Review Article

An Updated Review for the Diabetic Wound Healing Systems

Author(s): Mehmet E. Okur, Ece Ö. Bülbül, Gökçe Mutlu, Kalliopi Eleftherıadou, Ioannis D. Karantas, Neslihan Ü. Okur* and Panoraia I. Siafaka*

Volume 23, Issue 4, 2022

Published on: 14 September, 2021

Page: [393 - 419] Pages: 27

DOI: 10.2174/1389450122666210914104428

Price: $65

Abstract

Background & Objective: Diabetes is a global health problem that has resulted in millions of deaths; one of the most common diabetes complications is that wounds of diabetic patients tend to heal more slowly or may not heal at all, resulting in undesirable outcomes. Diabetic wounds, if become chronic and infected, could provoke lower extremities amputation, sepsis, and even death. Hence, early detection, careful examination, debridement, cleaning, and prevention or controlling the infection of diabetic wounds are important factors for the successful outcome of the case. Over the years, various promising wound dressings incorporating antimicrobial molecules, growth factors, and wound healing agents have been developed, targeting diabetic wounds. Nonetheless, the choice of dressing is mainly based on the experience of each clinician.

Summary: This review summarizes the main points of diabetes complications, diabetic wounds, and infections. Further, an overview of the current drug delivery systems for topical wound delivery of various active ingredients has been performed. This update could be helpful for scientists and especially clinicians who desire to plan and work with new strategies for the healing of diabetic wounds.

Keywords: Diabetic wounds, Antimicrobials, Growth factors, Scaffolds, Natural compounds, Wound healing.

Graphical Abstract

[1]
Shih KC, Lam KL, Tong L. A systematic review on the impact of diabetes mellitus on the ocular surface. Nutr Diabetes 2017; 7(3): e251.
[http://dx.doi.org/10.1038/nutd.2017.4] [PMID: 28319106]
[2]
Qayoom A, Aneesha VA, Anagha S, Dar JA, Kumar P, Kumar D. Lecithin-based deferoxamine nanoparticles accelerated cutaneous wound healing in diabetic rats. Eur J Pharmacol 2019; 858: 172478.
[http://dx.doi.org/10.1016/j.ejphar.2019.172478] [PMID: 31228457]
[3]
Aw W, Fukuda S. Understanding the role of the gut ecosystem in diabetes mellitus. J Diabetes Investig 2018; 9(1): 5-12.
[http://dx.doi.org/10.1111/jdi.12673] [PMID: 28390093]
[4]
Okur ME, Karantas ID, Siafaka PI. Diabetes mellitus: A review on pathophysiology, current status of oral medications and future perspectives. Acta Pharm Sci 2017; 55(1): 61-82.
[5]
Regazzi R. MicroRNAs as therapeutic targets for the treatment of diabetes mellitus and its complications. Expert Opin Therap Targets 2018; 22(2): 153-60.
[http://dx.doi.org/10.1080/14728222.2018.1420168] [PMID: 29257914]
[6]
Moon JH, Kwak SH, Jang HC. Prevention of type 2 diabetes mellitus in women with previous gestational diabetes mellitus. Korean J Intern Med (Korean Assoc Intern Med) 2017; 32(1): 26-41.
[http://dx.doi.org/10.3904/kjim.2016.203] [PMID: 28049284]
[7]
Shi GJ, Shi GR, Zhou JY, et al. Involvement of growth factors in diabetes mellitus and its complications: A general review. Biomed Pharmacother 2018; 101: 510-27.
[http://dx.doi.org/10.1016/j.biopha.2018.02.105] [PMID: 29505922]
[8]
Okur ME, Karantas ID, Şenyiğit Z, Üstündağ ON, Siafaka PI. Recent trends on wound management: New therapeutic choices based on polymeric carriers. Asian J Pharm Sci 2020; 15(6): 661-84.
[http://dx.doi.org/10.1016/j.ajps.2019.11.008] [PMID: 33363624]
[9]
Fui LW, Lok MPW, Govindasamy V, Yong TK, Lek TK, Das AK. Understanding the multifaceted mechanisms of diabetic wound healing and therapeutic application of stem cells conditioned medium in the healing process. J Tissue Eng Regen Med 2019; 13(12): 2218-33.
[http://dx.doi.org/10.1002/term.2966] [PMID: 31648415]
[10]
Zhu G, Wang Q, Lu S, Niu Y. Hydrogen peroxide: a potential wound therapeutic target? Med Princ Pract 2017; 26(4): 301-8.
[http://dx.doi.org/10.1159/000475501] [PMID: 28384636]
[11]
Rahim K, Saleha S, Zhu X, Huo L, Basit A, Franco OL. Bacterial contribution in chronicity of wounds. Microbial Ecol 2017; 73(3): 710-21.
[http://dx.doi.org/10.1007/s00248-016-0867-9] [PMID: 27742997]
[12]
Siafaka PI, Zisi AP, Exindari MK, Karantas ID, Bikiaris DN. Porous dressings of modified chitosan with poly(2-hydroxyethyl acrylate) for topical wound delivery of levofloxacin. Carbohydr Polym 2016; 143: 90-9.
[http://dx.doi.org/10.1016/j.carbpol.2016.02.009] [PMID: 27083347]
[13]
Üstündağ Okur N, Hökenek N, Okur ME, et al. An alternative approach to wound healing field; new composite films from natural polymers for mupirocin dermal delivery. Saudi Pharm J 2019; 27(5): 738-52.
[http://dx.doi.org/10.1016/j.jsps.2019.04.010] [PMID: 31297030]
[14]
Homaeigohar S, Boccaccini AR. Antibacterial biohybrid nanofibers for wound dressings. Acta Biomater 2020; 107: 25-49.
[http://dx.doi.org/10.1016/j.actbio.2020.02.022] [PMID: 32084600]
[15]
Aksu NB, Yozgatlı V, Okur ME, Ayla Ş, Yoltaş A, Üstündağ Okur N. Preparation and evaluation of QbD based fusidic acid loaded in situ gel formulations for burn wound treatment. J Drug Deliv Sci Technol 2019; 52: 110-21.
[http://dx.doi.org/10.1016/j.jddst.2019.04.015]
[16]
Eroğlu İ, Gökçe EH, Tsapis N, et al. Evaluation of characteristics and in vitro antioxidant properties of RSV loaded hyaluronic acid-DPPC microparticles as a wound healing system. Colloids Surf B Biointerfaces 2015; 126: 50-7.
[http://dx.doi.org/10.1016/j.colsurfb.2014.12.006] [PMID: 25543983]
[17]
Shah SA, Sohail M, Khan S, et al. Biopolymer-based biomaterials for accelerated diabetic wound healing: A critical review. Int J Biol Macromol 2019; 139: 975-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.007] [PMID: 31386871]
[18]
Shedoeva A, Leavesley D, Upton Z, Fan C. Wound healing and the use of medicinal plants. Evid Based Complement Alternat Med 2019; 2019: 2684108.
[http://dx.doi.org/10.1155/2019/2684108] [PMID: 31662773]
[19]
Hodde JP, Johnson CE. Extracellular matrix as a strategy for treating chronic wounds. Am J Clin Dermatol 2007; 8(2): 61-6.
[http://dx.doi.org/10.2165/00128071-200708020-00001] [PMID: 17428110]
[20]
Rezvani GE, Khalili S, Nouri KS, Esmaeely NR, Ramakrishna S. Wound dressings: Current advances and future directions. J Appl Polym Sci 2019; 136(27): 47738.
[http://dx.doi.org/10.1002/app.47738]
[21]
Selva OA, Solà I, Barajas-Nava LA, Gianneo OD, Bonfill CX, Lipsky BA. Systemic antibiotics for treating diabetic foot infections. Cochrane Database Syst Rev 2015; 2015(9): CD009061.
[http://dx.doi.org/10.1002/14651858.CD009061.pub2] [PMID: 26337865]
[22]
Paladini F, Pollini M. Antimicrobial silver nanoparticles for wound healing application: Progress and future trends. Materials. MDPI AG 2019; Vol. 12.
[23]
Perez-Favila A, Martinez-Fierro ML, Rodriguez-Lazalde JG, et al. Current therapeutic strategies in diabetic foot ulcers. Medicina (Kaunas) 2019; 55(11): 714.
[http://dx.doi.org/10.3390/medicina55110714] [PMID: 31731539]
[24]
Cho H, Blatchley MR, Duh EJ, Gerecht S. Acellular and cellular approaches to improve diabetic wound healing. Adv Drug Deliv Rev 2019; 146: 267-88.
[http://dx.doi.org/10.1016/j.addr.2018.07.019] [PMID: 30075168]
[25]
Garcia-Orue I, Pedraz JL, Hernandez RM, Igartua M. Nanotechnology-based delivery systems to release growth factors and other endogenous molecules for chronic wound healing. J Drug Deliv Sci Technol 2017; 42: 2-17.
[26]
Kim HS, Sun X, Lee JH, Kim HW, Fu X, Leong KW. Advanced drug delivery systems and artificial skin grafts for skin wound healing. Adv Drug Deliv Rev 2019; 146: 209-39.
[http://dx.doi.org/10.1016/j.addr.2018.12.014] [PMID: 30605737]
[27]
Miguel SP, Sequeira RS, Moreira AF, et al. An overview of electrospun membranes loaded with bioactive molecules for improving the wound healing process. Eur J Pharm Biopharm 2019; 139: 1-22.
[http://dx.doi.org/10.1016/j.ejpb.2019.03.010] [PMID: 30853442]
[28]
Li W, Huang E, Gao S. Type 1 diabetes mellitus and cognitive impairments: a systematic review. J Alzheimers Dis 2017; 57(1): 29-36.
[http://dx.doi.org/10.3233/JAD-161250] [PMID: 28222533]
[29]
Maric-Bilkan C. Sex differences in micro- and macro-vascular complications of diabetes mellitus. 2017; 833-46.
[30]
El-Bahy AAZ, Aboulmagd YM, Zaki M. Diabetex: A novel approach for diabetic wound healing. Life Sci 2018; 207: 332-9.
[http://dx.doi.org/10.1016/j.lfs.2018.06.020] [PMID: 29953880]
[31]
Fernández-Torres R, Ruiz-Muñoz M, Pérez-Panero AJ, García-Romero J, Gónzalez-Sánchez M. Instruments of choice for assessment and monitoring diabetic foot: a systematic review. J Clin Med 2020; 9(2): 602.
[http://dx.doi.org/10.3390/jcm9020602] [PMID: 32102313]
[32]
Li S, Mohamedi AH, Senkowsky J, Nair A, Tang L. Imaging in chronic wound diagnostics. Adv Wound Care (New Rochelle) 2020; 9(5): 245-63.
[http://dx.doi.org/10.1089/wound.2019.0967] [PMID: 32226649]
[33]
Thapa RK, Diep DB, Tønnesen HH. Topical antimicrobial peptide formulations for wound healing: Current developments and future prospects. Acta Biomater 2020; 103: 52-67.
[http://dx.doi.org/10.1016/j.actbio.2019.12.025] [PMID: 31874224]
[34]
Patel S, Srivastava S, Singh MR, Singh D. Mechanistic insight into diabetic wounds: Pathogenesis, molecular targets and treatment strategies to pace wound healing. Biomed Pharmacother 2019; 112: 108615.
[35]
Bairagi U, Mittal P, Singh J, Mishra B. Preparation, characterization, and in vivo evaluation of nano formulations of ferulic acid in diabetic wound healing. Drug Dev Ind Pharm 2018; 44(11): 1783-96.
[http://dx.doi.org/10.1080/03639045.2018.1496448] [PMID: 29973105]
[36]
Andrew JM, Boulton DGA, Matthew J, Hardman MM. Diagnosis and management of diabetic foot infections. Med Manag Infect Dis 2020.
[37]
Everett E, Mathioudakis N. Update on management of diabetic foot ulcers. Ann N Y Acad Sci 2018; 1411(1): 153-65.
[http://dx.doi.org/10.1111/nyas.13569] [PMID: 29377202]
[38]
Dumville JC, Lipsky BA, Hoey C, Cruciani M, Fiscon M, Xia J. Topical antimicrobial agents for treating foot ulcers in people with diabetes. Cochrane Database of Syst Rev 2017; 6(6): CD011038.
[http://dx.doi.org/10.1002/14651858.CD011038.pub2] [PMID: 28613416]
[39]
Hess CT. Clinical guide to skin and wound care clinical guide to skin and wound care. Wolters Kluwer -- Medknow Publications 2012; p. 624.
[40]
Chapman S. Foot care for people with diabetes: prevention of complications and treatment. Br J Commun Nurs 2017; 22(5): 226-9.
[http://dx.doi.org/10.12968/bjcn.2017.22.5.226]
[41]
Zhao R, Liang H, Clarke E, Jackson C, Xue M. Inflammation in chronic wounds. Int J Mol Sci 2016; 17(12): 1-14.
[http://dx.doi.org/10.3390/ijms17122085] [PMID: 27973441]
[42]
Crouzet J, Lavigne JP, Richard JL, Sotto A. Diabetic foot infection: a critical review of recent randomized clinical trials on antibiotic therapy. Int J Infect Dis 2011; 15(9): e601-10.
[http://dx.doi.org/10.1016/j.ijid.2011.05.003] [PMID: 21737333]
[43]
Nethi SK, Das S, Patra CR, Mukherjee S. Recent advances in inorganic nanomaterials for wound-healing applications. Biomater Sci 2019; 7(7): 2652-74.
[http://dx.doi.org/10.1039/C9BM00423H] [PMID: 31094374]
[44]
Chastain CA, Klopfenstein N, Serezani CH, Aronoff DM. A clinical review of diabetic foot infections. Clin Podiatr Med Surg 2019; 36(3): 381-95.
[http://dx.doi.org/10.1016/j.cpm.2019.02.004] [PMID: 31079605]
[45]
Thangavel P, Kannan R, Ramachandran B, Moorthy G, Suguna L, Muthuvijayan V. Development of reduced graphene oxide (rGO)-isabgol nanocomposite dressings for enhanced vascularization and accelerated wound healing in normal and diabetic rats. J Colloid Interface Sci 2018; 517: 251-64.
[http://dx.doi.org/10.1016/j.jcis.2018.01.110] [PMID: 29428812]
[46]
Hartoch RS, Mcmanus LTCJG, Knapp S, Buettner MF. Emergency management of chronic wounds. Emerg Med Clin North Am 2007; 25(1): 203-21.
[47]
Öhnstedt E, Lofton Tomenius H, Vågesjö E, Phillipson M. The discovery and development of topical medicines for wound healing. Expert Opin Drug Discov 2019; 14(5): 485-97.
[http://dx.doi.org/10.1080/17460441.2019.1588879] [PMID: 30870037]
[48]
Pinto AM, Cerqueira MA, Bañobre-Lópes M, Pastrana LM, Sillankorva S. Bacteriophages for chronic wound treatment: From traditional to novel delivery systems. Viruses 2020; 12(2): 1-29.
[http://dx.doi.org/10.3390/v12020235] [PMID: 32093349]
[49]
Gurusamy KS, Koti R, Toon CD, Wilson P, Davidson BR. Antibiotic therapy for the treatment of methicillin-resistant Staphylococcus aureus (MRSA) in non surgical wounds. Cochrane Database Syst Rev 2013; 2013(11): CD010427.
[PMID: 24242704]
[50]
Chhibber S, Kaur T, Sandeep K. Co-therapy using lytic bacteriophage and linezolid: effective treatment in eliminating methicillin resistant Staphylococcus aureus (MRSA) from diabetic foot infections. PLoS One 2013; 8(2): e56022.
[http://dx.doi.org/10.1371/journal.pone.0056022] [PMID: 23418497]
[51]
Sindhu S. An Overview on Diabetic Foot Ulcer (DFU): Mini Review. Diabetes Case Reports 2018; 03(01): 3-5.
[52]
Huang Y, Kyriakides TR. The role of extracellular matrix in the pathophysiology of diabetic wounds. Matrix Biol Plus 2020; 6-7: 100037.
[http://dx.doi.org/10.1016/j.mbplus.2020.100037] [PMID: 33543031]
[53]
Schultz GS, Ladwig G, Wysocki A. Extracellular matrix: Review of its roles in acute and chronic wounds. World Wide Wounds 2017; 2005: 2005.
[54]
Schultz GS, Wysocki A. Interactions between extracellular matrix and growth factors in wound healing. Wound Repair Regen 2009; 17(2): 153-62.
[http://dx.doi.org/10.1111/j.1524-475X.2009.00466.x] [PMID: 19320882]
[55]
Dhivya S, Padma VV, Santhini E. Wound dressings - a review. Biomedicine (Taipei) 2015; 5(4): 22.
[http://dx.doi.org/10.7603/s40681-015-0022-9] [PMID: 26615539]
[56]
Broussard KC, Powers JG. Wound dressings: selecting the most appropriate type. Am J Clin Dermatol 2013; 14(6): 449-59.
[http://dx.doi.org/10.1007/s40257-013-0046-4] [PMID: 24062083]
[57]
Jin SG, Kim KS, Kim DW, et al. Development of a novel sodium fusidate-loaded triple polymer hydrogel wound dressing: Mechanical properties and effects on wound repair. Int J Pharm 2016; 497(1-2): 114-22.
[http://dx.doi.org/10.1016/j.ijpharm.2015.12.007] [PMID: 26657270]
[58]
Boulton AJM, Young MJ. The Diabetic Foot. Diabetes Old Age 2009; 113-35.
[59]
Tiwari G, Tiwari R, Sriwastawa B, et al. Drug delivery systems: An updated review. Int J Pharm Investig 2012; 2(1): 2-11.
[http://dx.doi.org/10.4103/2230-973X.96920] [PMID: 23071954]
[60]
Li C, Wang J, Wang Y, et al. Recent progress in drug delivery. Acta Pharm Sin B 2019; 9(6): 1145-62.
[http://dx.doi.org/10.1016/j.apsb.2019.08.003] [PMID: 31867161]
[61]
Okur NÜ, Yağcılar AP, Siafaka PI. Promising polymeric drug carriers for local delivery; the case of in situ gels. Curr Drug Deliv 2020; 17(8): 675-93.
[http://dx.doi.org/10.2174/1567201817666200608145748] [PMID: 32510291]
[62]
Marcos Luciano Bruschi. Drug delivery systems. In: Strategies to Modify the Drug Release from Pharmaceutical Systems. 2015; pp. 87-194.
[63]
Wang W, Lu KJ, Yu CH, Huang QL, Du YZ. Nano-drug delivery systems in wound treatment and skin regeneration. J Nanobiotechnology 2019; 17(1): 82.
[http://dx.doi.org/10.1186/s12951-019-0514-y] [PMID: 31291960]
[64]
Bruschi ML, Ed. Main mechanisms to control the drug release. Strategies to modify the drug release from pharmaceutical systems. Elsevier 2015; pp. 37-62.
[http://dx.doi.org/10.1016/B978-0-08-100092-2.00004-7]
[65]
Son GH, Lee BJ, Cho CW. Mechanisms of drug release from advanced drug formulations such as polymeric-based drug-delivery systems and lipid nanoparticles. J Pharm Investig 2017; 47(4): 287-96.
[http://dx.doi.org/10.1007/s40005-017-0320-1]
[66]
Ezhilarasu H, Vishalli D, Dheen ST, Bay B-H, Srinivasan DK. Nanoparticle-Based therapeutic approach for diabetic wound healing. Nanomaterials (Basel) 2020; 10(6): 1234.
[http://dx.doi.org/10.3390/nano10061234] [PMID: 32630377]
[67]
Elviri L, Bianchera A, Bergonzi C, Bettini R. Controlled local drug delivery strategies from chitosan hydrogels for wound healing. Expert Opin Drug Deliv 2017; 14(7): 897-908.
[http://dx.doi.org/10.1080/17425247.2017.1247803] [PMID: 27732106]
[68]
Chin JS, Madden L, Chew SY, Becker DL. Drug therapies and delivery mechanisms to treat perturbed skin wound healing. Adv Drug Deliv Rev 2019; 149-150: 2-18.
[http://dx.doi.org/10.1016/j.addr.2019.03.006] [PMID: 30959068]
[69]
Gianino E, Miller C, Gilmore J. Smart wound dressings for diabetic chronic wounds. Vol. 5. Bioengineering (Basel) 2018; 5(3): 51.
[http://dx.doi.org/10.3390/bioengineering5030051] [PMID: 29949930]
[70]
Negut I, Grumezescu V, Grumezescu AM. Treatment strategies for infected wounds. Molecules 2018; 23(9): 1-23.
[http://dx.doi.org/10.3390/molecules23092392] [PMID: 30231567]
[71]
Faisul AFA, Mohd FFNA, Tong WY, Syed Abdullah SS. Interaction of silver sulfadiazine wıth bacterial cellulose viaex-situ modification method as an alternative diabetic wound healing. Biocatal Agric Biotechnol 2019; 21: 101332.
[http://dx.doi.org/10.1016/j.bcab.2019.101332]
[72]
Jneid J, Lavigne JP, La Scola B, Cassir N. The diabetic foot microbiota: A review. Hum Microbiome J 2017; 5–6: 1-6.
[http://dx.doi.org/10.1016/j.humic.2017.09.002]
[73]
Spichler A, Hurwitz BL, Armstrong DG, Lipsky BA. Microbiology of diabetic foot infections: from Louis Pasteur to ‘crime scene investigation’. BMC Med 2015; 13: 2.
[http://dx.doi.org/10.1186/s12916-014-0232-0] [PMID: 25564342]
[74]
Leaper DJ, Schultz G, Carville K, Fletcher J, Swanson T, Drake R. Extending the TIME concept: what have we learned in the past 10 years?(*). Int Wound J 2012; 9(Suppl. 2): 1-19.
[http://dx.doi.org/10.1111/j.1742-481X.2012.01097.x] [PMID: 23145905]
[75]
Selvaggi G, Monstrey S, Van Landuyt K, Hamdi M, Blondeel P. The role of iodine in antisepsis and wound management: a reappraisal. Acta Chir Belg 2003; 103(3): 241-7.
[http://dx.doi.org/10.1080/00015458.2003.11679417] [PMID: 12914356]
[76]
Daeschlein G. Antimicrobial and antiseptic strategies in wound management. Int Wound J 2013; 10(S1)(Suppl. 1): 9-14.
[http://dx.doi.org/10.1111/iwj.12175] [PMID: 24251838]
[77]
Kuwabara M, Sato Y, Ishihara M, et al. Healing of Pseudomonas aeruginosa-infected wounds in diabetic db/db mice by weakly acidic hypochlorous acid cleansing and silver nanoparticle/chitin-nanofiber sheet covering. Wound Med 2020; 28: 100183.
[http://dx.doi.org/10.1016/j.wndm.2020.100183]
[78]
Jo C, Zena EH, Issn CD. Antibiotics and antiseptics for pressure ulcers. Cochrane Database Syst Rev 2016; 2016(4): CD011586.
[79]
Kadam S, Nadkarni S, Lele J, Sakhalkar S, Mokashi P, Kaushik KS. Bioengineered platforms for chronic wound infection studies: how can we make them more human-relevant? Front Bioeng Biotechnol 2019; 7(418)
[http://dx.doi.org/10.3389/fbioe.2019.00418]
[80]
Shenoy S, Murthy R, Mohan L, Gowda A, Nelluri VM. Effect of topical sodium fusidate, calcium mupirocin and papain—urea on wound healing in diabetic wistar rats. Natl J Physiol Pharm Pharmacol 2016; 6(3): 209-14.
[http://dx.doi.org/10.5455/njppp.2016.6.28012016115]
[81]
Aherrao N, Shahi SK, Dwivedi A, Kumar A, Gupta S, Singh SK. Detection of anaerobic infection in diabetic foot ulcer using PCR technique and the status of metronidazole therapy on treatment outcome. Wounds 2012; 24(10): 283-8.
[PMID: 25876052]
[82]
Ramirez-Acuña JM, Cardenas-Cadena SA, Marquez-Salas PA, et al. Diabetic foot ulcers: Current advances in antimicrobial therapies and emerging treatments. Antibiotics (Basel) 2019; 8(4): 1-32.
[http://dx.doi.org/10.3390/antibiotics8040193] [PMID: 31652990]
[83]
Choudhury H, Pandey M, Lim YQ, et al. Silver nanoparticles: Advanced and promising technology in diabetic wound therapy. Mater Sci Eng C 2020; 112(April): 110925.
[http://dx.doi.org/10.1016/j.msec.2020.110925] [PMID: 32409075]
[84]
Alavi M, Nokhodchi A. An overview on antimicrobial and wound healing properties of ZnO nanobiofilms, hydrogels, and bionanocomposites based on cellulose, chitosan, and alginate polymers. Carbohydr Polym 2020; 227(September 2019): 115349.
[http://dx.doi.org/10.1016/j.carbpol.2019.115349]
[85]
Blakney AK, Ball C. Fabrication of polylactide/poly(ε-caprolactone) blend fibers by electrospinning: Morphology and orientation. J Mater Sci Mater Med 2013; 26(1): S9-S16.
[86]
Teo EY, Ong SY, Chong MS, et al. Polycaprolactone-based fused deposition modeled mesh for delivery of antibacterial agents to infected wounds. Biomaterials 2011; 32(1): 279-87.
[http://dx.doi.org/10.1016/j.biomaterials.2010.08.089] [PMID: 20870283]
[87]
Gámez E, Mendoza G, Salido S, Arruebo M, Irusta S. Antimicrobial electrospun polycaprolactone-based wound dressings: an in vitro study about the importance of the direct contact to elicit bactericidal activity. Adv Wound Care (New Rochelle) 2019; 8(9): 438-51.
[http://dx.doi.org/10.1089/wound.2018.0893] [PMID: 31737424]
[88]
Ahmed R, Tariq M, Ali I, et al. Novel electrospun chitosan/polyvinyl alcohol/zinc oxide nanofibrous mats with antibacterial and antioxidant properties for diabetic wound healing. Int J Biol Macromol 2018; 120(Pt A): 385-93.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.08.057] [PMID: 30110603]
[89]
El-Ela FIA, Farghali AA, Mahmoud RK, Mohamed NA, Moaty SAA. New approach in ulcer prevention and wound healing treatment using doxycycline and amoxicillin/LDH Nanocomposites. Sci Rep 2019; 9(1): 6418.
[http://dx.doi.org/10.1038/s41598-019-42842-2] [PMID: 31015527]
[90]
Misra R, Sahoo SK. Antibacterial activity of doxycycline-loaded nanoparticles.Methods in Enzymology. (1st ed.). Elsevier Inc. 2012; 509: pp. 61-85.
[http://dx.doi.org/10.1016/B978-0-12-391858-1.00004-6]
[91]
Umashankar MS, Lakshmi KS. A study of effect of cephalosporin drug loaded topical nanogel formulation on the bacterial load of diabetic foot ulcers load of diabetic foot ulcers. J Diabetes Metab 2018; 09: 6156.
[http://dx.doi.org/10.4172/2155-6156-C6-093]
[92]
Shailesh T, Kulkarni PK. Mupirocin loaded liposomal hydrogels for diabetic wound healing properties. Indian J Adv Chem Sci 2014; 2: 42-5.
[93]
Jung WK, Koo HC, Kim KW, Shin S, Kim SH, Park YH. Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli. Appl Environ Microbiol 2008; 74(7): 2171-8.
[http://dx.doi.org/10.1128/AEM.02001-07] [PMID: 18245232]
[94]
Masood N, Ahmed R, Tariq M, et al. Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits. Int J Pharm 2019; 559: 23-36.
[http://dx.doi.org/10.1016/j.ijpharm.2019.01.019] [PMID: 30668991]
[95]
Singla R, Soni S, Patial V, et al. Cytocompatible anti-microbial dressings of syzygium cumini cellulose nanocrystals decorated with silver nanoparticles accelerate acute and diabetic wound healing. Sci Rep 2017; 7(1): 10457.
[http://dx.doi.org/10.1038/s41598-017-08897-9] [PMID: 28874762]
[96]
Singla R, Soni S, Patial V, et al. In vivo diabetic wound healing potential of nanobiocomposites containing bamboo cellulose nanocrystals impregnated with silver nanoparticles. Int J Biol Macromol 2017; 105(Pt 1): 45-55.
[http://dx.doi.org/10.1016/j.ijbiomac.2017.06.109] [PMID: 28669805]
[97]
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic delivery strategies to treat skin infections when innate antimicrobial defense fails. Antibiotics (Basel) 2020; 9(2): 1-25.
[http://dx.doi.org/10.3390/antibiotics9020056] [PMID: 32024064]
[98]
Chereddy KK, Lopes A, Koussoroplis S, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds. Nanomedicine 2015; 11(8): 1975-84.
[http://dx.doi.org/10.1016/j.nano.2015.07.006] [PMID: 26238081]
[99]
Gainza G, Villullas S, Pedraz JL, Hernandez RM, Igartua M. Advances in drug delivery systems (DDSs) to release growth factors for wound healing and skin regeneration. Nanomedicine 2015; 11(6): 1551-73.
[http://dx.doi.org/10.1016/j.nano.2015.03.002] [PMID: 25804415]
[100]
Ljubimov AV, Saghizadeh M. Progress in corneal wound healing. Prog Retin Eye Res 2015; 49: 17-45.
[http://dx.doi.org/10.1016/j.preteyeres.2015.07.002] [PMID: 26197361]
[101]
Devalliere J, Dooley K, Hu Y, Kelangi SS, Uygun BE, Yarmush ML. Co-delivery of a growth factor and a tissue-protective molecule using elastin biopolymers accelerates wound healing in diabetic mice. Biomaterials 2017; 141: 149-60.
[http://dx.doi.org/10.1016/j.biomaterials.2017.06.043] [PMID: 28688286]
[102]
Zhou K, Ma Y, Brogan MS. Chronic and non-healing wounds: The story of vascular endothelial growth factor. Med Hypotheses 2015; 85(4): 399-404.
[http://dx.doi.org/10.1016/j.mehy.2015.06.017] [PMID: 26138626]
[103]
Lai HJ, Kuan CH, Wu HC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing. Acta Biomater 2014; 10(10): 4156-66.
[http://dx.doi.org/10.1016/j.actbio.2014.05.001] [PMID: 24814882]
[104]
Mohanty C, Pradhan J. A human epidermal growth factor-curcumin bandage bioconjugate loaded with mesenchymal stem cell for in vivo diabetic wound healing. Mater Sci Eng C 2020; 111: 110751.
[http://dx.doi.org/10.1016/j.msec.2020.110751] [PMID: 32279771]
[105]
Sen S, Basak P, Prasad Sinha B, et al. Anti-inflammatory effect of epidermal growth factor conjugated silk fibroin immobilized polyurethane ameliorates diabetic burn wound healing. Int J Biol Macromol 2020; 143: 1009-32.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.09.219] [PMID: 31647938]
[106]
Choi JK, Jang JH, Jang WH, et al. The effect of epidermal growth factor (EGF) conjugated with low-molecular-weight protamine (LMWP) on wound healing of the skin. Biomaterials 2012; 33(33): 8579-90.
[http://dx.doi.org/10.1016/j.biomaterials.2012.07.061] [PMID: 22910220]
[107]
Pyun DG, Choi HJ, Yoon HS, Thambi T, Lee DS. Polyurethane foam containing rhEGF as a dressing material for healing diabetic wounds: Synthesis, characterization, in vitro and in vivo studies. Colloids Surf B Biointerfaces 2015; 135: 699-706.
[http://dx.doi.org/10.1016/j.colsurfb.2015.08.029] [PMID: 26340359]
[108]
Hardwicke JT, Hart J, Bell A, Duncan R, Thomas DW, Moseley R. The effect of dextrin-rhEGF on the healing of full-thickness, excisional wounds in the (db/db) diabetic mouse. J Control Release 2011; 152(3): 411-7.
[http://dx.doi.org/10.1016/j.jconrel.2011.03.016] [PMID: 21435363]
[109]
Choi JU, Lee SW, Pangeni R, Byun Y, Yoon IS, Park JW. Preparation and in vivo evaluation of cationic elastic liposomes comprising highly skin-permeable growth factors combined with hyaluronic acid for enhanced diabetic wound-healing therapy. Acta Biomater 2017; 57: 197-215.
[http://dx.doi.org/10.1016/j.actbio.2017.04.034] [PMID: 28476587]
[110]
Das S, Majid M, Baker AB. Syndecan-4 enhances PDGF-BB activity in diabetic wound healing. Acta Biomater 2016; 42: 56-65.
[http://dx.doi.org/10.1016/j.actbio.2016.07.001] [PMID: 27381525]
[111]
Choi SM, Lee KM, Kim HJ, et al. Effects of structurally stabilized EGF and bFGF on wound healing in type I and type II diabetic mice. Acta Biomater 2018; 66: 325-34.
[http://dx.doi.org/10.1016/j.actbio.2017.11.045] [PMID: 29203426]
[112]
Notodihardjo SC, Morimoto N, Munisso MC, et al. A comparison of the wound healing process after application of three dermal substitutes with or without basic fibroblast growth factor impregnation in diabetic mice. J Plast Reconstr Aesthetic Surg 2020.
[http://dx.doi.org/10.1016/j.bjps.2020.01.031]
[113]
Mikami T, Kaida E, Yabuki Y, Kitamura S, Kokubo K, Maegawa J. Negative pressure wound therapy followed by basic fibroblast growth factor spray as a recovery technique in partial necrosis of distally based sural flap for calcaneal osteomyelitis: A case report. J Foot Ankle Surg 2018; 57(4): 816-20.
[http://dx.doi.org/10.1053/j.jfas.2017.11.011] [PMID: 29605553]
[114]
Losi P, Briganti E, Errico C, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice. Acta Biomater 2013; 9(8): 7814-21.
[http://dx.doi.org/10.1016/j.actbio.2013.04.019] [PMID: 23603001]
[115]
Xie L, Zhang M, Dong B, et al. Improved refractory wound healing with administration of acidic fibroblast growth factor in diabetic rats. Diabetes Res Clin Pract 2011; 93(3): 396-403.
[http://dx.doi.org/10.1016/j.diabres.2011.05.016] [PMID: 21641072]
[116]
Decker CG, Wang Y, Paluck SJ, et al. Fibroblast growth factor 2 dimer with superagonist in vitro activity improves granulation tissue formation during wound healing. Biomaterials 2016; 81: 157-68.
[http://dx.doi.org/10.1016/j.biomaterials.2015.12.003] [PMID: 26731578]
[117]
Lord MS, Ellis AL, Farrugia BL, et al. Perlecan and vascular endothelial growth factor-encoding DNA-loaded chitosan scaffolds promote angiogenesis and wound healing. J Control Release 2017; 250: 48-61.
[http://dx.doi.org/10.1016/j.jconrel.2017.02.009] [PMID: 28189628]
[118]
Freudenberg U, Zieris A, Chwalek K, et al. Heparin desulfation modulates VEGF release and angiogenesis in diabetic wounds. J Control Release 2015; 220(Pt A): 79-88.
[http://dx.doi.org/10.1016/j.jconrel.2015.10.028] [PMID: 26478015]
[119]
Yan X, Chen B, Lin Y, et al. Acceleration of diabetic wound healing by collagen-binding vascular endothelial growth factor in diabetic rat model. Diabetes Res Clin Pract 2010; 90(1): 66-72.
[http://dx.doi.org/10.1016/j.diabres.2010.07.001] [PMID: 20667614]
[120]
Okizaki S, Ito Y, Hosono K, et al. Vascular endothelial growth factor receptor type 1 signaling prevents delayed wound healing in diabetes by attenuating the production of IL-1β by recruited macrophages. Am J Pathol 2016; 186(6): 1481-98.
[http://dx.doi.org/10.1016/j.ajpath.2016.02.014] [PMID: 27085138]
[121]
Azizi S, Kheirandish R, Salarpoor M. Topical effect of allogenous serum rich in growth factors (SRGF) on diabetic skin wound in rat. Transfus Apheresis Sci 2019; 58(4): 498-504.
[http://dx.doi.org/10.1016/j.transci.2019.05.014] [PMID: 31311752]
[122]
Park KH, Han SH, Hong JP, et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: A phase III multicenter, double-blind, randomized, placebo-controlled trial. Diabetes Res Clin Pract 2018; 142: 335-44.
[http://dx.doi.org/10.1016/j.diabres.2018.06.002] [PMID: 29902542]
[123]
Okur ME, Ayla Ş, Yozgatlı V, et al. Evaluation of burn wound healing activity of novel fusidic acid loaded microemulsion based gel in male Wistar albino rats. Saudi Pharm J 2020; 28(3): 338-48.
[http://dx.doi.org/10.1016/j.jsps.2020.01.015] [PMID: 32194336]
[124]
Okur ME, Ayla Ş, Çiçek PD, Günal MY, Yoltaş A, Biçeroğlu Ö. Novel insight into wound healing properties of methanol extract of Capparis ovata Desf. var. palaestina Zohary fruits. J Pharm Pharmacol 2018; 70(10): 1401-13.
[http://dx.doi.org/10.1111/jphp.12977] [PMID: 29984824]
[125]
Lordani TVA, de Lara CE, Ferreira FBP, et al. Therapeutic effects of medicinal plants on cutaneous wound healing in humans: a systematic review. Mediators Inflamm 2018; 2018: 7354250.
[http://dx.doi.org/10.1155/2018/7354250] [PMID: 29805312]
[126]
Reza FM. Medicinal plants in wound healing. Wound healing - current perspectives. IntechOpen 2019; pp. 33-47.
[http://dx.doi.org/10.5772/intechopen.80215]
[127]
Oguntibeju OO. Medicinal plants and their effects on diabetic wound healing. Vet World 2019; 12(5): 653-63.
[http://dx.doi.org/10.14202/vetworld.2019.653-663] [PMID: 31327900]
[128]
Karadağ AE, İpekçi E, Yağcilar AP, Demirbolat İ, Kartal M, Siafaka PI. Antibacterial evaluation of Elettaria cardamomum (L.) Maton, Lavandula angustifolia Mill. and Salvia fruticosa Mill. essential oil combinations in mouthwash preparations. Nat Volatiles Essent Oils 2020; 7(1): 9-17.
[129]
Limem-Ben AI, Boubaker J, Ben SM, et al. Phytochemistry and biological activities of Phlomis species. J Ethnopharmacol 2009; 125(2): 183-202.
[http://dx.doi.org/10.1016/j.jep.2009.06.022] [PMID: 19563875]
[130]
Tabassum N, Ahmad F. Role of natural herbs in the treatment of hypertension. Pharmacogn Rev 2011; 5(9): 30-40.
[http://dx.doi.org/10.4103/0973-7847.79097] [PMID: 22096316]
[131]
Okur ME, Karantas ID, Okur NU, Siafaka PI. Hypertension in 2017: update in treatment and pharmaceutical innovations. Curr Pharm Des 2017; 23(44): 6795-814.
[http://dx.doi.org/10.2174/1381612823666170927123454] [PMID: 28969533]
[132]
Zatalia SR, Sanusi H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med Indones 2013; 45(2): 141-7.
[PMID: 23770795]
[133]
Zhang P, He L, Zhang J, et al. Preparation of novel berberine nano-colloids for improving wound healing of diabetic rats by acting Sirt1/NF-κB pathway. Colloids Surf B Biointerfaces 2020; 187(November): 110647.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110647] [PMID: 31761520]
[134]
Medeiros SCL. Effect of hyaluronic acid on skin healing in diabetic rats. J Surg Clin Res 2019; 10(2): 76-87.
[http://dx.doi.org/10.20398/jscr.v10i2.18825]
[135]
Ren J, Yang M, Xu F, Chen J, Ma S. Acceleration of wound healing activity with syringic acid in streptozotocin induced diabetic rats. Life Sci 2019; 233(June): 116728.
[http://dx.doi.org/10.1016/j.lfs.2019.116728] [PMID: 31386877]
[136]
Sun M, Xie Q, Cai X, et al. Preparation and characterization of epigallocatechin gallate, ascorbic acid, gelatin, chitosan nanoparticles and their beneficial effect on wound healing of diabetic mice. Int J Biol Macromol 2020; 148: 777-84.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.01.198] [PMID: 31978475]
[137]
Marchianti ACN, Sakinah EN, Elfiah U, et al. Gel formulations of Merremia mammosa (Lour.) accelerated wound healing of the wound in diabetic rats. J Tradit Complement Med 2019; 11(1): 38-45.
[http://dx.doi.org/10.1016/j.jtcme.2019.12.002] [PMID: 33511060]
[138]
Shrivastav A, Kumar Mishra A, Abid M, Ahmad A, Fabuzinadah M, Khan NA. Extracts of Tridax procumbens linn leaves causes wound healing in diabetic and Non-diabetic laboratory animals. Wound Med 2020; 29: 100185.
[http://dx.doi.org/10.1016/j.wndm.2020.100185]
[139]
Dwita LP, Hasanah F, Srirustami RR, Purnomo R, Harsodjo S. Wound healing properties of Epiphyllum oxypetalum (DC.) Haw. leaf extract in streptozotocin-induced diabetic mice by topical application. Wound Med 2019; 26(1): 100160.
[http://dx.doi.org/10.1016/j.wndm.2019.100160]
[140]
Shukla R, Kashaw SK, Jain AP, Lodhi S. Fabrication of Apigenin loaded gellan gum-chitosan hydrogels (GGCH-HGs) for effective diabetic wound healing. Int J Biol Macromol 2016; 91: 1110-9.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.06.075] [PMID: 27344952]
[141]
Pawar RS, Kumar S, Toppo FA. PK L, Suryavanshi P. Sida cordifolia Linn. accelerates wound healing process in type 2 diabetic rats. J Acute Med 2016; 6(4): 82-9.
[http://dx.doi.org/10.1016/j.jacme.2016.08.004]
[142]
El Sayed AM, Ezzat SM, El Naggar MM, El Hawary SS. In vivo diabetic wound healing effect and HPLC–DAD–ESI–MS/MS profiling of the methanol extracts of eight Aloe species. Rev Bras Farmacogn 2016; 26(3): 352-62.
[http://dx.doi.org/10.1016/j.bjp.2016.01.009]
[143]
Singh A, Bajpai S, Singh N, Kumar V, Gour JK, Singh PK, et al. Wound healing activity of standardized extract of Curculigo orchioides in streptozotocin–induced diabetic mice. Asian Pac J Trop Dis 2014; 4: S48-53.
[http://dx.doi.org/10.1016/S2222-1808(14)60414-X]
[144]
Güzel S, Özay Y, Kumaş M, et al. Wound healing properties, antimicrobial and antioxidant activities of Salvia kronenburgii Rech. f. and Salvia euphratica Montbret, Aucher & Rech. f. var. euphratica on excision and incision wound models in diabetic rats. Biomed Pharmacother 2019; 111: 1260-76.
[http://dx.doi.org/10.1016/j.biopha.2019.01.038] [PMID: 30841440]
[145]
Colobatiu L, Gavan A, Potarniche A-V, et al. Evaluation of bioactive compounds-loaded chitosan films as a novel and potential diabetic wound dressing material. React Funct Polym 2019; 145: 104369.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.104369]
[146]
Colobatiu L, Gavan A, Mocan A, Bogdan C, Mirel S, Tomuta I. Development of bioactive compounds-loaded chitosan films by using a QbD approach – A novel and potential wound dressing material. React Funct Polym 2019; 138: 46-54.
[http://dx.doi.org/10.1016/j.reactfunctpolym.2019.02.013]
[147]
Voss GT, Gularte MS, Vogt AG, et al. Polysaccharide-based film loaded with vitamin C and propolis: A promising device to accelerate diabetic wound healing. Int J Pharm 2018; 552(1-2): 340-51.
[http://dx.doi.org/10.1016/j.ijpharm.2018.10.009] [PMID: 30300708]
[148]
Kamar SS, Abdel-Kader DH, Rashed LA. Beneficial effect of curcumin Nanoparticles-Hydrogel on excisional skin wound healing in type-I diabetic rat: Histological and immunohistochemical studies. Ann Anat 2019; 222: 94-102.
[http://dx.doi.org/10.1016/j.aanat.2018.11.005] [PMID: 30521949]
[149]
Kant V, Gopal A, Kumar D, et al. Curcumin-induced angiogenesis hastens wound healing in diabetic rats. J Surg Res 2015; 193(2): 978-88.
[http://dx.doi.org/10.1016/j.jss.2014.10.019] [PMID: 25454972]
[150]
Akbar MU, Zia KM, Akash MSH, Nazir A, Zuber M, Ibrahim M. In-vivo anti-diabetic and wound healing potential of chitosan/alginate/maltodextrin/pluronic-based mixed polymeric micelles: Curcumin therapeutic potential. Int J Biol Macromol 2018; 120(Pt B): 2418-30.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.09.010] [PMID: 30195611]
[151]
Karri VVSR, Kuppusamy G, Talluri SV, et al. Curcumin loaded chitosan nanoparticles impregnated into collagen-alginate scaffolds for diabetic wound healing. Int J Biol Macromol 2016; 93(Pt B): 1519-29.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.05.038] [PMID: 27180291]
[152]
Xu N, Wang L, Guan J, et al. Wound healing effects of a Curcuma zedoaria polysaccharide with platelet-rich plasma exosomes assembled on chitosan/silk hydrogel sponge in a diabetic rat model. Int J Biol Macromol 2018; 117: 102-7.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.066] [PMID: 29772339]
[153]
Ranjbar-Mohammadi M, Rabbani S, Bahrami SH, Joghataei MT, Moayer F. Antibacterial performance and in vivo diabetic wound healing of curcumin loaded gum tragacanth/poly(ε-caprolactone) electrospun nanofibers. Mater Sci Eng C 2016; 69: 1183-91.
[http://dx.doi.org/10.1016/j.msec.2016.08.032] [PMID: 27612816]
[154]
Ranjbar MM, Kargozar S, Bahrami SH, Rabbani S. An excellent nanofibrous matrix based on gum tragacanth-poly (Ɛ-caprolactone)-poly (vinyl alcohol) for application in diabetic wound healing. Polym Degrad Stabil 2020; 174: 109105.
[http://dx.doi.org/10.1016/j.polymdegradstab.2020.109105]
[155]
Thangavel P, Ramachandran B, Chakraborty S, Kannan R, Lonchin S, Muthuvijayan V. Accelerated healing of diabetic wounds treated with l-glutamic acid loaded hydrogels through enhanced collagen deposition and angiogenesis: An in vivo Study. Sci Rep 2017; 7(1): 10701.
[http://dx.doi.org/10.1038/s41598-017-10882-1] [PMID: 28878327]
[156]
Grip J, Engstad RE, Skjæveland I, et al. Beta-glucan-loaded nanofiber dressing improves wound healing in diabetic mice. Eur J Pharm Sci 2018; 121: 269-80.
[http://dx.doi.org/10.1016/j.ejps.2018.05.031] [PMID: 29864585]
[157]
Intini C, Elviri L, Cabral J, et al. 3D-printed chitosan-based scaffolds: An in vitro study of human skin cell growth and an in-vivo wound healing evaluation in experimental diabetes in rats. Carbohydr Polym 2018; 199: 593-602.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.057] [PMID: 30143167]
[158]
Yang Y, Wang F, Yin D, Fang Z, Huang L. Astragulus polysaccharide-loaded fibrous mats promote the restoration of microcirculation in/around skin wounds to accelerate wound healing in a diabetic rat model. Colloids Surf B Biointerfaces 2015; 136: 111-8.
[http://dx.doi.org/10.1016/j.colsurfb.2015.09.006] [PMID: 26370325]
[159]
Gokce EH, Tuncay TS, Eroglu I, et al. Wound healing effects of collagen-laminin dermal matrix impregnated with resveratrol loaded hyaluronic acid-DPPC microparticles in diabetic rats. Eur J Pharm Biopharm 2017; 119: 17-27.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.027] [PMID: 28461085]
[160]
Tan WS, Arulselvan P, Ng S-F, Mat Taib CN, Sarian MN, Fakurazi S. Improvement of diabetic wound healing by topical application of Vicenin-2 hydrocolloid film on Sprague Dawley rats. BMC Complement Altern Med 2019; 19(1): 20.
[http://dx.doi.org/10.1186/s12906-018-2427-y] [PMID: 30654793]
[161]
Rashidi MK, Mirazi N, Hosseini A. Effect of topical mixture of honey, royal jelly and olive oil-propolis extract on skin wound healing in diabetic rats. Wound Med 2016; 12: 6-9.
[http://dx.doi.org/10.1016/j.wndm.2015.12.001]
[162]
Herianto RS, Masraini DN. Effectiveness of using sialang honey on wound bed preparation in diabetic foot ulcer. Enferm Clin 2019; 29(Suppl. 1): 88-90.
[http://dx.doi.org/10.1016/j.enfcli.2018.11.028] [PMID: 30733129]
[163]
Aryani R, Nurulhuda U, Dinarti , Arisanty IP, Zaki M. Comparison of honey and natural ointment based on honey-tea tree oil on the healing of diabetic foot ulcer. Enferm Clin 2020; 30(Suppl. 3): 14-7.
[http://dx.doi.org/10.1016/j.enfcli.2019.12.016] [PMID: 32331737]
[164]
Gao S-Q, Chang C, Niu X-Q, Li L-J, Zhang Y, Gao J-Q. Topical application of Hydroxysafflor Yellow A accelerates the wound healing in streptozotocin induced T1DM rats. Eur J Pharmacol 2018; 823: 72-8.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.018] [PMID: 29408092]
[165]
Siavash M, Shokri S, Haghighi S, Shahtalebi MA, Farajzadehgan Z. The efficacy of topical royal jelly on healing of diabetic foot ulcers: a double-blind placebo-controlled clinical trial. Int Wound J 2015; 12(2): 137-42.
[http://dx.doi.org/10.1111/iwj.12063] [PMID: 23566071]
[166]
Kamel R, El-Batanony R, Salama A. Pioglitazone-loaded three-dimensional composite polymeric scaffolds: A proof of concept study in wounded diabetic rats. Int J Pharm 2019; 570(Oct): 118667.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118667] [PMID: 31494238]
[167]
El-Gizawy SA, Nouh A, Saber S, Kira AY. Deferoxamine-loaded transfersomes accelerates healing of pressure ulcers in streptozotocin-induced diabetic rats. J Drug Deliv Sci Technol 2020; 58(April): 101732.
[http://dx.doi.org/10.1016/j.jddst.2020.101732]
[168]
Abdelkader DH, Tambuwala MM, Mitchell CA, et al. Enhanced cutaneous wound healing in rats following topical delivery of insulin-loaded nanoparticles embedded in poly(vinyl alcohol)-borate hydrogels. Drug Deliv Transl Res 2018; 8(5): 1053-65.
[http://dx.doi.org/10.1007/s13346-018-0554-0] [PMID: 29971752]
[169]
Lima MHM, Caricilli AM, de Abreu LL, et al. Topical insulin accelerates wound healing in diabetes by enhancing the AKT and ERK pathways: a double-blind placebo-controlled clinical trial. PLoS One 2012; 7(5): e36974.
[http://dx.doi.org/10.1371/journal.pone.0036974] [PMID: 22662132]
[170]
Saghizadeh M, Dib CM, Brunken WJ, Ljubimov AV. Normalization of wound healing and stem cell marker patterns in organ-cultured human diabetic corneas by gene therapy of limbal cells. Exp Eye Res 2014; 129: 66-73.
[http://dx.doi.org/10.1016/j.exer.2014.10.022] [PMID: 25446319]
[171]
Lou D, Luo Y, Pang Q, Tan WQ, Ma L. Gene-activated dermal equivalents to accelerate healing of diabetic chronic wounds by regulating inflammation and promoting angiogenesis. Bioact Mater 2020; 5(3): 667-79.
[http://dx.doi.org/10.1016/j.bioactmat.2020.04.018] [PMID: 32420517]
[172]
Mulholland EJ, Dunne N, McCarthy HO. MicroRNA as therapeutic targets for chronic wound healing. Mol Ther Nucleic Acids 2017; 8(September): 46-55.
[http://dx.doi.org/10.1016/j.omtn.2017.06.003] [PMID: 28918046]
[173]
Kirby GTS, Mills SJ, Cowin AJ, Smith LE. Stem cells for cutaneous wound healing. Biomed Res Int 2015; 2015
[http://dx.doi.org/10.1155/2015/285869]
[174]
Gadelkarim M, Abushouk AI, Ghanem E, Hamaad AM, Saad AM, Abdel-Daim MM. Adipose-derived stem cells: Effectiveness and advances in delivery in diabetic wound healing. Biomed Pharmacother 2018; 107(July): 625-33.
[http://dx.doi.org/10.1016/j.biopha.2018.08.013] [PMID: 30118878]
[175]
Örgül D, Eroğlu H, Tiryaki M, Pınarlı FA, Hekimoglu S. In-vivo evaluation of tissue scaffolds containing simvastatin loaded nanostructured lipid carriers and mesenchymal stem cells in diabetic wound healing. J Drug Deliv Sci Technol 2020.
[176]
Uchiyama A, Motegi SI, Sekiguchi A, et al. Mesenchymal stem cells-derived MFG-E8 accelerates diabetic cutaneous wound healing. J Dermatol Sci 2017; 86(3): 187-97.
[http://dx.doi.org/10.1016/j.jdermsci.2017.02.285] [PMID: 28302404]
[177]
Kaisang L, Siyu W, Lijun F, Daoyan P, Xian CJ, Jie S. Adipose-derived stem cells seeded in Pluronic F-127 hydrogel promotes diabetic wound healing. J Surg Res 2017; 217: 63-74.
[http://dx.doi.org/10.1016/j.jss.2017.04.032] [PMID: 28595815]
[178]
Seo E, Lim JS, Jun JB, Choi W, Hong IS, Jun HS. Exendin-4 in combination with adipose-derived stem cells promotes angiogenesis and improves diabetic wound healing. J Transl Med 2017; 15(1): 35.
[http://dx.doi.org/10.1186/s12967-017-1145-4] [PMID: 28202074]
[179]
Macklin A, Khan S, Kislinger T. Recent advances in mass spectrometry based clinical proteomics: applications to cancer research. Clin Proteomics 2020; 17(1): 17.
[http://dx.doi.org/10.1186/s12014-020-09283-w] [PMID: 32489335]
[180]
Li JY, Wang ZJ, Deng AP, Li YM. ENA-78 Is a Novel Predictor of Wound Healing in Patients with Diabetic Foot Ulcers. J Diabetes Res 2019; 2019: 2695436.
[http://dx.doi.org/10.1155/2019/2695436] [PMID: 30775384]
[181]
Wang J, Zhou Y, Li Y, Xu Y, Liu G, Lu Z. Extensive serum biomarker analysis before and after treatment in healing of diabetic foot ulcers using a cytokine antibody array. Cytokine 2020; 133: 155173.
[http://dx.doi.org/10.1016/j.cyto.2020.155173] [PMID: 32585582]
[182]
Fadini GP, Albiero M, Millioni R, et al. The molecular signature of impaired diabetic wound healing identifies serpinB3 as a healing biomarker. Diabetologia 2014; 57(9): 1947-56.
[http://dx.doi.org/10.1007/s00125-014-3300-2] [PMID: 24962668]
[183]
Whitmont K, Fulcher G, Reid I, et al. Low circulating protein C levels are associated with lower leg ulcers in patients with diabetes. BioMed Res Int 2013; 2013: 719570.
[http://dx.doi.org/10.1155/2013/719570] [PMID: 23484147]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy