Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Selective Estrogen Receptor Modulators (SERMs) Synergize with Cisplatin, Induce Apoptosis and Suppress Cellular Migration and Colony Formation of Lung Cancer Cells

Author(s): Lina Alsous and Sanaa Bardaweel*

Volume 22, Issue 9, 2022

Published on: 04 January, 2022

Page: [1826 - 1836] Pages: 11

DOI: 10.2174/1871520621666210908110902

Price: $65

Abstract

Background: Lung cancer remains the leading cause of cancer-related deaths worldwide. Hence, novel therapeutic approaches targeting crucial pathways are needed to improve its treatment. Previous studies have verified the involvement of the estrogen pathway, mediated through estrogen receptor β (ERβ), in the development and progression of lung carcinogenesis. Selective estrogen receptor modulators (SERMs) are a group of estrogen receptor agonists/antagonists that have tissue selective effects. Many of the available SERMs are used for the management of breast cancer. However, their role in lung cancer is still under investigation.

Objectives: The aim of this research is to investigate the anti-tumorigenic activity of the selective estrogen receptor modulators, tamoxifen, raloxifene, and toremifene, against different lung cancer cell lines.

Methods: The anti-proliferative and combined effects of SERMs with standard chemotherapy were evaluated by MTT assay. Cell migration was assessed using a wound-healing assay. The mechanism of cell death was determined using the Annexin V-FITC/ propidium iodide staining flow cytometry method. Cells’ capability to form colonies was evaluated by soft agar colony formation assay. Estrogen receptors expression was determined using real-time PCR.

Results: Our results have demonstrated the presence of ERβ in A549, H1299, and H661 lung cancer cells. Cellular proliferation assay suggested that SERMs have significantly reduced lung cancer cells proliferation in a time and concentration- dependent manner. Additionally, SERMs exhibited a synergistic effect against A549 cells when combined with cisplatin. SERMs treatment have increased cell apoptosis and resulted in concentration-dependent inhibition of cell migration and colony formation of A549 cells.

Conclusion: Selective estrogen receptor modulators may possess potential therapeutic utility for the treatment of lung cancer as monotherapy or in combination with standard chemotherapy.

Keywords: Selective estrogen receptor modulators, estrogen receptors, lung cancer, proliferation, apoptosis, metastasis.

« Previous
Graphical Abstract

[1]
Siegel, R.L.; Miller, K.D.; Jemal, A. cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(1), 7-30.
[http://dx.doi.org/10.3322/caac.21590] [PMID: 31912902]
[2]
Reck, M.; Rabe, K.F. Precision diagnosis and treatment for advanced non–small-cell lung cancer. N. Engl. J. Med., 2017, 377(9), 849-861.
[http://dx.doi.org/10.1056/NEJMra1703413] [PMID: 28854088]
[3]
Mustafa, M. JamalulAzizi, A.; IIIzam, E.; Nazirah, A.; Sharifa, A.; Abbas, S. Lung cancer: risk factors, management, and prognosis. IOSR J. Dent. Med. Sci., 2016, 15(10), 94-101.
[http://dx.doi.org/10.9790/0853-15100494101]
[4]
Asavasupreechar, T.; Chan, M.S.M.; Saito, R.; Miki, Y.; Boonyaratanakornkit, V.; Sasano, H. Sex steroid metabolism and actions in non-small cell lung carcinoma. J. Steroid Biochem. Mol. Biol., 2019.193105440
[http://dx.doi.org/10.1016/j.jsbmb.2019.105440] [PMID: 31386890]
[5]
Chu, S-C.; Hsieh, C-J.; Wang, T-F.; Hong, M-K.; Chu, T-Y. Antiestrogen use in breast cancer patients reduces the risk of subsequent lung cancer: A population-based study. Cancer Epidemiol., 2017, 48, 22-28.
[http://dx.doi.org/10.1016/j.canep.2017.02.010] [PMID: 28319725]
[6]
Rodriguez-Lara, V.; Hernandez-Martinez, J-M.; Arrieta, O. Influence of estrogen in non-small cell lung cancer and its clinical implications. J. Thorac. Dis., 2018, 10(1), 482-497.
[http://dx.doi.org/10.21037/jtd.2017.12.61] [PMID: 29600083]
[7]
Hsu, L-H.; Chu, N-M.; Kao, S-H. Estrogen, estrogen receptor and lung cancer. Int. J. Mol. Sci., 2017, 18(8), 1713.
[http://dx.doi.org/10.3390/ijms18081713] [PMID: 28783064]
[8]
Baik, C.S.; Eaton, K.D. Estrogen signaling in lung cancer: an opportunity for novel therapy. Cancers (Basel), 2012, 4(4), 969-988.
[http://dx.doi.org/10.3390/cancers4040969] [PMID: 24213497]
[9]
Słowikowski, B.K.; Lianeri, M.; Jagodziński, P.P. Exploring estrogenic activity in lung cancer. Mol. Biol. Rep., 2017, 44(1), 35-50.
[http://dx.doi.org/10.1007/s11033-016-4086-8] [PMID: 27783191]
[10]
Marquez-Garban, D.C.; Mah, V.; Alavi, M.; Maresh, E.L.; Chen, H-W.; Bagryanova, L.; Horvath, S.; Chia, D.; Garon, E.; Goodglick, L.; Pietras, R.J. Progesterone and estrogen receptor expression and activity in human non-small cell lung cancer. Steroids, 2011, 76(9), 910-920.
[PMID: 21600232]
[11]
Fan, S.; Liao, Y.; Liu, C.; Huang, Q.; Liang, H.; Ai, B.; Fu, S.; Zhou, S. Estrogen promotes tumor metastasis via estrogen receptor beta-mediated regulation of matrix-metalloproteinase-2 in non-small cell lung cancer. Oncotarget, 2017, 8(34), 56443-56459.
[http://dx.doi.org/10.18632/oncotarget.16992] [PMID: 28915603]
[12]
Giannopoulou, E.; Siatis, K.E.; Metsiou, D.; Kritikou, I.; Papachristou, D.J.; Kalofonou, M.; Koutras, A.; Athanassiou, G.; Kalofonos, H.P. The inhibition of aromatase alters the mechanical and rheological properties of non-small-cell lung cancer cell lines affecting cell migration. Biochim. Biophys. Acta, 2015, 1853(2), 328-337.
[http://dx.doi.org/10.1016/j.bbamcr.2014.11.016] [PMID: 25450981]
[13]
Barbosa, A.C.S.; Feng, Y.; Yu, C.; Huang, M.; Xie, W. Estrogen sulfotransferase in the metabolism of estrogenic drugs and in the pathogenesis of diseases. Expert Opin. Drug Metab. Toxicol., 2019, 15(4), 329-339.
[http://dx.doi.org/10.1080/17425255.2019.1588884] [PMID: 30822161]
[14]
Mirkin, S.; Pickar, J.H. Selective estrogen receptor modulators (SERMs): A review of clinical data. Maturitas, 2015, 80(1), 52-57.
[http://dx.doi.org/10.1016/j.maturitas.2014.10.010] [PMID: 25466304]
[15]
Komm, B.S.; Mirkin, S. An overview of current and emerging SERMs. J. Steroid Biochem. Mol. Biol., 2014, 143, 207-222.
[http://dx.doi.org/10.1016/j.jsbmb.2014.03.003] [PMID: 24667357]
[16]
An, K-C. Selective estrogen receptor modulators. Asian Spine J., 2016, 10(4), 787-791.
[http://dx.doi.org/10.4184/asj.2016.10.4.787] [PMID: 27559463]
[17]
Bardaweel, S.K.; Tawaha, K.A.; Hudaib, M.M. Antioxidant, antimicrobial and antiproliferative activities of Anthemis palestina essential oil. BMC Complement. Altern. Med., 2014, 14(1), 297.
[http://dx.doi.org/10.1186/1472-6882-14-297] [PMID: 25112895]
[18]
Smida, T.; Bruno, T.C.; Stabile, L.P. Influence of estrogen on the NSCLC microenvironment: A comprehensive picture and clinical implicationS. Front. Oncol., 2020, 10, 137.
[http://dx.doi.org/10.3389/fonc.2020.00137] [PMID: 32133288]
[19]
(a) Liu, C.; Liao, Y.; Fan, S.; Tang, H.; Jiang, Z.; Zhou, B.; Xiong, J.; Zhou, S.; Zou, M.; Wang, J. G protein-coupled estrogen receptor (GPER) mediates NSCLC progression induced by 17β-estradiol (E 2) and selective agonist G1. Med. Oncol., 2015, 32(4), 104.
(b) Huang, Q.; Zhang, Z.; Liao, Y.; Liu, C.; Fan, S.; Wei, X.; Ai, B.; Xiong, J. 17β-estradiol upregulates IL6 expression through the ERβ pathway to promote lung adenocarcinoma progression. J. Exp. Clin. Cancer Res., 2018, 37(1), 133.
[PMID: 29970138]
[20]
Berridge, M.V.; Tan, A.S. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch. Biochem. Biophys., 1993, 303(2), 474-482.
[http://dx.doi.org/10.1006/abbi.1993.1311] [PMID: 8390225]
[21]
Shen, H.; Yuan, Y.; Sun, J.; Gao, W.; Shu, Y-Q. Combined tamoxifen and gefitinib in non-small cell lung cancer shows antiproliferative effects. Biomed. Pharmacother., 2010, 64(2), 88-92.
[http://dx.doi.org/10.1016/j.biopha.2009.06.010] [PMID: 20005069]
[22]
Niikawa, H.; Suzuki, T.; Miki, Y.; Suzuki, S.; Nagasaki, S.; Akahira, J.; Honma, S.; Evans, D.B.; Hayashi, S.; Kondo, T.; Sasano, H. Intratumoral estrogens and estrogen receptors in human non-small cell lung carcinoma. Clin. Cancer Res., 2008, 14(14), 4417-4426.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1950] [PMID: 18579664]
[23]
Berghmans, T.; Paesmans, M.; Meert, A.-P.; Tiseo, M.; Sculier, J.-P. Ifosfamide (IFO) is a valuable alternative to cisplatin (CDDP) for first-line chemotherapy (CT) in advanced non-small cell lung cancer (NSCLC): A meta-analysis. Eur Respiratory Soc, 2013, 2013.
[24]
Li, J.; Yap, S.Q.; Yoong, S.L.; Nayak, T.R.; Chandra, G.W.; Ang, W.H.; Panczyk, T.; Ramaprabhu, S.; Vashist, S.K.; Sheu, F-S.; Tan, A.; Pastorin, G. Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon, 2019, 50(4), 1625-1634.
[http://dx.doi.org/10.1016/j.carbon.2011.11.043] [PMID: 31105316]
[25]
Galluzzi, L.; Senovilla, L.; Vitale, I.; Michels, J.; Martins, I.; Kepp, O.; Castedo, M.; Kroemer, G. Molecular mechanisms of cisplatin resistance. Oncogene, 2012, 31(15), 1869-1883.
[http://dx.doi.org/10.1038/onc.2011.384] [PMID: 21892204]
[26]
Fan, S.; Liao, Y.; Qiu, W.; Huang, Q.; Xiao, H.; Liu, C.; Li, D.; Cao, X.; Li, L.; Liang, H. Estrogen promotes the metastasis of non-small cell lung cancer via estrogen receptor β by upregulation of Toll-like receptor 4 and activation of the myd88/NF-κB/MMP2 pathway. Oncol. Rep., 2020, 43(6), 2105-2119.
[http://dx.doi.org/10.3892/or.2020.7574]
[27]
Wang, X-Y.; Wang, Y.; Liu, H-C. Tamoxifen lowers the MMP-9/TIMP-1 ratio and inhibits the invasion capacity of ER-positive non-small cell lung cancer cells. Biomed. Pharmacother., 2011, 65(7), 525-528.
[http://dx.doi.org/10.1016/j.biopha.2011.06.002] [PMID: 21993004]
[28]
Fink, S.L.; Cookson, B.T. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect. Immun., 2005, 73(4), 1907-1916.
[http://dx.doi.org/10.1128/IAI.73.4.1907-1916.2005] [PMID: 15784530]
[29]
van Engeland, M.; Nieland, L.J.; Ramaekers, F.C.; Schutte, B.; Reutelingsperger, C.P. Annexin V-affinity assay: A review on an apoptosis detection system based on phosphatidylserine exposure. Cytometry, 1998, 31(1), 1-9.
[http://dx.doi.org/10.1002/(SICI)1097-0320(19980101)31:1<1:AID-CYTO1>3.0.CO;2-R] [PMID: 9450519]
[30]
Osborne, C.K.; Kitten, L.; Arteaga, C.L. Antagonism of chemotherapy-induced cytotoxicity for human breast cancer cells by antiestrogens. J. Clin. Oncol., 1989, 7(6), 710-717.
[http://dx.doi.org/10.1200/JCO.1989.7.6.710] [PMID: 2715802]
[31]
Huang, S.; Wang, H.; Chen, W.; Zhan, M.; Xu, S.; Huang, X.; Lin, R.; Shen, H.; Wang, J. Tamoxifen inhibits cell proliferation by impaired glucose metabolism in gallbladder cancer. J. Cell. Mol. Med., 2020, 24(2), 1599-1613.
[http://dx.doi.org/10.1111/jcmm.14851] [PMID: 31782270]
[32]
(a) Hershberger, P.A.; Vasquez, A.C.; Kanterewicz, B.; Land, S.; Siegfried, J.M.; Nichols, M. Regulation of endogenous gene expression in human non-small cell lung cancer cells by estrogen receptor ligands. Cancer Res., 2005, 65(4), 1598-1605.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-2694] [PMID: 15735050]
(b) Zhang, G.; Liu, X.; Farkas, A.M.; Parwani, A.V.; Lathrop, K.L.; Lenzner, D.; Land, S.R.; Srinivas, H. Estrogen receptor β functions through nongenomic mechanisms in lung cancer cells. Mol. Endocrinol., 2009, 23(2), 146-156.
[http://dx.doi.org/10.1210/me.2008-0431] [PMID: 19106194]
(c) Stabile, L.P.; Lyker, J.S.; Gubish, C.T.; Zhang, W.; Grandis, J.R.; Siegfried, J.M. Combined targeting of the estrogen receptor and the epidermal growth factor receptor in non-small cell lung cancer shows enhanced antiproliferative effects. Cancer Res., 2005, 65(4), 1459-1470.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-1872] [PMID: 15735034]
(d) Mollerup, S.; Jørgensen, K.; Berge, G.; Haugen, A. Expression of estrogen receptors α and β in human lung tissue and cell lines. Lung Cancer, 2002, 37(2), 153-159.
[http://dx.doi.org/10.1016/S0169-5002(02)00039-9] [PMID: 12140138]
[33]
Tzifi, F.; Economopoulou, C.; Gourgiotis, D.; Ardavanis, A.; Papageorgiou, S.; Scorilas, A. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv. Hematol., 2012, 2012.
[http://dx.doi.org/10.1155/2012/524308]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy