Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

Network Pharmacology Analysis of Molecular Mechanism of Curcuma longa L. Extracts Regulating Glioma Immune Inflammatory Factors: Implications for Precise Cancer Treatment

Author(s): Hui Li and Yongwei Li *

Volume 22, Issue 4, 2022

Published on: 10 September, 2021

Page: [259 - 267] Pages: 9

DOI: 10.2174/1568026621666210910123749

Price: $65

Abstract

Introduction: Curcuma longa L. has been associated with different antioxidant, antiinflammatory, bactericidal and anticancer effects, but the mechanisms of the effects are not yet clearly understood. This study aimed to investigate the key targets and the effect of potential molecular mechanisms of Curcuma longa L. extracts on glioma using different network pharmacology analysis approaches.

Methods: The components of Curcuma longa were extracted by gas chromatography-mass spectrometry (GC-MS), and the active components related to the occurrence and development of glioma were determined by traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP) database, and the same targets of the active components and glioma were screened by network pharmacology approach. Then, the protein’s function and regulatory pathway of the common targets were analyzed by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The protein’s action and regulatory pathway of the common targets were analyzed with the Cytoscape package using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database to construct the target interaction network through which the key targets were identified.

Results: GC-MS combined with TCMSP database was used to identify the active components related to the occurrence and development of glioma in Curcuma longa. Finally, we identified the active components 1-(1,5-Dimethyl-4-hexenyl)-4-methyl benzene and Zingiberene. At the same time, 190 target genes of Curcuma longa extracts on glioma were obtained using the Venn diagram. The results of GO analysis showed that the biological processes involved included a response to stimulation, metabolic process, inflammatory process, cell differentiation, and regulation of biological processes. KEGG analysis showed that the PI3K-Akt signaling pathway, MAPK signaling pathway, Th17 cell differentiation, and proteoglycan pathway might be involved in cancer. Further analyses showed that the IL-17 signaling pathway and Interleukin-4 and interleukin-13 signaling were involved in the inflammatory pathway. The analysis of key nodes showed that GSK3B, MAPK14, HSP90AA1, MAPK3 and MAPK8 were IL-17 signaling pathways, while HIF1A and JAK3 were Interleukin-4 and interleukin-13 signaling pathways.

Conclusion: Curcuma longa extracts can regulate the occurrence and development of glioma by regulating the immune-inflammatory responses.

Keywords: Curcuma longa L., Glioma, Network pharmacology, Immune inflammatory factors, IL-17, Signaling pathway.

[1]
Chen, Y.; Chen, H.; Shi, J. In vivo bio-safety evaluations and diagnostic/therapeutic applications of chemically designed mesoporous silica nanoparticles. Adv. Mater., 2013, 25(23), 3144-3176.
[http://dx.doi.org/10.1002/adma.201205292] [PMID: 23681931]
[2]
Zhuang, Q.; Hong, F.; Shen, A.; Zheng, L.; Zeng, J.; Lin, W.; Chen, Y.; Sferra, T.J.; Hong, Z.; Peng, J. Pien Tze Huang inhibits tumor cell proliferation and promotes apoptosis via suppressing the STAT3 pathway in a colorectal cancer mouse model. Int. J. Oncol., 2012, 40(5), 1569-1574.
[PMID: 22218594]
[3]
Nikakhlagh, S.; Rahim, F.; Aryani, F.H.N.; Syahpoush, A.; Brougerdnya, M.G.; Saki, N. Herbal treatment of allergic rhinitis: The use of Nigella sativa. Am. J. Otolaryngol. Head Neck Med. Surg., 2011, 32(5), 402-407.
[4]
Badimon, L.; Vilahur, G.; Padro, T. Nutraceuticals and atherosclerosis: human trials. Cardiovasc. Ther., 2010, 28(4), 202-215.
[http://dx.doi.org/10.1111/j.1755-5922.2010.00189.x] [PMID: 20633023]
[5]
Kotha, R.R.; Luthria, D.L. Curcumin: Biological, pharmaceutical, nutraceutical, and analytical aspects. Molecules, 2019, 24(16), 2930.
[6]
Tsuda, T. Curcumin as a functional food-derived factor: Degradation products, metabolites, bioactivity, and future perspectives. Food and Function. Roy. Soc. Chem., 2018, 9, 705-714.
[7]
Wang, Z.; Liu, F.; Liao, W.; Yu, L.; Hu, Z.; Li, M.; Xia, H. Curcumin suppresses glioblastoma cell proliferation by p-AKT/mTOR pathway and increases the PTEN expression. Arch. Biochem. Biophys., 2020, 689(Aug), 108412
[http://dx.doi.org/10.1016/j.abb.2020.108412] [PMID: 32445778]
[8]
Bush, N.A.O.; Chang, S.M.; Berger, M.S. Current and future strategies for treatment of glioma. Neurosurg. Rev., 2017, 40, 1-14.
[http://dx.doi.org/10.1007/s10143-016-0709-8]
[9]
Tang, B.; Guo, Z.S.; Bartlett, D.L.; Yan, D.Z.; Schane, C.P.; Thomas, D.L.; Liu, J.; McFadden, G.; Shisler, J.L.; Roy, E.J. Synergistic combination of oncolytic virotherapy and immunotherapy for glioma. Clin. Cancer Res., 2020, 26(9), 2216-2230.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3626] [PMID: 32019860]
[10]
Bagley, S.J.; Desai, A.S.; Nasrallah, M.P.; O’Rourke, D.M. Immunotherapy and response assessment in malignant glioma: Neuro-oncology perspective. Topics Mag. Res. Imaging; Lippincott Williams and Wilkins 2020, 29, 95-102.
[11]
Liu, X.; Zhao, P.; Wang, X.; Wang, L.; Zhu, Y.; Song, Y. Celastrol mediates autophagy and apoptosis via the ROS/JNK and Akt/mTOR signaling pathways in glioma cells. J. Exp. Clin. Cancer Res., 2019, 38(1), 284.
[http://dx.doi.org/10.1186/s13046-019-1285-x]
[12]
Luo, Q.; Luo, H.; Fu, H.; Huang, H.; Huang, H.; Luo, K.; Li, C.; Hu, R.; Zheng, C.; Lan, C.; Tang, Q. Curcumin suppresses invasiveness and migration of human glioma cells in vitro by inhibiting HDGF/β-catenin complex. Nan Fang Yi Ke Da Xue Xue Bao, 2019, 39(8), 911-916.
[PMID: 31511210]
[13]
Zhang, Y.; Tu, L.; Zhou, X.; Li, B. Curcumin-mediated induction of apoptosis in human glioma CHME cells. Med. Sci. Monit. Basic Res., 2018, 24, 216-224.
[http://dx.doi.org/10.12659/MSMBR.912313] [PMID: 30531680]
[14]
Tajuddin, W.N.B.W.M.; Lajis, N.H.; Abas, F.; Othman, I.; Naidu, R. Mechanistic understanding of curcumin’s therapeutic effects in lung cancer. Nutrients, 2019, 11(12), 2989.
[15]
Tan, B.L.; Norhaizan, M.E. Curcumin combination chemotherapy: The implication and efficacy in cancer. Molecules, 2019, 24(14), 2527.
[16]
Pricci, M.; Girardi, B.; Giorgio, F.; Losurdo, G.; Ierardi, E.; Di Leo, A. Curcumin and colorectal cancer: From basic to clinical evidences. Int. J. Mol. Sci., 2020, 21(7), 2364.
[17]
Yin, H.; Guo, Q.; Li, X.; Tang, T.; Li, C.; Wang, H.; Sun, Y.; Feng, Q.; Ma, C.; Gao, C.; Yi, F.; Peng, J. Curcumin suppresses IL-1β secretion and prevents inflammation through inhibition of the NLRP3 inflammasome. J. Immunol., 2018, 200(8), 2835-2846.
[http://dx.doi.org/10.4049/jimmunol.1701495] [PMID: 29549176]
[18]
Ouyang, S.; Yao, Y.H.; Zhang, Z.M.; Liu, J.S.; Xiang, H. Curcumin inhibits hypoxia inducible factor-1α-induced inflammation and apoptosis in macrophages through an ERK dependent pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(4), 1816-1825.
[PMID: 30840308]
[19]
Tang, J.; Yu, B.; Li, Y.; Zhang, W.; Alvarez, A.A.; Hu, B.; Cheng, S.Y.; Feng, H. TGF-β-activated lncRNA LINC00115 is a critical regulator of glioma stem-like cell tumorigenicity. EMBO Rep., 2019, 20(12)e48170
[http://dx.doi.org/10.15252/embr.201948170] [PMID: 31599491]
[20]
Chu, I.R.; Pan, R.L.; Yang, C.S. Differentiation of tumorigenic C6 glioma cells induced by enhanced IL-6 signaling. Medicina (Kaunas), 2020, 56(11), 1-14.
[http://dx.doi.org/10.3390/medicina56110625] [PMID: 33227992]
[21]
Zhan, X.; Gao, H.; Sun, W. Correlations of IL-6, IL-8, IL-10, IL-17 and TNF-α with the pathological stage and prognosis of glioma patients. In: Minerva Medica; Edizioni Minerva Medica, 2020; Minerva Medica, pp. 192-195.
[22]
Grabowski, M.M.; Sankey, E.W.; Ryan, K.J.; Chongsathidkiet, P.; Lorrey, S.J.; Wilkinson, D.S. Immune suppression in gliomas. J. Neurooncol., 2021, 151, 3-12.
[23]
Skyvalidas, D.N.; Mavropoulos, A.; Tsiogkas, S.; Dardiotis, E.; Liaskos, C.; Mamuris, Z.; Roussaki-Schulze, A.; Sakkas, L.I.; Zafiriou, E.; Bogdanos, D.P. Curcumin mediates attenuation of pro-inflammatory interferon γ and interleukin 17 cytokine responses in psoriatic disease, strengthening its role as a dietary immunosuppressant. Nutr. Res., 2020, 75, 95-108.
[http://dx.doi.org/10.1016/j.nutres.2020.01.005] [PMID: 32114280]
[24]
Sun, J.; Zhao, Y.; Jin, H.; Hu, J. Curcumin relieves TPA-induced Th1 inflammation in K14-VEGF transgenic mice. Int. Immunopharmacol., 2015, 25(2), 235-241.
[http://dx.doi.org/10.1016/j.intimp.2015.02.007] [PMID: 25682767]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy