Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Virtual Screening and Molecular Docking: Discovering Novel c-KIT Inhibitors

Author(s): Fernanda Mello Tavares, Angela Cristina Gomes, Edson Mareco Assunção, João Luiz Sobral de Medeiros, Marcus T. Scotti, Luciana Scotti* and Hamilton Mitsugu Ishiki

Volume 29, Issue 2, 2022

Published on: 27 December, 2021

Page: [166 - 188] Pages: 23

DOI: 10.2174/0929867328666210915102920

Price: $65

Abstract

Gastrointestinal stromal tumors (GISTs) are unusual cancers, which are developed in specialized cells in the gastrointestinal tract wall. Various strategies involving single-agents, combinations, and rapid complementary inhibitor cycling are now being used to control such tumors. Based on promising early clinical trial experience, certain novel KIT and PDGFRA tyrosine kinase inhibitors have shown advanced clinical development. Resistance to tyrosine kinase inhibitors has brought immense difficulties, with patients now requiring additional therapeutic options. This review describes and discusses the last five years (2016-2020) in developing novel c-KIT kinase inhibitors using virtual screening and docking approaches. Computational techniques can be used to complement experimental studies to identify new candidate molecules for therapeutic use. Molecular modeling strategies allow the analysis of the required characteristics that compounds must have to effectively bind c-KIT. Through such analyses, it is possible to both discover and design novel inhibitors against cancer-related proteins that play a critical role in tumor development (including mutant strains). Docking showed potential in the detection of the key residues responsible for ligand recognition and is very helpful to understand the interactions in the active site that can be used to develop new compounds/classes of anticancer drugs and help millions of cancer patients.

Keywords: Novel c-Kit inhibitors, drug design, molecular docking, GISTs, PDGFRA, GA.

[1]
Dancsok, A.R.; Asleh-Aburaya, K.; Nielsen, T.O. Advances in sarcoma diagnostics and treatment. Oncotarget, 2017, 8(4), 7068-7093.
[http://dx.doi.org/10.18632/oncotarget.12548] [PMID: 27732970]
[2]
Belinsky, M.G.; Cai, K.Q.; Zhou, Y.; Luo, B.; Pei, J.; Rink, L.; von Mehren, M. Succinate dehydrogenase deficiency in a PDGFRA mutated GIST. BMC Cancer, 2017, 17(1), 512.
[http://dx.doi.org/10.1186/s12885-017-3499-7] [PMID: 28768491]
[3]
Guo, Y.; Liu, J.; Wang, F.; Wang, Q.; Zheng, G.; Liu, S.; Lian, X.; Zhang, H.; Feng, F. The role of surgical resection following tyrosine kinase inhibitors treatment in patients with advanced gastrointestinal stromal tumors: a systematic review and meta-analysis. J. Cancer, 2019, 10(23), 5785-5792.
[http://dx.doi.org/10.7150/jca.30040] [PMID: 31737115]
[4]
Vitiello, G.A.; Bowler, T.G.; Liu, M.; Medina, B.D.; Zhang, J.Q.; Param, N.J.; Loo, J.K.; Goldfeder, R.L.; Chibon, F.; Rossi, F.; Zeng, S.; DeMatteo, R.P. Differential immune profiles distinguish the mutational subtypes of gastrointestinal stromal tumor. J. Clin. Invest., 2019, 129(5), 1863-1877.
[http://dx.doi.org/10.1172/JCI124108] [PMID: 30762585]
[5]
Corless, C.L. Gastrointestinal stromal tumors: what do we know now? Mod. Pathol., 2014, 27(Suppl. 1), S1-S16.
[http://dx.doi.org/10.1038/modpathol.2013.173] [PMID: 24384849]
[6]
Niinuma, T.; Suzuki, H.; Sugai, T. Molecular characterization and pathogenesis of gastrointestinal stromal tumor. Transl. Gastroenterol. Hepatol., 2018, 3, 2.
[http://dx.doi.org/10.21037/tgh.2018.01.02] [PMID: 29441367]
[7]
Poveda, A.; García Del Muro, X.; López-Guerrero, J.A.; Cubedo, R.; Martínez, V.; Romero, I.; Serrano, C.; Valverde, C.; Martín-Broto, J. GEIS guidelines for gastrointestinal sarcomas (GIST). Cancer Treat. Rev., 2017, 55, 107-119.
[http://dx.doi.org/10.1016/j.ctrv.2016.11.011] [PMID: 28351781]
[8]
Iram, H. A Review on Imatinib: A Wonder Drug in Oncology. Adv. Biomed. Pharm., 2016, 03, 227-244.
[http://dx.doi.org/10.19046/abp.v03i04.07]
[9]
Druker, B.J.; Talpaz, M.; Resta, D.J.; Peng, B.; Buchdunger, E.; Ford, J.M.; Lydon, N.B.; Kantarjian, H.; Capdeville, R.; Ohno-Jones, S.; Sawyers, C.L. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N. Engl. J. Med., 2001, 344(14), 1031-1037.
[http://dx.doi.org/10.1056/NEJM200104053441401] [PMID: 11287972]
[10]
Manley, P.W.; Cowan-Jacob, S.W.; Buchdunger, E.; Fabbro, D.; Fendrich, G.; Furet, P.; Meyer, T.; Zimmermann, J. Imatinib: A selective tyrosine kinase inhibitor. Eur. J. Cancer, 2002, 38(Suppl. 5), S19-S27.
[http://dx.doi.org/10.1016/S0959-8049(02)80599-8] [PMID: 12528769]
[11]
Chaudhry, U.I.; DeMatteo, R.P. Management of resectable gastrointestinal stromal tumor. Hematol. Oncol. Clin. North Am., 2009, 23(1), 79-96. [viii.
[http://dx.doi.org/10.1016/j.hoc.2009.01.001] [PMID: 19248972]
[12]
Jabbour, E.; Parikh, S.A.; Kantarjian, H.; Cortes, J. Chronic myeloid leukemia: mechanisms of resistance and treatment. Hematol. Oncol. Clin. North Am., 2011, 25(5), 981-995. [v.
[http://dx.doi.org/10.1016/j.hoc.2011.09.004] [PMID: 22054730]
[13]
Mulet-Margalef, N.; Garcia-Del-Muro, X. Sunitinib in the treatment of gastrointestinal stromal tumor: patient selection and perspectives. OncoTargets Ther., 2016, 9, 7573-7582.
[http://dx.doi.org/10.2147/OTT.S101385] [PMID: 28008275]
[14]
Demetri, G.D.; van Oosterom, A.T.; Garrett, C.R.; Blackstein, M.E.; Shah, M.H.; Verweij, J.; McArthur, G.; Judson, I.R.; Heinrich, M.C.; Morgan, J.A.; Desai, J.; Fletcher, C.D.; George, S.; Bello, C.L.; Huang, X.; Baum, C.M.; Casali, P.G. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: A randomised controlled trial. Lancet, 2006, 368(9544), 1329-1338.
[http://dx.doi.org/10.1016/S0140-6736(06)69446-4] [PMID: 17046465]
[15]
Mazzocca, A.; Napolitano, A.; Silletta, M.; Spalato Ceruso, M.; Santini, D.; Tonini, G.; Vincenzi, B. New frontiers in the medical management of gastrointestinal stromal tumours. Ther. Adv. Med. Oncol., 2019, 111758835919841946
[http://dx.doi.org/10.1177/1758835919841946] [PMID: 31205499]
[16]
Demetri, G.D.; Heinrich, M.C.; Fletcher, J.A.; Fletcher, C.D.; Van den Abbeele, A.D.; Corless, C.L.; Antonescu, C.R.; George, S.; Morgan, J.A.; Chen, M.H.; Bello, C.L.; Huang, X.; Cohen, D.P.; Baum, C.M.; Maki, R.G. Molecular target modulation, imaging, and clinical evaluation of gastrointestinal stromal tumor patients treated with sunitinib malate after imatinib failure. Clin. Cancer Res., 2009, 15(18), 5902-5909.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-0482] [PMID: 19737946]
[17]
Demetri, G.D.; Reichardt, P.; Kang, Y.K.; Blay, J.Y.; Rutkowski, P.; Gelderblom, H.; Hohenberger, P.; Leahy, M.; von Mehren, M.; Joensuu, H.; Badalamenti, G.; Blackstein, M.; Le Cesne, A.; Schöffski, P.; Maki, R.G.; Bauer, S.; Nguyen, B.B.; Xu, J.; Nishida, T.; Chung, J.; Kappeler, C.; Kuss, I.; Laurent, D.; Casali, P.G. Efficacy and safety of regorafenib for advanced gastrointestinal stromal tumours after failure of imatinib and sunitinib (GRID): An international, multicentre, randomised, placebo-controlled, phase 3 trial. Lancet, 2013, 381(9863), 295-302.
[http://dx.doi.org/10.1016/S0140-6736(12)61857-1] [PMID: 23177515]
[18]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs from 1981 to 2014. J. Nat. Prod., 2016, 79(3), 629-661.
[http://dx.doi.org/10.1021/acs.jnatprod.5b01055] [PMID: 26852623]
[19]
Montaser, R.; Luesch, H. Marine natural products: A new wave of drugs? Future Med. Chem., 2011, 3(12), 1475-1489.
[http://dx.doi.org/10.4155/fmc.11.118] [PMID: 21882941]
[20]
Saha, S.; Rajpal, D.K.; Brown, J.R. Human microbial metabolites as a source of new drugs. Drug Discov. Today, 2016, 21(4), 692-698.
[http://dx.doi.org/10.1016/j.drudis.2016.02.009] [PMID: 26916596]
[21]
Dutra, R.C.; Campos, M.M.; Santos, A.R.; Calixto, J.B. Medicinal plants in Brazil: Pharmacological studies, drug discovery, challenges and perspectives. Pharmacol. Res., 2016, 112, 4-29.
[http://dx.doi.org/10.1016/j.phrs.2016.01.021] [PMID: 26812486]
[22]
Newman, D.J.; Cragg, G.M.; Snader, K.M. Natural products as sources of new drugs over the period 1981-2002. J. Nat. Prod., 2003, 66(7), 1022-1037.
[http://dx.doi.org/10.1021/np030096l] [PMID: 12880330]
[23]
Chaudhari, P.; Bari, S. In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening. Mol. Divers., 2016, 20(1), 41-53.
[http://dx.doi.org/10.1007/s11030-015-9635-x] [PMID: 26416560]
[24]
Chu, Y.Y.; Cheng, H.J.; Tian, Z.H.; Zhao, J.C.; Li, G.; Chu, Y.Y.; Sun, C.J.; Li, W.B. Rational drug design of indazole-based diarylurea derivatives as anticancer agents. Chem. Biol. Drug Des., 2017, 90(4), 609-617.
[http://dx.doi.org/10.1111/cbdd.12984] [PMID: 28338292]
[25]
Meng, Y.Q.; Zhao, Y.W.; Kuai, Z.Y.; Liu, L.W.; Li, W. Synthesis and antitumor activity evaluation of novel oleanolic acid derivatives. J. Asian Nat. Prod. Res., 2017, 19(10), 1000-1010.
[http://dx.doi.org/10.1080/10286020.2017.1283310] [PMID: 28140665]
[26]
Ghanbarimasir, Z.; Bekhradnia, A.; Morteza-Semnani, K.; Rafiei, A.; Razzaghi-Asl, N.; Kardan, M. Design, synthesis, biological assessment and molecular docking studies of new 2-aminoimidazole-quinoxaline hybrids as potential anticancer agents. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 194, 21-35.
[http://dx.doi.org/10.1016/j.saa.2017.12.063] [PMID: 29310028]
[27]
Sun, H.; Zhuo, L.; Dong, H.; Huang, W.; She, N. Discovery of 8-amino-substituted 2-phenyl-2,7-naphthyridinone derivatives as new c-Kit/VEGFR-2 kinase inhibitors. Molecules, 2019, 24(24), 4461.
[http://dx.doi.org/10.3390/molecules24244461] [PMID: 31817456]
[28]
Quattrini, L.; Coviello, V.; Sartini, S.; Di Desidero, T.; Orlandi, P.; Ke, Y.Y.; Liu, K.L.; Hsieh, H.P.; Bocci, G.; La Motta, C. Dual Kit/Aur inhibitors as chemosensitizing agents for the treatment of melanoma: design, synthesis, docking studies and functional investigation. Sci. Rep., 2019, 9(1), 9943.
[http://dx.doi.org/10.1038/s41598-019-46287-5] [PMID: 31289333]
[29]
Park, H.; Lee, S.; Hong, S. Discovery of dual inhibitors for wild type and D816V mutant of c-KIT kinase through virtual and biochemical screening of natural products. J. Nat. Prod., 2016, 79(2), 293-299.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00851] [PMID: 26807861]
[30]
Martorana, A.; Lauria, A. Design of antitumor drugs targeting c-kit receptor by a new mixed ligand-structure based method. J. Mol. Graph. Model., 2020, 100107666
[http://dx.doi.org/10.1016/j.jmgm.2020.107666] [PMID: 32659630]
[31]
Tao, X.; Huang, Y.; Wang, C.; Chen, F.; Yang, L.; Ling, L.; Che, Z.; Chen, X. Recent developments in molecular docking technology applied in food science: A review. J. Food Sci. Technol., 2020, 55(1), 33-45.
[http://dx.doi.org/10.1111/ijfs.14325]
[32]
Meng, X-Y.; Zhang, H-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Computeraided Drug Des., 2011, 7(2), 146-157.
[http://dx.doi.org/10.2174/157340911795677602] [PMID: 21534921]
[33]
Pagadala, N.S.; Syed, K.; Tuszynski, J. Software for molecular docking: A review. Biophys. Rev., 2017, 9(2), 91-102.
[http://dx.doi.org/10.1007/s12551-016-0247-1] [PMID: 28510083]
[34]
Meng, E.C.; Gschwend, D.A.; Blaney, J.M.; Kuntz, I.D. Orientational sampling and rigid-body minimization in molecular docking. Proteins, 1993, 17(3), 266-278.
[http://dx.doi.org/10.1002/prot.340170305] [PMID: 8272425]
[35]
Diller, D.J.; Merz, K.M., Jr High throughput docking for library design and library prioritization. Proteins, 2001, 43(2), 113-124.
[http://dx.doi.org/10.1002/1097-0134(20010501)43:2<113:AID-PROT1023>3.0.CO;2-T] [PMID: 11276081]
[36]
Jackson, R.M. Q-fit: A probabilistic method for docking molecular fragments by sampling low energy conformational space. J. Comput. Aided Mol. Des., 2002, 16(1), 43-57.
[http://dx.doi.org/10.1023/A:1016307520660] [PMID: 12197665]
[37]
Rarey, M.; Kramer, B.; Lengauer, T.; Klebe, G. A fast flexible docking method using an incremental construction algorithm. J. Mol. Biol., 1996, 261(3), 470-489.
[http://dx.doi.org/10.1006/jmbi.1996.0477] [PMID: 8780787]
[38]
Ewing, T.J.; Makino, S.; Skillman, A.G.; Kuntz, I.D. DOCK 4.0: Search strategies for automated molecular docking of 14 drug discovery and development - new advances flexible molecule databases. J. Comput. Aided Mol. Des., 2001, 15(5), 411-428.
[http://dx.doi.org/10.1023/A:1011115820450] [PMID: 11394736]
[39]
Schneidman-Duhovny, D.; Inbar, Y.; Nussinov, R.; Wolfson, H.J. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res, 2005, 33((Web Server issue)(Suppl. 2)), W363-7.
[http://dx.doi.org/10.1093/nar/gki481] [PMID: 15980490]
[40]
Read, R.; Hart, T.N.; Cummings, M.; Ness, S. Monte Carlo algorithms for docking to proteins. Supramol. Chem., 1995, 6(1-2), 135-140.
[http://dx.doi.org/10.1080/10610279508032529]
[41]
Goodsell, D.S.; Olson, A.J. Automated docking of substrates to proteins by simulated annealing. Proteins, 1990, 8(3), 195-202.
[http://dx.doi.org/10.1002/prot.340080302] [PMID: 2281083]
[42]
Hart, T.N.; Read, R.J. A multiple-start Monte Carlo docking method. Proteins, 1992, 13(3), 206-222.
[http://dx.doi.org/10.1002/prot.340130304] [PMID: 1603810]
[43]
Trosset, J.Y.; Scheraga, H.A. PRODOCK: Software package for protein modeling and docking. J. Comput. Chem., 1999, 20(4), 412-427.
[http://dx.doi.org/10.1002/(SICI)1096-987X(199903)20:4<412:AID-JCC3>3.0.CO;2-N]
[44]
Morris, G.M.; Goodsell, D.S.; Halliday, R.S.; Huey, R.; Hart, W.E.; Belew, R.K.; Olson, A.J. Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. J. Comput. Chem., 1998, 19(14), 1639-1662.
[http://dx.doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639:AID-JCC10>3.0.CO;2-B]
[45]
Jones, G.; Willett, P.; Glen, R.C.; Leach, A.R.; Taylor, R. Development and validation of a genetic algorithm for flexible docking. J. Mol. Biol., 1997, 267(3), 727-748.
[http://dx.doi.org/10.1006/jmbi.1996.0897] [PMID: 9126849]
[46]
Österberg, F.; Morris, G.M.; Sanner, M.F.; Olson, A.J.; Goodsell, D.S. Automated docking to multiple target structures: incorporation of protein mobility and structural water heterogeneity in AutoDock. Proteins, 2002, 46(1), 34-40.
[http://dx.doi.org/10.1002/prot.10028] [PMID: 11746701]
[47]
Verdonk, M.L.; Chessari, G.; Cole, J.C.; Hartshorn, M.J.; Murray, C.W.; Nissink, J.W.M.; Taylor, R.D.; Taylor, R. Modeling water molecules in protein-ligand docking using GOLD. J. Med. Chem., 2005, 48(20), 6504-6515.
[http://dx.doi.org/10.1021/jm050543p] [PMID: 16190776]
[48]
Corbeil, C.R.; Englebienne, P.; Moitessier, N. Docking ligands into flexible and solvated macromolecules. 1. Development and validation of FITTED 1.0. J. Chem. Inf. Model., 2007, 47(2), 435-449.
[http://dx.doi.org/10.1021/ci6002637] [PMID: 17305329]
[49]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[50]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[51]
Dias, R.; de Azevedo, W.F. Jr Molecular docking algorithms. Curr. Drug Targets, 2008, 9(12), 1040-1047.
[http://dx.doi.org/10.2174/138945008786949432] [PMID: 19128213]
[52]
Sethi, A.; Joshi, K.; Sasikala, K.; Alvala, M. Molecular docking in modern drug discovery: Principles and recent applications. Drug Discovery and Development-New Advances; Gaitonde, V.; Karmakar, P; Trivedi, A., Ed.; IntechOpen: London, 2019.
[53]
Zsoldos, Z.; Reid, D.; Simon, A.; Sadjad, B.S.; Johnson, A.P. eHiTS: An innovative approach to the docking and scoring function problems. Curr. Protein Pept. Sci., 2006, 7(5), 421-435.
[http://dx.doi.org/10.2174/138920306778559412] [PMID: 17073694]
[54]
Guedes, I.A.; Pereira, F.S.S.; Dardenne, L.E. Empirical scoring functions for structure-based virtual screening: applications, critical aspects, and challenges. Front. Pharmacol., 2018, 9, 1089.
[http://dx.doi.org/10.3389/fphar.2018.01089] [PMID: 30319422]
[55]
Shen, C.; Ding, J.; Wang, Z.; Cao, D.; Ding, X.; Hou, T. From machine learning to deep learning: Advances in scoring functions for protein-ligand docking. WIREs Comput. Mol. Sci., 2020, 10(1)e1429
[http://dx.doi.org/10.1002/wcms.1429]
[56]
Li, H.; Sze, K-H.; Lu, G.; Ballester, P.J. Machine-learning scoring functions for structure-based drug lead optimization. WIREs Comput. Mol. Sci., 2020, 10(1)e1465
[57]
Ye, W-L.; Shen, C.; Xiong, G-L.; Ding, J-J.; Lu, A-P.; Hou, T-J.; Cao, D-S. Improving docking-based virtual screening ability by integrating multiple energy auxiliary terms from molecular docking scoring. J. Chem. Inf. Model., 2020, 60(9), 4216-4230.
[http://dx.doi.org/10.1021/acs.jcim.9b00977] [PMID: 32352294]
[58]
Breiman, L. Random forests. Mach. Learn., 2001, 45, 5-32.
[http://dx.doi.org/10.1023/A:1010933404324]
[59]
Li, H.; Leung, K.S.; Wong, M.H.; Ballester, P.J. Improving AutoDock vina using random forest: the growing accuracy of binding affinity prediction by the effective exploitation of Larger Data Sets. Mol. Inform., 2015, 34(2-3), 115-126.
[http://dx.doi.org/10.1002/minf.201400132] [PMID: 27490034]
[60]
Li, H.; Peng, J.; Sidorov, P.; Leung, Y.; Leung, K.S.; Wong, M.H.; Lu, G.; Ballester, P.J. Classical scoring functions for docking are unable to exploit large volumes of structural and interaction data. Bioinformatics, 2019, 35(20), 3989-3995.
[61]
Vapnik, V.N. An overview of statistical learning theory. IEEE Trans. Neural Netw., 1999, 10(5), 988-999.
[PMID: 18252602]
[62]
Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning representations by back-propagating errors. Nature, 1986, 323, 533-536.
[http://dx.doi.org/10.1038/323533a0]
[63]
Koppisetty, C.A.K.; Frank, M.; Kemp, G.J.L.; Nyholm, P-G. Computation of binding energies including their enthalpy and entropy components for protein-ligand complexes using support vector machines. J. Chem. Inf. Model., 2013, 53(10), 2559-2570.
[http://dx.doi.org/10.1021/ci400321r] [PMID: 24050538]
[64]
Li, G-B.; Yang, L-L.; Wang, W-J.; Li, L-L.; Yang, S-Y. ID-Score: A new empirical scoring function based on a comprehensive set of descriptors related to protein-ligand interactions. J. Chem. Inf. Model., 2013, 53(3), 592-600.
[http://dx.doi.org/10.1021/ci300493w] [PMID: 23394072]
[65]
Rosenblatt, F. The perceptron: A probabilistic model for information storage and organization in the brain. Psychol. Rev., 1958, 65(6), 386-408.
[http://dx.doi.org/10.1037/h0042519] [PMID: 13602029]
[66]
Ashtawy, H.M.; Mahapatra, N.R. BgN-Score and BsN-Score: bagging and boosting based ensemble neural networks scoring functions for accurate binding affinity prediction of protein-ligand complexes. BMC Bioinformatics, 2015, 16(Suppl. 4), S8.
[http://dx.doi.org/10.1186/1471-2105-16-S4-S8] [PMID: 25734685]
[67]
Jastrzębski, S.; Szymczak, M.; Pocha, A.; Mordalski, S.; Tabor, J.; Bojarski, A.J.; Podlewska, S. Emulating docking results using a deep neural network: a new perspective for virtual screening. J. Chem. Inf. Model., 2020, 60(9), 4246-4262.
[http://dx.doi.org/10.1021/acs.jcim.9b01202] [PMID: 32865414]
[68]
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat., 2001, 29(5), 1189-1232.
[http://dx.doi.org/10.1214/aos/1013203451]
[69]
Vine, K.L.; Matesic, L.; Locke, J.M.; Ranson, M.; Skropeta, D. Cytotoxic and anticancer activities of isatin and its derivatives: A comprehensive review from 2000-2008. Anticancer. Agents Med. Chem., 2009, 9(4), 397-414.
[http://dx.doi.org/10.2174/1871520610909040397] [PMID: 19442041]
[70]
Prakash, C.R. Indolin-2-Ones in clinical trials as potential kinase inhibitors: A review. Pharmacol. Pharm., 2012, 3(01), 62-71.
[http://dx.doi.org/10.4236/pp.2012.31010]
[71]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Farruggia, G.; Zini, M.; Stefanelli, C.; Masotti, L. Substituted E-3-(2-chloro-3-indolylmethylene) 1,3-dihydroindol-2-ones with antitumor activity. Effect on the cell cycle and apoptosis. J. Med. Chem., 2007, 50(14), 3167-3172.
[http://dx.doi.org/10.1021/jm070235m] [PMID: 17559205]
[72]
Andreani, A.; Burnelli, S.; Granaiola, M.; Leoni, A.; Locatelli, A.; Morigi, R.; Rambaldi, M.; Varoli, L.; Calonghi, N.; Cappadone, C.; Voltattorni, M.; Zini, M.; Stefanelli, C.; Masotti, L.; Shoemaker, R.H. Antitumor activity of new substituted 3-(5-imidazo[2,1-b]thiazolylmethylene)-2-indo-linones and 3-(5-imidazo[2,1-b]thiadiazolylmethylene)-2-indolinones: selectivity against colon tumor cells and effect on cell cycle-related events. J. Med. Chem., 2008, 51(23), 7508-7513.
[http://dx.doi.org/10.1021/jm800827q] [PMID: 19006285]
[73]
Ding, L.; Tang, F.; Huang, W.; Jin, Q.; Shen, H.; Wei, P. Design, synthesis, and biological evaluation of novel 3-pyrrolo[b]cyclohexylene-2-dihydroindolinone derivatives as potent receptor tyrosine kinase inhibitors. Bioorg. Med. Chem. Lett., 2013, 23(20), 5630-5633.
[http://dx.doi.org/10.1016/j.bmcl.2013.08.037] [PMID: 23999040]
[74]
Dixon, S.L.; Smondyrev, A.M.; Knoll, E.H.; Rao, S.N.; Shaw, D.E.; Friesner, R.A. PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. J. Comput. Aided Mol. Des., 2006, 20(10-11), 647-671.
[http://dx.doi.org/10.1007/s10822-006-9087-6] [PMID: 17124629]
[75]
Dixon, S.L.; Smondyrev, A.M.; Rao, S.N. PHASE: A novel approach to pharmacophore modeling and 3D database searching. Chem. Biol. Drug Des., 2006, 67(5), 370-372.
[http://dx.doi.org/10.1111/j.1747-0285.2006.00384.x] [PMID: 16784462]
[76]
Schrödinger Suite 2009. Virtual screening workflow; Glide version 5.5; LigPrep 2.3; QikProp 3.2, Schrödinger, LLC, New York. 2009 Available from: http://www.schrodinger. com
[77]
Shah, U.A.; Deokar, H.S.; Kadam, S.S.; Kulkarni, V.M. Pharmacophore generation and atom-based 3D-QSAR of novel 2-(4-methylsulfonylphenyl)pyrimidines as COX-2 inhibitors. Mol. Divers., 2010, 14(3), 559-568.
[http://dx.doi.org/10.1007/s11030-009-9183-3] [PMID: 19669924]
[78]
Chen, X.; Lin, Y.; Gilson, M.K. The binding database: overview and user’s guide. Biopolymers, 2001-2002, 61(2), 127-141.
[http://dx.doi.org/10.1002/1097-0282(2002)61:2<127::AIDBIP10076>3.0.CO;2-N] [PMID: 11987162]
[79]
Chen, X.; Liu, M.; Gilson, M.K.; Binding, D.B. A web-accessible molecular recognition database. Comb. Chem. High Throughput Screen., 2001, 4(8), 719-725.
[http://dx.doi.org/10.2174/1386207013330670] [PMID: 11812264]
[80]
Liu, T.; Lin, Y.; Wen, X.; Jorissen, R.N.; Gilson, M.K.; Binding, D.B. A web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res., 2007, 35(Database issue), D198-D201.
[http://dx.doi.org/10.1093/nar/gkl999] [PMID: 17145705]
[81]
Irwin, J.J.; Sterling, T.; Mysinger, M.M.; Bolstad, E.S.; Coleman, R.G. ZINC: A free tool to discover chemistry for biology. J. Chem. Inf. Model., 2012, 52(7), 1757-1768.
[http://dx.doi.org/10.1021/ci3001277] [PMID: 22587354]
[82]
Kim, H.J.; Jung, M.H.; Kim, H.; El-Gamal, M.I.; Sim, T.B.; Lee, S.H.; Hong, J.H.; Hah, J.M.; Cho, J.H.; Choi, J.H.; Yoo, K.H.; Oh, C.H. Synthesis and antiproliferative activity of pyrrolo[3,2-b]pyridine derivatives against melanoma. Bioorg. Med. Chem. Lett., 2010, 20(1), 413-417.
[http://dx.doi.org/10.1016/j.bmcl.2009.08.005] [PMID: 19897366]
[83]
Zhao, C.R.; Wang, R.Q.; Li, G.; Xue, X.X.; Sun, C.J.; Qu, X.J.; Li, W.B. Synthesis of indazole based diarylurea derivatives and their antiproliferative activity against tumor cell lines. Bioorg. Med. Chem. Lett., 2013, 23(7), 1989-1992.
[http://dx.doi.org/10.1016/j.bmcl.2013.02.034] [PMID: 23454017]
[84]
Tetko, I.V. Computing chemistry on the web. Drug Discov. Today, 2005, 10(22), 1497-1500.
[http://dx.doi.org/10.1016/S1359-6446(05)03584-1] [PMID: 16257371]
[85]
Shanmugam, M.K.; Dai, X.; Kumar, A.P.; Tan, B.K.; Sethi, G.; Bishayee, A. Oleanolic acid and its synthetic derivatives for the prevention and therapy of cancer: preclinical and clinical evidence. Cancer Lett., 2014, 346(2), 206-216.
[http://dx.doi.org/10.1016/j.canlet.2014.01.016] [PMID: 24486850]
[86]
Gao, L.; Xu, Z.; Wang, Y.; Sun, B.; Song, Z.; Yang, B.; Liu, X.; Lin, Y.; Peng, J.; Han, G.; Wang, S.; Tang, Z. Anticancer effect of SZC017, a novel derivative of oleanolic acid, on human gastric cancer cells. Oncol. Rep., 2016, 35(2), 1101-1108.
[http://dx.doi.org/10.3892/or.2015.4447] [PMID: 26718492]
[87]
Salvador, J.A.R.; Leal, A.S.; Valdeira, A.S.; Gonçalves, B.M.F.; Alho, D.P.S.; Figueiredo, S.A.C.; Silvestre, S.M.; Mendes, V.I.S. Oleanane-, ursane-, and quinone methide friedelane-type triterpenoid derivatives: Recent advances in cancer treatment. Eur. J. Med. Chem., 2017, 142, 95-130.
[http://dx.doi.org/10.1016/j.ejmech.2017.07.013] [PMID: 28754470]
[88]
Chu, F.; Zhang, W.; Guo, W.; Wang, Z.; Yang, Y.; Zhang, X.; Fang, K.; Yan, M.; Wang, P.; Lei, H. oleanolic acid-amino acids derivatives: design, synthesis, and hepatoprotective evaluation in vitro and in vivo. Molecules, 2018, 23(2), 322.
[http://dx.doi.org/10.3390/molecules23020322] [PMID: 29393898]
[89]
Mol, C.D.; Dougan, D.R.; Schneider, T.R.; Skene, R.J.; Kraus, M.L.; Scheibe, D.N.; Snell, G.P.; Zou, H.; Sang, B.C.; Wilson, K.P. Structural basis for the autoinhibition and STI-571 inhibition of c-Kit tyrosine kinase. J. Biol. Chem., 2004, 279(30), 31655-31663.
[http://dx.doi.org/10.1074/jbc.M403319200] [PMID: 15123710]
[90]
Rawluk, J.; Waller, C.F. Gefitinib. Recent Results Cancer Res., 2018, 211, 235-246.
[http://dx.doi.org/10.1007/978-3-319-91442-8_16] [PMID: 30069771]
[91]
Patel, S.B.; Patel, B.D.; Pannecouque, C.; Bhatt, H.G. Design, synthesis and anti-HIV activity of novel quinoxaline derivatives. Eur. J. Med. Chem., 2016, 117, 230-240.
[http://dx.doi.org/10.1016/j.ejmech.2016.04.019] [PMID: 27105027]
[92]
El Newahie, A.M.; Ismail, N.S.; Abou El Ella, D.A.; Abouzid, K.A.; Abouzid, K.A. Quinoxaline-based scaffolds targeting tyrosine kinases and their potential anticancer activity. Arch. Pharm. (Weinheim), 2016, 349(5), 309-326.
[http://dx.doi.org/10.1002/ardp.201500468] [PMID: 27062086]
[93]
Cogo, J.; Cantizani, J.; Cotillo, I.; Sangi, D.P.; Corrêa, A.G.; Ueda-Nakamura, T.; Filho, B.P.D.; Martín, J.J.; Nakamura, C.V. Quinoxaline derivatives as potential antitrypanosomal and antileishmanial agents. Bioorg. Med. Chem., 2018, 26(14), 4065-4072.
[http://dx.doi.org/10.1016/j.bmc.2018.06.033] [PMID: 30100019]
[94]
Keri, R.S.; Pandule, S.S.; Budagumpi, S.; Nagaraja, B.M. Quinoxaline and quinoxaline-1,4-di-N-oxides: An emerging class of antimycobacterials. Arch. Pharm. (Weinheim), 2018, 351(5)e1700325
[http://dx.doi.org/10.1002/ardp.201700325] [PMID: 29611626]
[95]
Montana, M.; Mathias, F.; Terme, T.; Vanelle, P. Antitumoral activity of quinoxaline derivatives: A systematic review. Eur. J. Med. Chem., 2019, 163, 136-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.059] [PMID: 30503938]
[96]
Lv, Z.; Zhang, Y.; Zhang, M.; Chen, H.; Sun, Z.; Geng, D.; Niu, C.; Li, K. Design and synthesis of novel 2′-hydroxy group substituted 2-pyridone derivatives as anticancer agents. Eur. J. Med. Chem., 2013, 67, 447-453.
[http://dx.doi.org/10.1016/j.ejmech.2013.06.046] [PMID: 23920246]
[97]
Madaan, A.; Verma, R.; Kumar, V.; Singh, A.T.; Jain, S.K.; Jaggi, M. 1,8-naphthyridine derivatives: a review of multiple biological activities. Arch. Pharm. (Weinheim), 2015, 348(12), 837-860.
[http://dx.doi.org/10.1002/ardp.201500237] [PMID: 26548568]
[98]
Jia, H.; Song, Y.; Yu, J.; Zhan, P.; Rai, D.; Liang, X.; Ma, C.; Liu, X. Design, synthesis and primary biological evaluation of the novel 2-pyridone derivatives as potent non-nucleoside HBV inhibitors. Eur. J. Med. Chem., 2017, 136, 144-153.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.048] [PMID: 28494252]
[99]
Singh, S.; Goo, J-I.; Noh, H.; Lee, S.J.; Kim, M.W.; Park, H.; Jalani, H.B.; Lee, K.; Kim, C.; Kim, W-K.; Ju, C.; Choi, Y. Discovery of a novel series of N-hydroxypyridone derivatives protecting astrocytes against hydrogen peroxide-induced toxicity via improved mitochondrial functionality. Bioorg. Med. Chem., 2017, 25(4), 1394-1405.
[http://dx.doi.org/10.1016/j.bmc.2016.12.052] [PMID: 28089588]
[100]
Tejería, A.; Pérez-Pertejo, Y.; Reguera, R.M.; Balaña-Fouce, R.; Alonso, C.; González, M.; Rubiales, G.; Palacios, F. Substituted 1,5-naphthyridine derivatives as novel antileishmanial agents. Synthesis and biological evaluation. Eur. J. Med. Chem., 2018, 152, 137-147.
[http://dx.doi.org/10.1016/j.ejmech.2018.04.033] [PMID: 29704722]
[101]
Peese, K.M.; Allard, C.W.; Connolly, T.; Johnson, B.L.; Li, C.; Patel, M.; Sorensen, M.E.; Walker, M.A.; Meanwell, N.A.; McAuliffe, B.; Minassian, B.; Krystal, M.; Parker, D.D.; Lewis, H.A.; Kish, K.; Zhang, P.; Nolte, R.T.; Simmermacher, J.; Jenkins, S.; Cianci, C.; Naidu, B.N. 5,6,7,8-Tetrahydro-1,6-naphthyridine derivatives as potent HIV-1-integrase-allosteric-site inhibitors. J. Med. Chem., 2019, 62(3), 1348-1361.
[http://dx.doi.org/10.1021/acs.jmedchem.8b01473] [PMID: 30609350]
[102]
Mubarak, S.; Zia-Ur-Rehman, M.; Jamil, N.; Zaheer, M.; Nadeem Arshad, M.; Mohammad Asiri, A. Environment friendly synthesis of N′-(1,3-diphenylallylidene)-1-ethyl-7-methyl-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carbohydra-zides: Crystal Structure and Their Anti-oxidant Potential. Chem. Pharm. Bull. (Tokyo), 2019, 67(11), 1191-1200.
[http://dx.doi.org/10.1248/cpb.c19-00478] [PMID: 31685748]
[103]
Kumar, R.; Knick, V.B.; Rudolph, S.K.; Johnson, J.H.; Crosby, R.M.; Crouthamel, M.C.; Hopper, T.M.; Miller, C.G.; Harrington, L.E.; Onori, J.A.; Mullin, R.J.; Gilmer, T.M.; Truesdale, A.T.; Epperly, A.H.; Boloor, A.; Stafford, J.A.; Luttrell, D.K.; Cheung, M. Pharmacokinetic-pharmacodynamic correlation from mouse to human with pazopanib, a multikinase angiogenesis inhibitor with potent antitumor and antiangiogenic activity. Mol. Cancer Ther., 2007, 6(7), 2012-2021.
[http://dx.doi.org/10.1158/1535-7163.MCT-07-0193] [PMID: 17620431]
[104]
Sari, S.; Kaynak, F.B.; Dalkara, S. Synthesis and anticonvulsant screening of 1,2,4-triazole derivatives. Pharmacol. Rep., 2018, 70(6), 1116-1123.
[http://dx.doi.org/10.1016/j.pharep.2018.06.007] [PMID: 30316046]
[105]
Tariq, S.; Kamboj, P.; Alam, O.; Amir, M. 1,2,4-Triazole-based benzothiazole/benzoxazole derivatives: Design, synthesis, p38α MAP kinase inhibition, anti-inflammatory activity and molecular docking studies. Bioorg. Chem., 2018, 81, 630-641.
[http://dx.doi.org/10.1016/j.bioorg.2018.09.015] [PMID: 30253336]
[106]
Jin, R.; Liu, J.; Zhang, G.; Li, J.; Zhang, S.; Guo, H. Design, synthesis, and antifungal activities of novel 1,2,4-triazole schiff base derivatives. Chem. Biodivers., 2018, 15(9)e1800263
[http://dx.doi.org/10.1002/cbdv.201800263] [PMID: 29981528]
[107]
Fan, Z.; Shi, J.; Bao, X. Synthesis and antimicrobial evaluation of novel 1,2,4-triazole thioether derivatives bearing a quinazoline moiety. Mol. Divers., 2018, 22(3), 657-667.
[http://dx.doi.org/10.1007/s11030-018-9821-8] [PMID: 29574502]
[108]
Shirinzadeh, H.; Süzen, S.; Altanlar, N.; Westwell, A.D. Antimicrobial activities of new indole derivatives containing 1,2,4-triazole, 1,3,4-thiadiazole and carbothioamide. Turk. J. Pharm. Sci, 2018, 15(3), 291-297.
[http://dx.doi.org/10.4274/tjps.55707] [PMID: 32454672]
[109]
Radwan, R.R.; Zaher, N.H.; El-Gazzar, M.G. Novel 1,2,4-triazole derivatives as antitumor agents against hepatocellular carcinoma. Chem. Biol. Interact., 2017, 274, 68-79.
[http://dx.doi.org/10.1016/j.cbi.2017.07.008] [PMID: 28693887]
[110]
Timur, İ.; Kocyigit, Ü.M.; Dastan, T.; Sandal, S.; Ceribası, A.O.; Taslimi, P.; Gulcin, İ.; Koparir, M.; Karatepe, M.; Çiftçi, M. In vitro cytotoxic and in vivo antitumoral activities of some aminomethyl derivatives of 2,4-dihydro-3H-1,2,4-triazole-3-thiones-Evaluation of their acetylcholinesterase and carbonic anhydrase enzymes inhibition profiles. J. Biochem. Mol. Toxicol., 2018.e22239
[PMID: 30368973]
[111]
La Pietra, V.; Sartini, S.; Botta, L.; Antonelli, A.; Ferrari, S.M.; Fallahi, P.; Moriconi, A.; Coviello, V.; Quattrini, L.; Ke, Y.Y.; Hsing-Pang, H.; Da Settimo, F.; Novellino, E.; La Motta, C.; Marinelli, L. Challenging clinically unresponsive medullary thyroid cancer: Discovery and pharmacological activity of novel RET inhibitors. Eur. J. Med. Chem., 2018, 150, 491-505.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.080] [PMID: 29549836]
[112]
Corless, C.L.; Barnett, C.M.; Heinrich, M.C. Gastrointestinal stromal tumours: origin and molecular oncology. Nat. Rev. Cancer, 2011, 11(12), 865-878.
[http://dx.doi.org/10.1038/nrc3143] [PMID: 22089421]
[113]
Ashman, L.K.; Griffith, R. Therapeutic targeting of c-KIT in cancer. Expert Opin. Investig. Drugs, 2013, 22(1), 103-115.
[http://dx.doi.org/10.1517/13543784.2013.740010] [PMID: 23127174]
[114]
Hirota, S.; Isozaki, K.; Moriyama, Y.; Hashimoto, K.; Nishida, T.; Ishiguro, S.; Kawano, K.; Hanada, M.; Kurata, A.; Takeda, M.; Muhammad Tunio, G.; Matsuzawa, Y.; Kanakura, Y.; Shinomura, Y.; Kitamura, Y. Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science, 1998, 279(5350), 577-580.
[http://dx.doi.org/10.1126/science.279.5350.577] [PMID: 9438854]
[115]
Heinrich, M.C.; Corless, C.L.; Demetri, G.D.; Blanke, C.D.; von Mehren, M.; Joensuu, H.; McGreevey, L.S.; Chen, C.J.; Van den Abbeele, A.D.; Druker, B.J.; Kiese, B.; Eisenberg, B.; Roberts, P.J.; Singer, S.; Fletcher, C.D.; Silberman, S.; Dimitrijevic, S.; Fletcher, J.A. Kinase mutations and imatinib response in patients with metastatic gastrointestinal stromal tumor. J. Clin. Oncol., 2003, 21(23), 4342-4349.
[http://dx.doi.org/10.1200/JCO.2003.04.190] [PMID: 14645423]
[116]
Wang, Y.Y.; Zhou, G.B.; Yin, T.; Chen, B.; Shi, J.Y.; Liang, W.X.; Jin, X.L.; You, J.H.; Yang, G.; Shen, Z.X.; Chen, J.; Xiong, S.M.; Chen, G.Q.; Xu, F.; Liu, Y.W.; Chen, Z.; Chen, S.J. AML1-ETO and C-KIT mutation/overexpression in t(8;21) leukemia: implication in stepwise leukemogenesis and response to Gleevec. Proc. Natl. Acad. Sci. USA, 2005, 102(4), 1104-1109.
[http://dx.doi.org/10.1073/pnas.0408831102] [PMID: 15650049]
[117]
Ma, Y.; Zeng, S.; Metcalfe, D.D.; Akin, C.; Dimitrijevic, S.; Butterfield, J.H.; McMahon, G.; Longley, B.J. The c-KIT mutation causing human mastocytosis is resistant to STI571 and other KIT kinase inhibitors; kinases with enzymatic site mutations show different inhibitor sensitivity profiles than wild-type kinases and those with regulatory-type mutations. Blood, 2002, 99(5), 1741-1744.
[http://dx.doi.org/10.1182/blood.V99.5.1741] [PMID: 11861291]
[118]
Baird, J.H.; Gotlib, J. Clinical Validation of KIT Inhibition in Advanced Systemic Mastocytosis. Curr. Hematol. Malig. Rep., 2018, 13(5), 407-416.
[http://dx.doi.org/10.1007/s11899-018-0469-3] [PMID: 30155614]
[119]
InterBioScreen | Natural Compounds. https://www.ibscreen.com/ natural-compounds
[120]
Fabian, M.A.; Biggs, W.H., III; Treiber, D.K.; Atteridge, C.E.; Azimioara, M.D.; Benedetti, M.G.; Carter, T.A.; Ciceri, P.; Edeen, P.T.; Floyd, M.; Ford, J.M.; Galvin, M.; Gerlach, J.L.; Grotzfeld, R.M.; Herrgard, S.; Insko, D.E.; Insko, M.A.; Lai, A.G.; Lélias, J-M.; Mehta, S.A.; Milanov, Z.V.; Velasco, A.M.; Wodicka, L.M.; Patel, H.K.; Zarrinkar, P.P.; Lockhart, D.J. A small molecule-kinase interaction map for clinical kinase inhibitors. Nat. Biotechnol., 2005, 23(3), 329-336.
[http://dx.doi.org/10.1038/nbt1068] [PMID: 15711537]
[121]
Mol, C.D.; Lim, K.B.; Sridhar, V.; Zou, H.; Chien, E.Y.; Sang, B.C.; Nowakowski, J.; Kassel, D.B.; Cronin, C.N.; McRee, D.E. Structure of a c-kit product complex reveals the basis for kinase transactivation. J. Biol. Chem., 2003, 278(34), 31461-31464.
[http://dx.doi.org/10.1074/jbc.C300186200] [PMID: 12824176]
[122]
Park, H.; Lee, S.; Lee, S.; Hong, S. Structure-based de novo design and identification of D816V mutant-selective c-KIT inhibitors. Org. Biomol. Chem., 2014, 12(26), 4644-4655.
[http://dx.doi.org/10.1039/C4OB00053F] [PMID: 24853767]
[123]
Chauvot de Beauchêne, I.; Allain, A.; Panel, N.; Laine, E.; Trouvé, A.; Dubreuil, P.; Tchertanov, L. Hotspot mutations in KIT receptor differentially modulate its allosterically coupled conformational dynamics: impact on activation and drug sensitivity. PLOS Comput. Biol., 2014, 10(7)e1003749
[124]
Heinrich, M.C.; Maki, R.G.; Corless, C.L.; Antonescu, C.R.; Harlow, A.; Griffith, D.; Town, A.; McKinley, A.; Ou, W.B.; Fletcher, J.A.; Fletcher, C.D.; Huang, X.; Cohen, D.P.; Baum, C.M.; Demetri, G.D. Primary and secondary kinase genotypes correlate with the biological and clinical activity of sunitinib in imatinib-resistant gastrointestinal stromal tumor. J. Clin. Oncol., 2008, 26(33), 5352-5359.
[http://dx.doi.org/10.1200/JCO.2007.15.7461] [PMID: 18955458]
[125]
Peng, Y.H.; Shiao, H.Y.; Tu, C.H.; Liu, P.M.; Hsu, J.T.; Amancha, P.K.; Wu, J.S.; Coumar, M.S.; Chen, C.H.; Wang, S.Y.; Lin, W.H.; Sun, H.Y.; Chao, Y.S.; Lyu, P.C.; Hsieh, H.P.; Wu, S.Y. Protein kinase inhibitor design by targeting the Asp-Phe-Gly (DFG) motif: the role of the DFG motif in the design of epidermal growth factor receptor inhibitors. J. Med. Chem., 2013, 56(10), 3889-3903.
[http://dx.doi.org/10.1021/jm400072p] [PMID: 23611691]
[126]
Lauria, A.; Mannino, S.; Gentile, C.; Mannino, G.; Martorana, A.; Peri, D. DRUDIT: web-based DRUgs DIscovery Tools to design small molecules as modulators of biological targets. Bioinformatics, 2020, 36(5), 1562-1569.
[PMID: 31605102]
[127]
Daina, A.; Michielin, O.; Zoete, V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Sci. Rep., 2017, 7, 42717.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[128]
D’allard, D.; Gay, J.; Descarpentries, C.; Frisan, E.; Adam, K.; Verdier, F.; Floquet, C.; Dubreuil, P.; Lacombe, C.; Fontenay, M.; Mayeux, P.; Kosmider, O. Tyrosine kinase inhibitors induce down-regulation of c-Kit by targeting the ATP pocket. PLoS One, 2013, 8(4)e60961
[http://dx.doi.org/10.1371/journal.pone.0060961] [PMID: 23637779]
[129]
Garner, A.P.; Gozgit, J.M.; Anjum, R.; Vodala, S.; Schrock, A.; Zhou, T.; Serrano, C.; Eilers, G.; Zhu, M.; Ketzer, J.; Wardwell, S.; Ning, Y.; Song, Y.; Kohlmann, A.; Wang, F.; Clackson, T.; Heinrich, M.C.; Fletcher, J.A.; Bauer, S.; Rivera, V.M. Ponatinib inhibits polyclonal drug-resistant KIT oncoproteins and shows therapeutic potential in heavily pretreated gastrointestinal stromal tumor (GIST) patients. Clin. Cancer Res., 2014, 20(22), 5745-5755.
[http://dx.doi.org/10.1158/1078-0432.CCR-14-1397] [PMID: 25239608]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy