylation, histone phosphorylation, histone crotonylation and histone β-hydroxybutyrylation, and their relationships with MDD. The utility of histone deacetylase (HDAC) inhibitors (HDACis) for MDD treatment is also discussed. As a large number of MDD patients in China have been treated with traditional Chineses medicine (TCM), we also discuss some TCM therapies, such as Xiaoyaosan (XYS), and their effects on histone modification. In summary, targeting histone modification may be a new strategy for elucidating the mechanism of MDD and a new direction for MDD treatment.

Keywords: Major depressive disorder, histone methylation, histone acetylation, histone phosphorylation, histone crotonylation, histone β-hydroxybutyrylation, HDAC inhibitor.

Graphical Abstract

[1]
Disease GBD, Injury I, Prevalence C. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392(10159): 1789-858.
[http://dx.doi.org/10.1016/S0140-6736(18)32279-7] [PMID: 30496104]
[2]
Bekhuis E, Schoevers RA, van Borkulo CD, Rosmalen JG, Boschloo L. The network structure of major depressive disorder, gen-eralized anxiety disorder and somatic symptomatology. Psychol Med 2016; 46(14): 2989-98.
[http://dx.doi.org/10.1017/S0033291716001550] [PMID: 27523095]
[3]
Ready RE, Mather MA, Santorelli GD, Santospago BP. Apathy, alexithymia, and depressive symptoms: Points of convergence and divergence. Psychiatry Res 2016; 244: 306-11.
[http://dx.doi.org/10.1016/j.psychres.2016.07.046] [PMID: 27512920]
[4]
Kupferberg A, Bicks L, Hasler G. Social functioning in major depressive disorder. Neurosci Biobehav Rev 2016; 69: 313-32.
[http://dx.doi.org/10.1016/j.neubiorev.2016.07.002] [PMID: 27395342]
[5]
Harada E, Satoi Y, Kuga A, et al. Associations among depression severity, painful physical symptoms, and social and occupational functioning impairment in patients with major depressive disorder: A 3-month, prospective, observational study. Neuropsychiatr Dis Treat 2017; 13: 2437-45.
[http://dx.doi.org/10.2147/NDT.S134566] [PMID: 29033569]
[6]
Nurmela K, Mattila A, Heikkinen V, Uitti J, Ylinen A, Virtanen P. Identification of major depressive disorder among the long-term unemployed. Soc Psychiatry Psychiatr Epidemiol 2018; 53(1): 45-52.
[http://dx.doi.org/10.1007/s00127-017-1457-y] [PMID: 29124293]
[7]
Lopizzo N, Bocchio Chiavetto L, Cattane N, et al. Gene-environment interaction in major depression: focus on experience-dependent biological systems. Front Psychiatry 2015; 6: 68.
[http://dx.doi.org/10.3389/fpsyt.2015.00068] [PMID: 26005424]
[8]
Gold PW. The organization of the stress system and its dysregulation in depressive illness. Mol Psychiatry 2015; 20(1): 32-47.
[http://dx.doi.org/10.1038/mp.2014.163] [PMID: 25486982]
[9]
Gold PW, Wong ML, Goldstein DS, et al. Cardiac implications of increased arterial entry and reversible 24-h central and peripheral norepinephrine levels in melancholia. Proc Natl Acad Sci USA 2005; 102(23): 8303-8.
[http://dx.doi.org/10.1073/pnas.0503069102] [PMID: 15919819]
[10]
Gold PW, Loriaux DL, Roy A, et al. Re-sponses to corticotropin-releasing hormone in the hypercortisolism of depression and Cushing’s disease. Pathophysiologic and diagnostic implications. N Engl J Med 1986; 314(21): 1329-35.
[http://dx.doi.org/10.1056/NEJM198605223142101] [PMID: 3010108]
[11]
Heinrich PC, Castell JV, Andus T. Interleukin-6 and the acute phase response. Biochem J 1990; 265(3): 621-36.
[http://dx.doi.org/10.1042/bj2650621] [PMID: 1689567]
[12]
Duman RS, Heninger GR, Nestler EJ. A molecular and cellular theory of depression. Arch Gen Psychiatry 1997; 54(7): 597-606.
[http://dx.doi.org/10.1001/archpsyc.1997.01830190015002] [PMID: 9236543]
[13]
Pechtel P, Pizzagalli DA. Effects of early life stress on cognitive and affective function: An integrated review of human literature. Psychopharmacology (Berl) 2011; 214(1): 55-70.
[http://dx.doi.org/10.1007/s00213-010-2009-2] [PMID: 20865251]
[14]
Waddington CH. Canalization of development and genetic assimilation of acquired characters. Nature 1959; 183(4676): 1654-5.
[http://dx.doi.org/10.1038/1831654a0] [PMID: 13666847]
[15]
Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol 2010; 28(10): 1057-68.
[http://dx.doi.org/10.1038/nbt.1685] [PMID: 20944598]
[16]
Urdinguio RG, Sanchez-Mut JV, Esteller M. Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol 2009; 8(11): 1056-72.
[http://dx.doi.org/10.1016/S1474-4422(09)70262-5] [PMID: 19833297]
[17]
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11: 537.
[http://dx.doi.org/10.3389/fphar.2020.00537] [PMID: 32390854]
[18]
Chen BH, Marioni RE, Colicino E, et al. DNA methylation-based measures of biological age: meta-analysis pre-dicting time to death. Aging (Albany NY) 2016; 8(9): 1844-65.
[http://dx.doi.org/10.18632/aging.101020] [PMID: 27690265]
[19]
Jenuwein T, Allis CD. Translating the histone code. Science 2001; 293(5532): 1074-80.
[http://dx.doi.org/10.1126/science.1063127] [PMID: 11498575]
[20]
Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 2003; 33(Suppl.): 245-54.
[http://dx.doi.org/10.1038/ng1089] [PMID: 12610534]
[21]
Esteller M. Non-coding RNAs in human disease. Nat Rev Genet 2011; 12(12): 861-74.
[http://dx.doi.org/10.1038/nrg3074] [PMID: 22094949]
[22]
Coryell W. Drug Treatment of Depression 2020 2020. [Updated 2020-03. Available from: https://www.msdmanuals.com/professional/psychiatric-disorders/mood-disorders/drug-treatment-of-depression?query=depressant
[23]
Wang Q, Dwivedi Y. Advances in novel molecular targets for antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 2021; 104: 110041.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110041] [PMID: 32682872]
[24]
Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM. Neurobiology of depression. Neuron 2002; 34(1): 13-25.
[http://dx.doi.org/10.1016/S0896-6273(02)00653-0] [PMID: 11931738]
[25]
Uchida S, Hara K, Kobayashi A, et al. Epigenetic status of Gdnf in the ventral striatum determines susceptibility and adaptation to daily stressful events. Neuron 2011; 69(2): 359-72.
[http://dx.doi.org/10.1016/j.neuron.2010.12.023] [PMID: 21262472]
[26]
Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolu-tion. Nature 1997; 389(6648): 251-60.
[http://dx.doi.org/10.1038/38444] [PMID: 9305837]
[27]
Daujat S, Zeissler U, Waldmann T, Happel N, Schneider R. HP1 binds specifically to Lys26-methylated histone H1.4, whereas sim-ultaneous Ser27 phosphorylation blocks HP1 binding. J Biol Chem 2005; 280(45): 38090-5.
[http://dx.doi.org/10.1074/jbc.C500229200] [PMID: 16127177]
[28]
Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res 2011; 21(3): 381-95.
[http://dx.doi.org/10.1038/cr.2011.22] [PMID: 21321607]
[29]
Deussing JM, Jakovcevski M. Histone Modifications in Major Depressive Disorder and Related Rodent Models. Adv Exp Med Biol 2017; 978: 169-83.
[http://dx.doi.org/10.1007/978-3-319-53889-1_9] [PMID: 28523546]
[30]
Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4): 693-705.
[http://dx.doi.org/10.1016/j.cell.2007.02.005] [PMID: 17320507]
[31]
Huertas D, Sendra R, Muñoz P. Chromatin dynamics coupled to DNA repair. Epigenetics 2009; 4(1): 31-42.
[http://dx.doi.org/10.4161/epi.4.1.7733] [PMID: 19218832]
[32]
Luco RF, Pan Q, Tominaga K, Blencowe BJ, Pereira-Smith OM, Misteli T. Regulation of alternative splicing by histone modifica-tions. Science 2010; 327(5968): 996-1000.
[http://dx.doi.org/10.1126/science.1184208] [PMID: 20133523]
[33]
Li B, Carey M, Workman JL. The role of chromatin during transcription. Cell 2007; 128(4): 707-19.
[http://dx.doi.org/10.1016/j.cell.2007.01.015] [PMID: 17320508]
[34]
Fraga MF, Ballestar E, Paz MF, et al. Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 2005; 102(30): 10604-9.
[http://dx.doi.org/10.1073/pnas.0500398102] [PMID: 16009939]
[35]
Kendler KS, Prescott CA. A population-based twin study of lifetime major depression in men and women. Arch Gen Psychiatry 1999; 56(1): 39-44.
[http://dx.doi.org/10.1001/archpsyc.56.1.39] [PMID: 9892254]
[36]
Lockwood LE, Su S, Youssef NA. The role of epigenetics in depression and suicide: A platform for gene-environment interactions. Psychiatry Res 2015; 228(3): 235-42.
[http://dx.doi.org/10.1016/j.psychres.2015.05.071] [PMID: 26163724]
[37]
Gong F, Miller KM. Histone methylation and the DNA damage response. Mutat Res 2019; 780: 37-47.
[http://dx.doi.org/10.1016/j.mrrev.2017.09.003] [PMID: 31395347]
[38]
Murray K. The Occurrence of Epsilon-N-Methyl Lysine in Histones. Biochemistry 1964; 3: 10-5.
[http://dx.doi.org/10.1021/bi00889a003] [PMID: 14114491]
[39]
Di Lorenzo A, Bedford MT. Histone arginine methylation. FEBS Lett 2011; 585(13): 2024-31.
[http://dx.doi.org/10.1016/j.febslet.2010.11.010] [PMID: 21074527]
[40]
Greer EL, Shi Y. Histone methylation: A dynamic mark in health, disease and inheritance. Nat Rev Genet 2012; 13(5): 343-57.
[http://dx.doi.org/10.1038/nrg3173] [PMID: 22473383]
[41]
Cruceanu C, Alda M, Nagy C, Freemantle E, Rouleau GA, Turecki G. H3K4 tri-methylation in synapsin genes leads to different expression patterns in bipolar disorder and major depression. Int J Neuropsychopharmacol 2013; 16(2): 289-99.
[http://dx.doi.org/10.1017/S1461145712000363] [PMID: 22571925]
[42]
Robison AJ, Vialou V, Sun HS, et al. Fluoxetine epigenetically alters the CaMKIIα promoter in nucleus accumbens to regulate ΔFosB binding and antidepressant ef-fects. Neuropsychopharmacology 2014; 39(5): 1178-86.
[http://dx.doi.org/10.1038/npp.2013.319] [PMID: 24240473]
[43]
Golden SA, Christoffel DJ, Heshmati M, et al. Epigenetic regulation of RAC1 induces synaptic remodeling in stress disorders and depression. Nat Med 2013; 19(3): 337-44.
[http://dx.doi.org/10.1038/nm.3090] [PMID: 23416703]
[44]
Jiang Y, Jakovcevski M, Bharadwaj R, et al. Setdb1 histone methyltransferase regulates mood-related behaviors and expression of the NMDA receptor subunit NR2B. J Neurosci 2010; 30(21): 7152-67.
[http://dx.doi.org/10.1523/JNEUROSCI.1314-10.2010] [PMID: 20505083]
[45]
Covington HE III, Maze I, Sun H, et al. A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 2011; 71(4): 656-70.
[http://dx.doi.org/10.1016/j.neuron.2011.06.007] [PMID: 21867882]
[46]
Liu H, Jiang J, Zhao L. Protein arginine methyltransferase-1 deficiency restrains depression-like behavior of mice by inhibiting in-flammation and oxidative stress via Nrf-2. Biochem Biophys Res Commun 2019; 518(3): 430-7.
[http://dx.doi.org/10.1016/j.bbrc.2019.08.032] [PMID: 31492498]
[47]
Wang R, Wang W, Xu J, Liu D, Jiang H, Pan F. Dynamic effects of early adolescent stress on depressive-like behaviors and expres-sion of cytokines and JMJD3 in the prefrontal cortex and hippocampus of rats. Front Psychiatry 2018; 9: 471.
[http://dx.doi.org/10.3389/fpsyt.2018.00471] [PMID: 30364220]
[48]
Allfrey VG, Faulkner R, Mirsky AE. Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Syn-thesis. Proc Natl Acad Sci USA 1964; 51: 786-94.
[http://dx.doi.org/10.1073/pnas.51.5.786] [PMID: 14172992]
[49]
Shahbazian MD, Grunstein M. Functions of site-specific histone acetylation and deacetylation. Annu Rev Biochem 2007; 76: 75-100.
[http://dx.doi.org/10.1146/annurev.biochem.76.052705.162114] [PMID: 17362198]
[50]
Kurdistani SK, Tavazoie S, Grunstein M. Mapping global histone acetylation patterns to gene expression. Cell 2004; 117(6): 721-33.
[http://dx.doi.org/10.1016/j.cell.2004.05.023] [PMID: 15186774]
[51]
Tsankova NM, Kumar A, Nestler EJ. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic elec-troconvulsive seizures. J Neurosci 2004; 24(24): 5603-10.
[http://dx.doi.org/10.1523/JNEUROSCI.0589-04.2004] [PMID: 15201333]
[52]
Tsankova NM, Berton O, Renthal W, Kumar A, Neve RL, Nestler EJ. Sustained hippocampal chromatin regulation in a mouse model of depression and antidepressant action. Nat Neurosci 2006; 9(4): 519-25.
[http://dx.doi.org/10.1038/nn1659] [PMID: 16501568]
[53]
Fuchikami M, Morinobu S, Kurata A, Yamamoto S, Yamawaki S. Single immobilization stress differentially alters the expression profile of transcripts of the brain-derived neurotrophic factor (BDNF) gene and histone acetylation at its promoters in the rat hippocam-pus. Int J Neuropsychopharmacol 2009; 12(1): 73-82.
[http://dx.doi.org/10.1017/S1461145708008997] [PMID: 18544182]
[54]
Kenworthy CA, Sengupta A, Luz SM, et al. Social defeat induces changes in histone acetylation and expression of histone modifying enzymes in the ventral hippocampus, prefrontal cortex, and dorsal raphe nucleus. Neuroscience 2014; 264: 88-98.
[http://dx.doi.org/10.1016/j.neuroscience.2013.01.024] [PMID: 23370319]
[55]
Montagud-Romero S, Montesinos J, Pascual M, et al. Up-regulation of histone acetylation induced by social defeat mediates the conditioned rewarding effects of cocaine. Prog Neuropsychopharmacol Biol Psychiatry 2016; 70: 39-48.
[http://dx.doi.org/10.1016/j.pnpbp.2016.04.016] [PMID: 27180319]
[56]
Covington HE III, Maze I, LaPlant QC, et al. Antidepressant actions of histone deacetylase inhibitors. J Neurosci 2009; 29(37): 11451-60.
[http://dx.doi.org/10.1523/JNEUROSCI.1758-09.2009] [PMID: 19759294]
[57]
Yang XJ, Seto E. HATs and HDACs: from structure, function and regulation to novel strategies for therapy and prevention. Oncogene 2007; 26(37): 5310-8.
[http://dx.doi.org/10.1038/sj.onc.1210599] [PMID: 17694074]
[58]
Carey N, La Thangue NB. Histone deacetylase inhibitors: gathering pace. Curr Opin Pharmacol 2006; 6(4): 369-75.
[http://dx.doi.org/10.1016/j.coph.2006.03.010] [PMID: 16781195]
[59]
Krishnan V, Han MH, Graham DL, et al. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward re-gions. Cell 2007; 131(2): 391-404.
[http://dx.doi.org/10.1016/j.cell.2007.09.018] [PMID: 17956738]
[60]
Renthal W, Maze I, Krishnan V, et al. Histone deacetylase 5 epigenetically controls behavioral adaptations to chronic emotional stimuli. Neuron 2007; 56(3): 517-29.
[http://dx.doi.org/10.1016/j.neuron.2007.09.032] [PMID: 17988634]
[61]
Dunaway LS, Pollock JS. HDAC1: An environmental sensor regulating endothelial function. Cardiovasc Res 2021; cvab198.
[http://dx.doi.org/10.1093/cvr/cvab198] [PMID: 34264338]
[62]
Calabrese V, Mancuso C, Calvani M, Rizzarelli E, Butterfield DA, Stella AM. Nitric oxide in the central nervous system: neuro-protection versus neurotoxicity. Nat Rev Neurosci 2007; 8(10): 766-75.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[63]
Yao W, Lin S, Su J, et al. Activation of BDNF by transcription factor Nrf2 contributes to antidepressant-like actions in rodents. Transl Psychiatry 2021; 11(1): 140.
[http://dx.doi.org/10.1038/s41398-021-01261-6] [PMID: 33627628]
[64]
Calabrese V, Copani A, Testa D, et al. Nitric oxide synthase in-duction in astroglial cell cultures: effect on heat shock protein 70 synthesis and oxidant/antioxidant balance. J Neurosci Res 2000; 60(5): 613-22.
[http://dx.doi.org/10.1002/(SICI)1097-4547(20000601)60:5<613:AID-JNR6>3.0.CO;2-8] [PMID: 10820432]
[65]
Dattilo S, Mancuso C, Koverech G, et al. Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases. Immun Ageing 2015; 12: 20.
[http://dx.doi.org/10.1186/s12979-015-0046-8] [PMID: 26543490]
[66]
Hobara T, Uchida S, Otsuki K, et al. Altered gene expression of histone deacetylases in mood disorder patients. J Psychiatr Res 2010; 44(5): 263-70.
[http://dx.doi.org/10.1016/j.jpsychires.2009.08.015] [PMID: 19767015]
[67]
Iga J, Ueno S, Yamauchi K, et al. Altered HDAC5 and CREB mRNA expressions in the peripheral leukocytes of major depression. Prog Neuropsychopharmacol Biol Psychiatry 2007; 31(3): 628-32.
[http://dx.doi.org/10.1016/j.pnpbp.2006.12.014] [PMID: 17258370]
[68]
Zhang Y, Anoopkumar-Dukie S, Davey AK. SIRT1 and SIRT2 modulators: Potential anti-inflammatory treatment for depression? Biomolecules 2021; 11(3): 353.
[http://dx.doi.org/10.3390/biom11030353] [PMID: 33669121]
[69]
Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal 2010; 13(11): 1763-811.
[http://dx.doi.org/10.1089/ars.2009.3074] [PMID: 20446769]
[70]
CONVERGE consortium Sparse whole-genome sequencing identifies two loci for major depressive disorder. Nature 2015; 523(7562): 588-91.
[http://dx.doi.org/10.1038/nature14659] [PMID: 26176920]
[71]
Liu W, Yan H, Zhou D, et al. The depression GWAS risk allele predicts smaller cerebellar gray matter volume and reduced SIRT1 mRNA expression in Chinese population. Transl Psychiatry 2019; 9(1): 333.
[http://dx.doi.org/10.1038/s41398-019-0675-3] [PMID: 31819045]
[72]
Hirata T, Otsuka I, Okazaki S, et al. Major depressive disorder-associated SIRT1 locus affects the risk for suicide in women after middle age. Psychiatry Res 2019; 278: 141-5.
[http://dx.doi.org/10.1016/j.psychres.2019.06.002] [PMID: 31176830]
[73]
Kishi T, Yoshimura R, Kitajima T, et al. SIRT1 gene is associated with major depressive disorder in the Japanese population. J Affect Disord 2010; 126(1-2): 167-73.
[http://dx.doi.org/10.1016/j.jad.2010.04.003] [PMID: 20451257]
[74]
Luo SC, Duan KM, Fang C, et al. Correlations between SIRT genetic polymorphisms and postpartum depressive symptoms in Chinese parturients who had undergone cesarean section. Neuropsychiatr Dis Treat 2020; 16: 3225-38.
[http://dx.doi.org/10.2147/NDT.S278248] [PMID: 33380799]
[75]
Shahgaldi S, Kahmini FR. A comprehensive review of Sirtuins: With a major focus on redox homeostasis and metabolism. Life Sci 2021; 282: 119803.
[http://dx.doi.org/10.1016/j.lfs.2021.119803] [PMID: 34237310]
[76]
Liu L, Zhang Q, Cai Y, et al. Resveratrol counteracts lipopol-ysaccharide-induced depressive-like behaviors via enhanced hippocampal neurogenesis. Oncotarget 2016; 7(35): 56045-59.
[http://dx.doi.org/10.18632/oncotarget.11178] [PMID: 27517628]
[77]
Duan CM, Zhang JR, Wan TF, Wang Y, Chen HS, Liu L. SRT2104 attenuates chronic unpredictable mild stress-induced depres-sive-like behaviors and imbalance between microglial M1 and M2 phenotypes in the mice. Behav Brain Res 2020; 378: 112296.
[http://dx.doi.org/10.1016/j.bbr.2019.112296] [PMID: 31618623]
[78]
Erburu M, Muñoz-Cobo I, Diaz-Perdigon T, et al. SIRT2 inhibition modulate glutamate and serotonin systems in the prefrontal cortex and induces antidepressant-like action. Neuropharmacology 2017; 117: 195-208.
[http://dx.doi.org/10.1016/j.neuropharm.2017.01.033] [PMID: 28185898]
[79]
Brehove M, Wang T, North J, et al. Histone core phosphorylation regulates DNA accessibility. J Biol Chem 2015; 290(37): 22612-21.
[http://dx.doi.org/10.1074/jbc.M115.661363] [PMID: 26175159]
[80]
Oki M, Aihara H, Ito T. Role of histone phosphorylation in chromatin dynamics and its implications in diseases. Subcell Biochem 2007; 41: 319-36.
[http://dx.doi.org/10.1007/1-4020-5466-1_14] [PMID: 17484134]
[81]
Day JJ, Sweatt JD. Epigenetic mechanisms in cognition. Neuron 2011; 70(5): 813-29.
[http://dx.doi.org/10.1016/j.neuron.2011.05.019] [PMID: 21658577]
[82]
Lo WS, Trievel RC, Rojas JR, et al. Phosphorylation of serine 10 in his-tone H3 is functionally linked in vitro and in vivo to Gcn5-mediated acetylation at lysine 14. Mol Cell 2000; 5(6): 917-26.
[http://dx.doi.org/10.1016/S1097-2765(00)80257-9] [PMID: 10911986]
[83]
Edmondson DG, Davie JK, Zhou J, Mirnikjoo B, Tatchell K, Dent SY. Site-specific loss of acetylation upon phosphorylation of histone H3. J Biol Chem 2002; 277(33): 29496-502.
[http://dx.doi.org/10.1074/jbc.M200651200] [PMID: 12039950]
[84]
Lee DY, Northrop JP, Kuo MH, Stallcup MR. Histone H3 lysine 9 methyltransferase G9a is a transcriptional coactivator for nuclear receptors. J Biol Chem 2006; 281(13): 8476-85.
[http://dx.doi.org/10.1074/jbc.M511093200] [PMID: 16461774]
[85]
Fischle W, Tseng BS, Dormann HL, et al. Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005; 438(7071): 1116-22.
[http://dx.doi.org/10.1038/nature04219] [PMID: 16222246]
[86]
Lau PN, Cheung P. Histone code pathway involving H3 S28 phosphorylation and K27 acetylation activates transcription and antagoniz-es polycomb silencing. Proc Natl Acad Sci USA 2011; 108(7): 2801-6.
[http://dx.doi.org/10.1073/pnas.1012798108] [PMID: 21282660]
[87]
Crosio C, Heitz E, Allis CD, Borrelli E, Sassone-Corsi P. Chromatin remodeling and neuronal response: multiple signaling pathways induce specific histone H3 modifications and early gene expression in hippocampal neurons. J Cell Sci 2003; 116(Pt 24): 4905-14.
[http://dx.doi.org/10.1242/jcs.00804] [PMID: 14625384]
[88]
Chwang WB, O’Riordan KJ, Levenson JM, Sweatt JD. ERK/MAPK regulates hippocampal histone phosphorylation following con-textual fear conditioning. Learn Mem 2006; 13(3): 322-8.
[http://dx.doi.org/10.1101/lm.152906] [PMID: 16741283]
[89]
Brami-Cherrier K, Valjent E, Hervé D, et al. Parsing molecular and behavioral effects of cocaine in mitogen- and stress-activated protein kinase-1-deficient mice. J Neurosci 2005; 25(49): 11444-54.
[http://dx.doi.org/10.1523/JNEUROSCI.1711-05.2005] [PMID: 16339038]
[90]
Chandramohan Y, Droste SK, Reul JM. Novelty stress induces phospho-acetylation of histone H3 in rat dentate gyrus granule neu-rons through coincident signalling via the N-methyl-D-aspartate receptor and the glucocorticoid receptor: relevance for c-fos induction. J Neurochem 2007; 101(3): 815-28.
[http://dx.doi.org/10.1111/j.1471-4159.2006.04396.x] [PMID: 17250652]
[91]
Morello N, Plicato O, Piludu MA, et al. Effects of forced swimming stress on ERK and Histone H3 phosphorylation in limbic areas of roman high- and low-avoidance rats. PLoS One 2017; 12(1): e0170093.
[http://dx.doi.org/10.1371/journal.pone.0170093] [PMID: 28107383]
[92]
Chen Y, Chen W, Cobb MH, Zhao Y. PTMap--a sequence alignment software for unrestricted, accurate, and full-spectrum identifica-tion of post-translational modification sites. Proc Natl Acad Sci USA 2009; 106(3): 761-6.
[http://dx.doi.org/10.1073/pnas.0811739106] [PMID: 19136633]
[93]
Tan M, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011; 146(6): 1016-28.
[http://dx.doi.org/10.1016/j.cell.2011.08.008] [PMID: 21925322]
[94]
Liu K, Yuan C, Li H, et al. A qualitative proteome-wide lysine crotonylation profiling of papaya (Carica papaya L.). Sci Rep 2018; 8(1): 8230.
[http://dx.doi.org/10.1038/s41598-018-26676-y] [PMID: 29844531]
[95]
Xu W, Wan J, Zhan J, et al. Global profiling of crotonylation on non-histone proteins. Cell Res 2017; 27(7): 946-9.
[http://dx.doi.org/10.1038/cr.2017.60] [PMID: 28429772]
[96]
Madsen AS, Olsen CA. Profiling of substrates for zinc-dependent lysine deacylase enzymes: HDAC3 exhibits decrotonylase activity in vitro. Angew Chem Int Ed Engl 2012; 51(36): 9083-7.
[http://dx.doi.org/10.1002/anie.201203754] [PMID: 22890609]
[97]
Wei W, Liu X, Chen J, et al. Class I histone deacety-lases are major histone decrotonylases: evidence for critical and broad function of histone crotonylation in transcription. Cell Res 2017; 27(7): 898-915.
[http://dx.doi.org/10.1038/cr.2017.68] [PMID: 28497810]
[98]
Kelly RDW, Chandru A, Watson PJ, et al. Histone deacetylase (HDAC) 1 and 2 complexes regulate both histone acetylation and crotonylation in vivo. Sci Rep 2018; 8(1): 14690.
[http://dx.doi.org/10.1038/s41598-018-32927-9] [PMID: 30279482]
[99]
Sabari BR, Tang Z, Huang H, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 2018; 69(3): 533.
[http://dx.doi.org/10.1016/j.molcel.2018.01.013] [PMID: 29395068]
[100]
Liu X, Wei W, Liu Y, et al. MOF as an evolutionarily conserved histone crotonyltransferase and transcriptional activation by histone acetyltransferase-deficient and crotonyl-transferase-competent CBP/p300. Cell Discov 2017; 3: 17016.
[http://dx.doi.org/10.1038/celldisc.2017.16] [PMID: 28580166]
[101]
Wan J, Liu H, Chu J, Zhang H. Functions and mechanisms of lysine crotonylation. J Cell Mol Med 2019; 23(11): 7163-9.
[http://dx.doi.org/10.1111/jcmm.14650] [PMID: 31475443]
[102]
Ruiz-Andres O, Sanchez-Niño MD, Cannata-Ortiz P, et al. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech 2016; 9(6): 633-45.
[http://dx.doi.org/10.1242/dmm.024455] [PMID: 27125278]
[103]
Liu S, Yu H, Liu Y, et al. Chromodomain protein CDYL acts as a crotonyl-CoA hydratase to regulate histone cro-tonylation and spermatogenesis. Mol Cell 2017; 67(5): 853-866.e5.
[http://dx.doi.org/10.1016/j.molcel.2017.07.011] [PMID: 28803779]
[104]
Fu H, Tian CL, Ye X, et al. Dynamics of Telomere Rejuvenation during Chemical Induction to Plu-ripotent Stem Cells. Stem Cell Reports 2018; 11(1): 70-87.
[http://dx.doi.org/10.1016/j.stemcr.2018.05.003] [PMID: 29861168]
[105]
Jiang G, Nguyen D, Archin NM, et al. HIV latency is reversed by ACSS2-driven histone crotonylation. J Clin Invest 2018; 128(3): 1190-8.
[http://dx.doi.org/10.1172/JCI98071] [PMID: 29457784]
[106]
Wan J, Liu H, Feng Q, Liu J, Ming L. HOXB9 promotes endometrial cancer progression by targeting E2F3. Cell Death Dis 2018; 9(5): 509.
[http://dx.doi.org/10.1038/s41419-018-0556-3] [PMID: 29724991]
[107]
Liu Y, Li M, Fan M, et al. Chromodomain Y-like protein-mediated histone crotonylation regulates stress-induced depressive behaviors. Biol Psychiatry 2019; 85(8): 635-49.
[http://dx.doi.org/10.1016/j.biopsych.2018.11.025] [PMID: 30665597]
[108]
Xie Z, Zhang D, Chung D, et al. Metabolic regulation of gene expression by histone Lysine β-hydroxybutyrylation. Mol Cell 2016; 62(2): 194-206.
[http://dx.doi.org/10.1016/j.molcel.2016.03.036] [PMID: 27105115]
[109]
Marosi K, Kim SW, Moehl K, et al. 3-Hydroxybutyrate regu-lates energy metabolism and induces BDNF expression in cerebral cortical neurons. J Neurochem 2016; 139(5): 769-81.
[http://dx.doi.org/10.1111/jnc.13868] [PMID: 27739595]
[110]
Kashiwaya Y, Takeshima T, Mori N, Nakashima K, Clarke K, Veech RL. D-beta-hydroxybutyrate protects neurons in models of Alzheimer’s and Parkinson’s disease. Proc Natl Acad Sci USA 2000; 97(10): 5440-4.
[http://dx.doi.org/10.1073/pnas.97.10.5440] [PMID: 10805800]
[111]
Tieu K, Perier C, Caspersen C, et al. D-beta-hydroxybutyrate rescues mitochondrial respiration and mitigates features of Parkinson disease. J Clin Invest 2003; 112(6): 892-901.
[http://dx.doi.org/10.1172/JCI200318797] [PMID: 12975474]
[112]
Yamanashi T, Iwata M, Kamiya N, et al. Beta-hydroxybutyrate, an endogenic NLRP3 inflammasome inhibitor, attenuates stress-induced behavioral and inflammatory responses. Sci Rep 2017; 7(1): 7677.
[http://dx.doi.org/10.1038/s41598-017-08055-1] [PMID: 28794421]
[113]
Kajitani N, Iwata M, Miura A, et al. Prefrontal cortex infusion of beta-hydroxybutyrate, an endogenous NLRP3 inflammasome inhibitor, produces antidepressant-like effects in a rodent model of depression. Neuropsychopharmacol Rep 2020; 40(2): 157-65.
[http://dx.doi.org/10.1002/npr2.12099] [PMID: 32125791]
[114]
Pan S, Hu P, You Q, et al. Evaluation of the anti-depressive property of β-hydroxybutyrate in mice. Behav Pharmacol 2020; 31(4): 322-32.
[http://dx.doi.org/10.1097/FBP.0000000000000535] [PMID: 31895061]
[115]
Chen L. Miao, Z.; Xu, X. β-hydroxybutyrate alleviates depressive behaviors in mice possibly by increasing the histone3-lysine9-β-hydroxybutyrylation. Biochem Biophys Res Commun 2017; 490(2): 117-22.
[http://dx.doi.org/10.1016/j.bbrc.2017.05.184] [PMID: 28583851]
[116]
Dokmanovic M, Marks PA. Prospects: histone deacetylase inhibitors. J Cell Biochem 2005; 96(2): 293-304.
[http://dx.doi.org/10.1002/jcb.20532] [PMID: 16088937]
[117]
Dokmanovic M, Clarke C, Marks PA. Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res 2007; 5(10): 981-9.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0324] [PMID: 17951399]
[118]
Weaver IC, Meaney MJ, Szyf M. Maternal care effects on the hippocampal transcriptome and anxiety-mediated behaviors in the off-spring that are reversible in adulthood. Proc Natl Acad Sci USA 2006; 103(9): 3480-5.
[http://dx.doi.org/10.1073/pnas.0507526103] [PMID: 16484373]
[119]
Kv A, Madhana RM, Js IC, Lahkar M, Sinha S, Naidu VGM. Antidepressant activity of vorinostat is associated with amelioration of oxidative stress and inflammation in a corticosterone-induced chronic stress model in mice. Behav Brain Res 2018; 344: 73-84.
[http://dx.doi.org/10.1016/j.bbr.2018.02.009] [PMID: 29452193]
[120]
Meylan EM, Halfon O, Magistretti PJ, Cardinaux JR. The HDAC inhibitor SAHA improves depressive-like behavior of CRTC1-deficient mice: Possible relevance for treatment-resistant depression. Neuropharmacology 2016; 107: 111-21.
[http://dx.doi.org/10.1016/j.neuropharm.2016.03.012] [PMID: 26970016]
[121]
Calabrese F, Luoni A, Guidotti G, Racagni G, Fumagalli F, Riva MA. Modulation of neuronal plasticity following chronic concomi-tant administration of the novel antipsychotic lurasidone with the mood stabilizer valproic acid. Psychopharmacology (Berl) 2013; 226(1): 101-12.
[http://dx.doi.org/10.1007/s00213-012-2900-0] [PMID: 23093383]
[122]
Wu HF, Chen PS, Chen YJ, Lee CW, Chen IT, Lin HC. Alleviation of N-Methyl-D-aspartate receptor-dependent long-term de-pression via regulation of the glycogen synthase kinase-3β pathway in the amygdala of a valproic acid-induced animal model of autism. Mol Neurobiol 2017; 54(7): 5264-76.
[http://dx.doi.org/10.1007/s12035-016-0074-1] [PMID: 27578017]
[123]
Goudarzi M, Nahavandi A, Mehrabi S, Eslami M, Shahbazi A, Barati M. Valproic acid administration exerts protective effects against stress-related anhedonia in rats. J Chem Neuroanat 2020; 105: 101768.
[http://dx.doi.org/10.1016/j.jchemneu.2020.101768] [PMID: 32061998]
[124]
Lin H, Geng X, Dang W, et al. Molecular mechanisms associated with the antidepressant effects of the class I histone deacetylase inhibitor MS-275 in the rat ventrolateral orbital cortex. Brain Res 2012; 1447: 119-25.
[http://dx.doi.org/10.1016/j.brainres.2012.01.053] [PMID: 22341874]
[125]
Schroeder FA, Lin CL, Crusio WE, Akbarian S. Antidepressant-like effects of the histone deacetylase inhibitor, sodium butyrate, in the mouse. Biol Psychiatry 2007; 62(1): 55-64.
[http://dx.doi.org/10.1016/j.biopsych.2006.06.036] [PMID: 16945350]
[126]
Han A, Sung YB, Chung SY, Kwon MS. Possible additional antidepressant-like mechanism of sodium butyrate: targeting the hippo-campus. Neuropharmacology 2014; 81: 292-302.
[http://dx.doi.org/10.1016/j.neuropharm.2014.02.017] [PMID: 24607816]
[127]
Yamawaki Y, Fuchikami M, Morinobu S, Segawa M, Matsumoto T, Yamawaki S. Antidepressant-like effect of sodium butyrate (HDAC inhibitor) and its molecular mechanism of action in the rat hippocampus. World J Biol Psychiatry 2012; 13(6): 458-67.
[http://dx.doi.org/10.3109/15622975.2011.585663] [PMID: 21812623]
[128]
Schmauss C. An HDAC-dependent epigenetic mechanism that enhances the efficacy of the antidepressant drug fluoxetine. Sci Rep 2015; 5: 8171.
[http://dx.doi.org/10.1038/srep08171] [PMID: 25639887]
[129]
Hubbert C, Guardiola A, Shao R, et al. HDAC6 is a microtubule-associated deacetylase. Nature 2002; 417(6887): 455-8.
[http://dx.doi.org/10.1038/417455a] [PMID: 12024216]
[130]
Jeong JW, Bae MK, Ahn MY, et al. Regulation and destabi-lization of HIF-1alpha by ARD1-mediated acetylation. Cell 2002; 111(5): 709-20.
[http://dx.doi.org/10.1016/S0092-8674(02)01085-1] [PMID: 12464182]
[131]
Yuan ZL, Guan YJ, Chatterjee D, Chin YE. Stat3 dimerization regulated by reversible acetylation of a single lysine residue. Science 2005; 307(5707): 269-73.
[http://dx.doi.org/10.1126/science.1105166] [PMID: 15653507]
[132]
Wolf D, Rodova M, Miska EA, Calvet JP, Kouzarides T. Acetylation of beta-catenin by CREB-binding protein (CBP). J Biol Chem 2002; 277(28): 25562-7.
[http://dx.doi.org/10.1074/jbc.M201196200] [PMID: 11973335]
[133]
Secura Bio I. Farydak 2019 [updated 2019-09-01. Available from: https://www.drugs.com/pro/farydak.html.
[134]
Machado-Vieira R, Ibrahim L, Zarate CA Jr. Histone deacetylases and mood disorders: epigenetic programming in gene-environment interactions. CNS Neurosci Ther 2011; 17(6): 699-704.
[http://dx.doi.org/10.1111/j.1755-5949.2010.00203.x] [PMID: 20961400]
[135]
Hiranaka S, Tega Y, Higuchi K, et al. Design, Syn-thesis, and Blood-Brain Barrier Transport Study of Pyrilamine Derivatives as Histone Deacetylase Inhibitors. ACS Med Chem Lett 2018; 9(9): 884-8.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00099] [PMID: 30258535]
[136]
Li W, Qiu J, Li XL, et al. BBB pathophysiology-independent delivery of siRNA in traumatic brain injury. Sci Adv 2021; 7(1): eabd6889.
[http://dx.doi.org/10.1126/sciadv.abd6889] [PMID: 33523853]
[137]
Ookubo M, Kanai H, Aoki H, Yamada N. Antidepressants and mood stabilizers effects on histone deacetylase expression in C57BL/6 mice: Brain region specific changes. J Psychiatr Res 2013; 47(9): 1204-14.
[http://dx.doi.org/10.1016/j.jpsychires.2013.05.028] [PMID: 23777937]
[138]
Chen X, Liu H, Gan J, et al. Quetiapine modulates histone methylation status in oli-godendroglia and rescues adolescent behavioral alterations of socially isolated mice. Front Psychiatry 2020; 10: 984.
[http://dx.doi.org/10.3389/fpsyt.2019.00984] [PMID: 32082195]
[139]
Wu S, Zheng SD, Huang HL, et al. Lithium down-regulates his-tone deacetylase 1 (HDAC1) and induces degradation of mutant huntingtin. J Biol Chem 2013; 288(49): 35500-10.
[http://dx.doi.org/10.1074/jbc.M113.479865] [PMID: 24165128]
[140]
Seo MK, Kim YH, McIntyre RS, et al. Effects of anti-psychotic drugs on the epigenetic modification of brain-derived neurotrophic factor gene expression in the hippocampi of chronic restraint stress rats. Neural Plast 2018; 2018: 2682037.
[http://dx.doi.org/10.1155/2018/2682037] [PMID: 29991943]
[141]
Barbiero VS, Giambelli R, Musazzi L, et al. Chronic antidepressants induce redistribution and differential activation of alphaCaM kinase II between presynaptic compartments. Neuropsychopharmacology 2007; 32(12): 2511-9.
[http://dx.doi.org/10.1038/sj.npp.1301378] [PMID: 17356571]
[142]
Sarkar A, Chachra P, Kennedy P, et al. Hippocampal HDAC4 contributes to postnatal fluoxetine-evoked depression-like behavior. Neuropsychopharmacology 2014; 39(9): 2221-32.
[http://dx.doi.org/10.1038/npp.2014.73] [PMID: 24663010]
[143]
Zammataro M, Merlo S, Barresi M, et al. Chronic treatment with fluoxetine induces sex-dependent analgesic effects and modulates HDAC2 and mGlu2 expression in female mice. Front Pharmacol 2017; 8: 743.
[http://dx.doi.org/10.3389/fphar.2017.00743] [PMID: 29104538]
[144]
Qiao M, Jiang QS, Liu YJ, et al. Antidepressant mechanisms of venlafaxine involving in-creasing histone acetylation and modulating tyrosine hydroxylase and tryptophan hydroxylase expression in hippocampus of depressive rats. Neuroreport 2019; 30(4): 255-61.
[http://dx.doi.org/10.1097/WNR.0000000000001191] [PMID: 30640193]
[145]
Tran NQV, Nguyen AN, Takabe K, Yamagata Z, Miyake K. Pre-treatment with amitriptyline causes epigenetic up-regulation of neuroprotection-associated genes and has anti-apoptotic effects in mouse neuronal cells. Neurotoxicol Teratol 2017; 62: 1-12.
[http://dx.doi.org/10.1016/j.ntt.2017.05.002] [PMID: 28511916]
[146]
Réus GZ, Abelaira HM, dos Santos MA, et al. Ketamine and imipramine in the nucleus accumbens regulate histone deacetylation induced by maternal deprivation and are critical for associated behaviors. Behav Brain Res 2013; 256: 451-6.
[http://dx.doi.org/10.1016/j.bbr.2013.08.041] [PMID: 24004850]
[147]
Yasuda S, Liang MH, Marinova Z, Yahyavi A, Chuang DM. The mood stabilizers lithium and valproate selectively activate the promoter IV of brain-derived neurotrophic factor in neurons. Mol Psychiatry 2009; 14(1): 51-9.
[http://dx.doi.org/10.1038/sj.mp.4002099] [PMID: 17925795]
[148]
Leu SJ, Yang YY, Liu HC, et al. Valproic Acid and Lithium Meditate Anti-Inflammatory Effects by Differentially Modulating Dendritic Cell Differentiation and Function. J Cell Physiol 2017; 232(5): 1176-86.
[http://dx.doi.org/10.1002/jcp.25604] [PMID: 27639185]
[149]
Subramani R, Lakshmanaswamy R. Complementary and Alternative Medicine and Breast Cancer. Prog Mol Biol Transl Sci 2017; 151: 231-74.
[http://dx.doi.org/10.1016/bs.pmbts.2017.07.008] [PMID: 29096896]
[150]
Feng Guangming. T.J.; Wu, Y.; Zhao, S.; Zhang, L.; Qin, X. Clinical research of Xiaoyaosan in the treatment of depression. Liaoning J Trad Chin Med 2014; 41(3): 512-6.
[151]
Feng DD, Tang T, Lin XP, et al. Nine traditional Chinese herbal formulas for the treatment of depression: An ethnopharmacology, phytochemistry, and pharmacology review. Neuropsychiatr Dis Treat 2016; 12: 2387-402.
[http://dx.doi.org/10.2147/NDT.S114560] [PMID: 27703356]
[152]
Liu Y, Ding XF, Wang XX, et al. Xiaoyaosan exerts antidepressant-like effects by regulating the functions of astrocytes and EAATs in the prefrontal cortex of mice. BMC Complement Altern Med 2019; 19(1): 215.
[http://dx.doi.org/10.1186/s12906-019-2613-6] [PMID: 31412844]
[153]
Ma Q, Li X, Yan Z, et al. Xiaoyaosan ameliorates chronic immobilization stress-induced depression-like behaviors and anorexia in rats: the role of the nesfatin-1-oxytocin-proopiomelanocortin neural pathway in the hypothalamus. Front Psychiatry 2019; 10: 910.
[http://dx.doi.org/10.3389/fpsyt.2019.00910] [PMID: 31920757]
[154]
Wang M, Bi Y, Zeng S, et al. Modified Xiaoyao San amelio-rates depressive-like behaviors by triggering autophagosome formation to alleviate neuronal apoptosis. Biomed Pharmacother 2019; 111: 1057-65.
[http://dx.doi.org/10.1016/j.biopha.2018.12.141] [PMID: 30841419]
[155]
Lee G, Joo JC, Choi BY, Lindroth AM, Park SJ, Park YJ. Neuroprotective effects of Paeonia Lactiflora extract against cell death of dopaminergic SH-SY5Y cells is mediated by epigenetic modulation. BMC Complement Altern Med 2016; 16: 208.
[http://dx.doi.org/10.1186/s12906-016-1205-y] [PMID: 27405852]
[156]
Yuan N, Gong L, Tang K, et al. An Integrated Pharmacology-Based Analysis for Antidepressant Mechanism of Chinese Herbal Formula Xiao-Yao-San. Front Pharmacol 2020; 11: 284.
[http://dx.doi.org/10.3389/fphar.2020.00284] [PMID: 32256358]
[157]
Ding XF, Li YH, Chen JX, et al. Involvement of the glutamate/glutamine cycle and glutamate transporter GLT-1 in antidepressant-like effects of Xiao Yao san on chronically stressed mice. BMC Complement Altern Med 2017; 17(1): 326.
[http://dx.doi.org/10.1186/s12906-017-1830-0] [PMID: 28629384]
[158]
Li N, Liu Q, Li XJ, et al. TCM Formula Xiaoyaosan Decoction Improves Depressive-Like Behaviors in Rats with Type 2 Diabetes. Evid Based Complement Alternat Med 2015; 2015: 415243.
[http://dx.doi.org/10.1155/2015/415243] [PMID: 26508978]
[159]
Li W, Liu X, Qiao H. Downregulation of hippocampal SIRT6 activates AKT/CRMP2 signaling and ameliorates chronic stress-induced depression-like behavior in mice. Acta Pharmacol Sin 2020; 41(12): 1557-67.
[http://dx.doi.org/10.1038/s41401-020-0387-5] [PMID: 32265492]
[160]
Li ZY, Jiang YM, Liu YM, et al. Saikosaponin D acts against corticosterone-induced apoptosis via regulation of mitochondrial GR translocation and a GR-dependent pathway. Prog Neuropsychopharmacol Biol Psychiatry 2014; 53: 80-9.
[http://dx.doi.org/10.1016/j.pnpbp.2014.02.010] [PMID: 24636912]
[161]
Kovacs JJ, Cohen TJ, Yao TP. Chaperoning steroid hormone signaling via reversible acetylation. Nucl Recept Signal 2005; 3: e004.
[http://dx.doi.org/10.1621/nrs.03004] [PMID: 16604172]
[162]
Aanchal Aggarwal NS, Khera A, Sandhir R, Rishi V. Quercetin alleviate cognitive decline in ovariectomised mice by potentially mod-ulating histone acetylation homeostasis. J Nutr Biochem 2020; 108439.
[http://dx.doi.org/10.1016/j.jnutbio.2020.108439] [PMID: 32622308]
[163]
Kim E, Yoon KD, Lee WS, et al. Syk/Src-targeted anti-inflammatory activity of Codariocalyx motorius ethanolic extract. J Ethnopharmacol 2014; 155(1): 185-93.
[http://dx.doi.org/10.1016/j.jep.2014.05.013] [PMID: 24866386]
[164]
Kim HJ, Lee W, Yun JM. Luteolin inhibits hyperglycemia-induced proinflammatory cytokine production and its epigenetic mecha-nism in human monocytes. Phytother Res 2014; 28(9): 1383-91.
[http://dx.doi.org/10.1002/ptr.5141] [PMID: 24623679]
[165]
Meja KK, Rajendrasozhan S, Adenuga D, et al. Curcumin restores corticosteroid function in monocytes exposed to oxidants by main-taining HDAC2. Am J Respir Cell Mol Biol 2008; 39(3): 312-23.
[http://dx.doi.org/10.1165/rcmb.2008-0012OC] [PMID: 18421014]
[166]
Morimoto T, Sunagawa Y, Kawamura T, et al. The dietary compound curcumin inhibits p300 histone acetyltransferase activity and prevents heart failure in rats. J Clin Invest 2008; 118(3): 868-78.
[http://dx.doi.org/10.1172/JCI33160] [PMID: 18292809]
[167]
Tikoo K, Meena RL, Kabra DG, Gaikwad AB. Change in post-translational modifications of histone H3, heat-shock protein-27 and MAP kinase p38 expression by curcumin in streptozotocin-induced type I diabetic nephropathy. Br J Pharmacol 2008; 153(6): 1225-31.
[http://dx.doi.org/10.1038/sj.bjp.0707666] [PMID: 18204486]
[168]
Chen PS, Peng GS, Li G, et al. Valproate pro-tects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes. Mol Psychiatry 2006; 11(12): 1116-25.
[http://dx.doi.org/10.1038/sj.mp.4001893] [PMID: 16969367]
[169]
Wu X, Chen PS, Dallas S, et al. Histone deacetylase inhibitors up-regulate astrocyte GDNF and BDNF gene transcription and protect dopaminergic neurons. Int J Neuropsychopharmacol 2008; 11(8): 1123-34.
[http://dx.doi.org/10.1017/S1461145708009024] [PMID: 18611290]
[170]
Sharma S, Taliyan R, Singh S. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav Brain Res 2015; 291: 306-14.
[http://dx.doi.org/10.1016/j.bbr.2015.05.052] [PMID: 26048426]
[171]
Chen SH, Wu HM, Ossola B, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, protects dopaminergic neurons from neurotoxin-induced damage. Br J Pharmacol 2012; 165(2): 494-505.
[http://dx.doi.org/10.1111/j.1476-5381.2011.01575.x] [PMID: 21726209]
[172]
Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet 2006; 15(20): 3012-23.
[http://dx.doi.org/10.1093/hmg/ddl243] [PMID: 16959795]
[173]
Nicholas AP, Lubin FD, Hallett PJ, et al. Striatal histone modifications in models of levodopa-induced dyskinesia. J Neurochem 2008; 106(1): 486-94.
[http://dx.doi.org/10.1111/j.1471-4159.2008.05417.x] [PMID: 18410512]
[174]
Su Y, Ryder J, Li B, et al. Lithium, a common drug for bipolar disorder treatment, regulates amyloid-beta precursor protein processing. Biochemistry 2004; 43(22): 6899-908.
[http://dx.doi.org/10.1021/bi035627j] [PMID: 15170327]
[175]
Qing H, He G, Ly PT, et al. Valproic acid inhibits Abeta production, neuritic plaque formation, and behavioral deficits in Alzheimer’s disease mouse models. J Exp Med 2008; 205(12): 2781-9.
[http://dx.doi.org/10.1084/jem.20081588] [PMID: 18955571]
[176]
Zhang L, Liu C, Wu J, et al. Tubastatin A/ACY-1215 im-proves cognition in Alzheimer’s disease transgenic mice. J Alzheimers Dis 2014; 41(4): 1193-205.
[http://dx.doi.org/10.3233/JAD-140066] [PMID: 24844691]
[177]
Jian WX, Zhang Z, Zhan JH, et al. Donepezil attenuates vascular dementia in rats through increasing BDNF induced by reducing HDAC6 nuclear translocation. Acta Pharmacol Sin 2020; 41(5): 588-98.
[http://dx.doi.org/10.1038/s41401-019-0334-5] [PMID: 31913348]
[178]
Dompierre JP, Godin JD, Charrin BC, et al. Histone deacetylase 6 inhibition compen-sates for the transport deficit in Huntington’s disease by increasing tubulin acetylation. J Neurosci 2007; 27(13): 3571-83.
[http://dx.doi.org/10.1523/JNEUROSCI.0037-07.2007] [PMID: 17392473]
[179]
Ferrante RJ, Kubilus JK, Lee J, et al. Histone deacetylase inhibition by sodium butyrate chemotherapy ameliorates the neurodegenerative phenotype in Huntington’s disease mice. J Neurosci 2003; 23(28): 9418-27.
[http://dx.doi.org/10.1523/JNEUROSCI.23-28-09418.2003] [PMID: 14561870]
[180]
Jia H, Wang Y, Morris CD, et al. The Effects of Pharmacological Inhibition of Histone Deacetylase 3 (HDAC3) in Huntington’s Disease Mice. PLoS One 2016; 11(3): e0152498.
[http://dx.doi.org/10.1371/journal.pone.0152498] [PMID: 27031333]
[181]
Chopra V, Quinti L, Khanna P, et al. LBH589, A hydroxamic acid-derived HDAC inhibitor, is neuroprotective in mouse models of Huntington’s disease. J Huntingtons Dis 2016; 5(4): 347-55.
[http://dx.doi.org/10.3233/JHD-160226] [PMID: 27983565]
[182]
Hahnen E, Eyüpoglu IY, Brichta L, et al. In vitro and ex vivo evaluation of second-generation histone deacetylase inhibitors for the treatment of spinal muscular atrophy. J Neurochem 2006; 98(1): 193-202.
[http://dx.doi.org/10.1111/j.1471-4159.2006.03868.x] [PMID: 16805808]
[183]
Tsai LK, Yang CC, Hwu WL, Li H. Valproic acid treatment in six patients with spinal muscular atrophy. Eur J Neurol 2007; 14(12): e8-9.
[http://dx.doi.org/10.1111/j.1468-1331.2007.01992.x] [PMID: 18028187]
[184]
Minamiyama M, Katsuno M, Adachi H, et al. Sodium bu-tyrate ameliorates phenotypic expression in a transgenic mouse model of spinal and bulbar muscular atrophy. Hum Mol Genet 2004; 13(11): 1183-92.
[http://dx.doi.org/10.1093/hmg/ddh131] [PMID: 15102712]
[185]
Liu H, Yazdani A, Murray LM, Beauvais A, Kothary R. The Smn-independent beneficial effects of trichostatin A on an intermediate mouse model of spinal muscular atrophy. PLoS One 2014; 9(7): e101225.
[http://dx.doi.org/10.1371/journal.pone.0101225] [PMID: 24984019]
[186]
Hauke J, Riessland M, Lunke S, et al. Survival motor neuron gene 2 silenc-ing by DNA methylation correlates with spinal muscular atrophy disease severity and can be bypassed by histone deacetylase inhibition. Hum Mol Genet 2009; 18(2): 304-17.
[http://dx.doi.org/10.1093/hmg/ddn357] [PMID: 18971205]
[187]
Brahe C, Vitali T, Tiziano FD, et al. Phenylbutyrate increases SMN gene expression in spinal muscular atrophy patients. Eur J Hum Genet 2005; 13(2): 256-9.
[http://dx.doi.org/10.1038/sj.ejhg.5201320] [PMID: 15523494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy