Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Bioprospection of Antiviral and Antitumor Compounds from Some Marine Algae from Egyptian Shores

Author(s): Essam M. Ahmed*, Abdelhamid A. Hamdy and Bandar M. Alshehri

Volume 22, Issue 9, 2022

Published on: 06 January, 2022

Page: [1813 - 1825] Pages: 13

DOI: 10.2174/1871520621666210824112611

Price: $65

Abstract

Background: The marine algae are considered a diverse source of bioactive compounds. Many active compounds have been isolated from algae and show good biological activities.

Materials and Methods: The aim of this study is to detect the antiviral and anticancer activities in some extracts of marine algae. Extraction, purification and identification of some marine algae common in Egypt were conducted. Extraction of Ulva lactuca, Sargassum dentifolium, and Cystoseiara myrica was conducted. A sequence of extractions, including extraction by ethanol, boiling water, hydrochloric acid and sodium hydroxide were carried out. The obtained extracts were evaluated for their antitumour and antiviral activities against liver tumour cells, brain tumour cell lines, measles virus, mumps virus and hepatitis B virus (HBV). The extracts of the best activities were subjected for purification by size exclusion chromatography and anion exchange chromatography for ethanolic extracts or precipitation by cetylpyridinium chloride (CPC) then by size exclusion chromatography and anion exchange chromatography for aqueous extracts. Separation by GLS/MS was performed. The structures of the active compounds have been identified through different chemical analyses, including sugar analysis, configurational analysis, High-Performance Liquid Chromatography (HPLC), infrared spectroscopy (IR), Gas-Liquid Chromatography-Mass Spectroscopy (GLC-MS) and 1H,13C nuclear magnetic resonance (NMR) at ZV.

Results: The active compounds from the water extracts have been identified mainly as polysaccharides and sulphated polysaccharides. The antitumour and the antiviral activities of ethanolic extracts are attributable to compound identified as Ethyl Palmitate. These natural compounds did not show cytotoxic effect.

Conclusion: These outputs could be preliminary for further biological studies aiming to therapeutic application.

Keywords: Marine algae, antiviral, antitumour, algal extraction, polysaccharides, sulphated polysaccharides.

Graphical Abstract

[1]
Cannell, R.J.P. Algae as a source of biologically active products. Pestic. Sei., 1993, 39, 147-153.
[http://dx.doi.org/10.1002/ps.2780390208]
[2]
Blunden, G.; Gordon, S.M. Betaines and their sulphonio analogues in marine algae.Phycological Research; Round, F.E.; Chapman, N.J., Eds.; Biopress: Bristol, 1968, Vol. 4, pp. 39-80.
[3]
Boisson-Vidal, C.; Haroun, F.; Ellouali, M.; Blondin, C.; Fischer, A.M.; Agostini, A.; Jozefonvicz, J. Biological activities of polysaccharides from marine algae. Drugs Future, 1995, 20, 1237-1249.
[4]
Mayer, A.M.S.; Hamann, M.T. Compounds with antibacterial, anticoagulant, antifungal, anti-helminthic, anti-inflammatory, antiplatelet, antiprotozoal and antiviral activities affecting the cardiovascular, endocrine, immune and nervous system, and other miscellaneous mechanisms of action. Comp. Biotech. Physiol. Part C., 2002, 132, 315-339.
[PMID: 12161166]
[5]
Andis Insight. Database for Drug Research and Development, Disease Treatment and Decision Making. Available from: http://adisinsight.springer.com/ [Accessed 5th January 2018].
[6]
Calado, R.; Costa Leal, M.; Gaspar, H.; Santos, S.; Marques, A.; Nunes, M.L. How to succeed in marketing marine natural products for pharmaceutical, cosmetics & nutraceutical markets.Grand Challenges in Marine Biotechnology; Rampelotto, A.; Trincone, A., Eds.; Springer: Basel, 2018, pp. 317-403.
[7]
FDA. ClinicalTrials.gov. Available from: https://clinicaltrials.gov/[Accessed 5th January 2018].
[8]
FDA. Drugs at FDA: FDA Approved Drug Products. Available from: http://www.accessdata.fda.gov/scripts/cder/daf/[Accessed 5th January of 2018].
[9]
Mayer, A.M.S. Marine Pharmaceuticals: The Clinical Pipeline. 2018. Available from: http://marinepharmacology.midwestern.edu/clinPipeline. htm [Accessed 5th January of 2018].
[10]
Orhan, I.; Sener, B.; Atici, T.; Brun, R.; Perozzo, R.; Tasdemir, D. Turkish freshwater and marine macrophyte extracts show in vitro antiprotozoal activity and inhibit FabI, a key enzyme of Plasmodium falciparum fatty acid biosynthesis. Phytomedicine, 2006, 13(6), 388-393.
[http://dx.doi.org/10.1016/j.phymed.2005.10.010] [PMID: 16697632]
[11]
Athukorala, Y.; Kim, K.N.; Jeon, Y.J. Antiproliferative and antioxidant properties of an enzymatic hydrolysate from brown alga, Ecklonia cava. Food Chem. Toxicol., 2006, 44(7), 1065-1074.
[http://dx.doi.org/10.1016/j.fct.2006.01.011] [PMID: 16516367]
[12]
Ngo, D.H.; Kim, S.K. Sulfated polysaccharides as bioactive agents from marine algae. Int. J. Biol. Macromol., 2013, 62, 70-75.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.08.036] [PMID: 23994790]
[13]
Abbott, I.A.; Isabella, A.; Hollenberg, G.J. Marine algae of California; Stanford University Press , 1992.
[14]
Aleem, A. Contributions to the study of the marine algae of the Red Sea. Bull Fac Sci KAU Jeddah., 1978, 2, 99-118.
[15]
Aleem, A.A. Contributions to the study of the marine algae of the Red Sea. New or little-known algae from the west coast of Saudi Arabia. Bull. Fac. Sci. KAUJ., 1980, 5, 1-49.
[16]
Venkateswaran, P.S.; Unander, D.W.; Blumberg, B.S.; Halbherr, T.; Sharager, D.; Dahl, L.; Kraus, M.; Rissinger, C.; Simmons, H.H. Potential antiviral agents for the treatment of hepatitis B virus and retroviruses. Sci. Rep., 1987, 300-301.
[17]
Skehan, P.; Storeng, R.; Scudiero, D.; Monks, A.; McMahon, J.; Vistica, D.; Warren, J.T.; Bokesch, H.; Kenney, S.; Boyd, M.R. New colorimetric cytotoxicity assay for anticancer-drug screening. J. Natl. Cancer Inst., 1990, 82(13), 1107-1112.
[http://dx.doi.org/10.1093/jnci/82.13.1107] [PMID: 2359136]
[18]
Vijayan, P.; Kumar, S.V.; Dhanaraj, S.A.; Badami, S.; Suresh, B. In vitro cytotoxicity and anti-tumor properties of the total alkaloid fraction of unripe fruits of Solanum pseudocapsicum. Pharm. Biol., 2002, 40(6), 456-460.
[http://dx.doi.org/10.1076/phbi.40.6.456.8444]
[19]
Lu, Z.; Chen, H.; Zheng, X.M.; Chen, M.L. Experimental study on the apoptosis of cervical cancer Hela cells induced by juglone through c-Jun N-terminal kinase/c-Jun pathway. Asian Pac. J. Trop. Med., 2017, 10(6), 572-575.
[http://dx.doi.org/10.1016/j.apjtm.2017.06.005] [PMID: 28756921]
[20]
Zhuang, C.; Itoh, H.; Mizuno, T.; Ito, H. Antitumor active fucoidan from the brown seaweed, umitoranoo (Sargassum thunbergii). Biosci. Biotechnol. Biochem., 1995, 59(4), 563-567.
[http://dx.doi.org/10.1271/bbb.59.563] [PMID: 7772818]
[21]
Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem., 1951, 193(1), 265-275.
[http://dx.doi.org/10.1016/S0021-9258(19)52451-6] [PMID: 14907713]
[22]
Dubios, M.K.A.; Gilles, J.K.; Hamilton, P.A. Calorimetric method for determination of sugars and related substances. Anal. Chem., 1956, 28, 350-356.
[http://dx.doi.org/10.1021/ac60111a017]
[23]
Lozano, Y.F.; Mayer, C.D.; Bannon, C.; Gaydou, E.M. Unsaponifiable matter, total sterol and tocopherol contents of avocado oil varieties. J. Am. Oil Chem. Soc., 1993, 70(6), 561-565.
[http://dx.doi.org/10.1007/BF02545319]
[24]
Misaki, A.; Nasu, M.; Sone, Y. Comparison of structure and antitumor activity of polysaccharides. Agric. Biol. Chem., 1986, 50, 2171-2183.
[25]
Yi, Z.; Yin-Shan, C.; Hai-Sheng, L.U. Screening for antibacterial and antifungal activities in some marine algae from the Fujian coast of China with three different solvents. Chin. J. Oceanology Limnol., 2001, 19(4), 327-331.
[http://dx.doi.org/10.1007/BF02850736]
[26]
Wilson, C.M. Quantitative determination of sugars on paper chromatograms. Anal. Chem., 1959, 31, 1199-1201.
[http://dx.doi.org/10.1021/ac60151a038]
[27]
Haug, A.; Larsen, B. Quantitative Determination of the Uronic Acid Composition of Alginates. Acta Chem. Scand., 1962, 16, 1908-1918.
[http://dx.doi.org/10.3891/acta.chem.scand.16-1908]
[28]
Jayme, G.; Knolle, H. Paper chromatography of sugar mixtures on glass fiber papers, Edn. 1956 Angew. Chemie Int; , 1956, pp. 243-246.
[29]
Garrido, M.L. Determination of Sulphur in plant material. Analyst (Lond.), 1964, 89, 61-66.
[http://dx.doi.org/10.1039/an9648900061]
[30]
Larsen, B.; Haug, A.; Painter, J.T.J. Sulphated polysaccharides in brown algae. I-Isolation and preliminary characterization of three sulfated polysaccharides from Ascophyllum nodosum. Acta Chem. Scand., 1960, 20, 219-230.
[http://dx.doi.org/10.3891/acta.chem.scand.20-0219]
[31]
Lazic, M.L.; Veljkovic, V.B.; Vucetic, J.L.; Vrvic, M.M. Effect of pH and aeration on dextran production by Leuconostocme senteroides. Enzyme Microb. Technol., 1993, 15, 334-338.
[http://dx.doi.org/10.1016/0141-0229(93)90160-4]
[32]
Gerber, P.; Dutcher, J.D.; Adams, E.V.; Sherman, J.H. Inhibition of herpes virus replication by marine algae extracts. Proc. Soc. Exp. Biol. Med., 1958, 99, 590-593.
[http://dx.doi.org/10.3181/00379727-99-24429] [PMID: 13614432]
[33]
Alves, C.; Silva, J.; Pinteus, S.; Gaspar, H.; Alpoim, M.C.; Botana, L.M.; Pedrosa, R. From marine origin to therapeutics: The antitumor potential of marine algae-derived compounds. Front. Pharmacol., 2018, 9(9), 777.
[http://dx.doi.org/10.3389/fphar.2018.00777] [PMID: 30127738]
[34]
Ehreshmann, D.W.; Dieg, E.F.; Hatch, M.T.; DiSalvo, L.H.; Vedros, N.A. Antiviral substances from California marine algae. J. Phycol., 1977, 13, 37-40.
[http://dx.doi.org/10.1111/j.1529-8817.1977.tb00552.x]
[35]
Queiroz, K.C.S.; Medeiros, V.P.; Queiroz, L.S.; Abreu, L.R.D.; Rocha, H.A.O.; Ferreira, C.V.; Jucá, M.B.; Aoyama, H.; Leite, E.L. Inhibition of reverse transcriptase activity of HIV by polysaccharides of brown algae. Biomed. Pharmacother., 2008, 62(5), 303-307.
[http://dx.doi.org/10.1016/j.biopha.2008.03.006] [PMID: 18455359]
[36]
Barzkar, N.; Tamadoni Jahromi, S.; Poorsaheli, H.B.; Vianello, F. Metabolites from marine microorganisms, micro, and macroalgae: immense scope for pharmacology. Mar. Drugs, 2019, 17(8), 464.
[http://dx.doi.org/10.3390/md17080464] [PMID: 31398953]
[37]
Sharma, M.; Garg, H.S.; Chandra, K. Erythro-sphinga-4,8-dienene-N-palmitate: An antiviral agent from the green alga Ulva fasciata. Bot. Mar., 1996, 39, 213-215.
[http://dx.doi.org/10.1515/botm.1996.39.1-6.213]
[38]
Harada, H.; Yamashita, U.; Kurihara, H.; Fukushi, E.; Kawabata, J.; Kamei, Y. Antitumor activity of palmitic acid found as a selective cytotoxic substance in a marine red alga. Anticancer Res., 2002, 22(5), 2587-2590.
[PMID: 12529968]
[39]
Lee, D.G.; Hyun, J.W.; Kang, K.A.; Lee, J.O.; Hyun, J.W.; Kang, K.A.; Lee, E.Y. Ulva lactuca: A potential seaweed for tumor treatment and immune stimulation. Biotechnol. Bioproc. Eng., 2004, 9, 236-238.
[http://dx.doi.org/10.1007/BF02942299]
[40]
Ercolano, G.; De Cicco, P.; Ianaro, A. New drugs from the sea: Pro-apoptotic activity of sponges and algae derived compounds. Mar. Drugs, 2019, 17(1), 31.
[http://dx.doi.org/10.3390/md17010031] [PMID: 30621025]
[41]
Balaji Raghavendra Rao, H.; Sathivel, A.; Devaki, T. Antihepatotoxic nature of Ulva reticulata (Chlorophyceae) on acetaminophen-induced hepatoxicity in experimental rats. J. Med. Food, 2004, 7(4), 495-497.
[http://dx.doi.org/10.1089/jmf.2004.7.495] [PMID: 15671697]
[42]
Hans, N.; Malik, A.; Naik, S. Antiviral activity of sulfated polysaccharides from marine algae and its application in combating COVID-19: Mini review. Bioresour. Technol. Rep., 2021, 13100623
[http://dx.doi.org/10.1016/j.biteb.2020.100623] [PMID: 33521606]
[43]
Satpati, G.G. Algal Sulfated Polysaccharides: Potent Immunomodulators against COVID-19 in Pandemic 2020. Biosci. Biotechnol. Res. Asia, 2020, 17(3), 601-605.
[44]
Costa, L.S.; Fidelis, G.P.; Cordeiro, S.L.; Oliveira, R.M.; Sabry, D.A.; Câmara, R.B.G.; Nobre, L.T.D.B.; Costa, M.S.S.P.; Almeida-Lima, J.; Farias, E.H.C.; Leite, E.L.; Rocha, H.A.O. Biological activities of sulfated polysaccharides from tropical seaweeds. Biomed. Pharm., 2010, 64(1), 21-28.
[http://dx.doi.org/10.1016/j.biopha.2009.03.005] [PMID: 19766438]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy