Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Decrease in Cell Viability of Breast Cancer Cells by a Di-Hydroxylated Derivative of N-(2-hydroxyphenyl)-2-Propylpentanamide

Author(s): Norma L. Galindo-Alvarez, Humberto L. Mendoza-Figueroa, Martha C. Rosales-Hernández, Norbert Bakalara and José Correa-Basurto*

Volume 22, Issue 9, 2022

Published on: 10 January, 2022

Page: [1802 - 1812] Pages: 11

DOI: 10.2174/1871520621666210915100826

Price: $65

Abstract

Background: A preliminary study of the biotransformation by cytochrome P450 enzymes (CYP) of N-(2- hydroxyphenyl)-2-propylpentanamide (HO-AAVPA), an HDAC inhibitor, led to the synthesis of two hydroxylated derivatives: N-(2,4-dihydroxyphenyl)-2-propylpentanamide (5a) and N-(2,5-dihydroxyphenyl)-2-propylpentanamide (5b).

Objective: The study aims to evaluate the anti-proliferative activity of these di-hydroxylated derivatives in breast cancer cell lines.

Methods: MTT assays were conducted in MCF-7 and MDA-MB-231 cell lines. Additionally, in silico studies were carried out to evaluate the affinity of these derivatives with the HDAC1 enzyme.

Results: Results showed that only 5b possess an enhanced anti-proliferative effect in breast cancer cell lines MCF-7 and MDA-MB-231. Docking studies revealed that the presence of hydroxyl groups, as well as the position of the additional hydroxyl groups, could have an impact on HDAC1 affinity and could explain the lack of activity of compound 5a.

Conclusion: A priori, these results hypothesize that anti-proliferative activity of 5b could be related to HDAC1 inhibition and thus anti-proliferative activity in breast cancer cells.

Keywords: Antiproliferation, breast cancer, HO-AAVPA, HDAC inhibitor derivatives, dihydroxylation, TNBC.

Graphical Abstract

[1]
Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Piñeros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today. Lyon, France: International Agency for Research on Cancer; , 2020. Available from: https://gco.iarc.fr/today
[2]
Brisken, C.; Hess, K.; Jeitziner, R. Progesterone and Overlooked Endocrine Pathways in Breast Cancer Pathogenesis. Endocrinology, 2015, 156(10), 3442-3450.
[http://dx.doi.org/10.1210/en.2015-1392] [PMID: 26241069]
[3]
King, J.; Mir, H.; Singh, S. Chapter Four - Association of Cytokines and Chemokines in Pathogenesis of Breast Cancer. In: Approaches to Understanding Breast Cancer; Academic Press, , 2017; 151, pp. 113-136.
[4]
Bareche, Y.; Venet, D.; Ignatiadis, M.; Aftimos, P.; Piccart, M.; Rothe, F.; Sotiriou, C. Unravelling triple-negative breast cancer molecular heterogeneity using an integrative multiomic analysis. Ann. Oncol., 2018, 29(4), 895-902.https://doi.org/https://doi.org/10.1093/annonc/mdy024
[http://dx.doi.org/10.1093/annonc/mdy024] [PMID: 29365031]
[5]
Uscanga-Perales, G.I.; Santuario-Facio, S.K.; Ortiz-López, R. Triple negative breast cancer: Deciphering the biology and heterogeneity. Med. Univ., 2016, 18(71), 105-114.https://doi.org/https://doi.org/10.1016/j.rmu.2016.05.007
[http://dx.doi.org/10.1016/j.rmu.2016.05.007]
[6]
Dawson, M.A.; Kouzarides, T. Cancer epigenetics: from mechanism to therapy. Cell, 2012, 150(1), 12-27.
[http://dx.doi.org/10.1016/j.cell.2012.06.013] [PMID: 22770212]
[7]
West, A.C.; Johnstone, R.W. New and emerging HDAC inhibitors for cancer treatment. J. Clin. Invest., 2014, 124(1), 30-39.
[http://dx.doi.org/10.1172/JCI69738] [PMID: 24382387]
[8]
Bolden, J.E.; Shi, W.; Jankowski, K.; Kan, C-Y.; Cluse, L.; Martin, B.P.; MacKenzie, K.L.; Smyth, G.K.; Johnstone, R.W. HDAC inhibitors induce tumor-cell-selective pro-apoptotic transcriptional responses. Cell Death Dis., 2013, 4(2), e519-e519.
[http://dx.doi.org/10.1038/cddis.2013.9] [PMID: 23449455]
[9]
Robert, C.; Rassool, F.V. HDAC Inhibitors: Roles of DNA Damage and Repair, 1st ed; Elsevier Inc., 2012, p. 116.
[http://dx.doi.org/10.1016/B978-0-12-394387-3.00003-3]
[10]
Li, Y.; Seto, E. HDACs and HDAC inhibitors in cancer development and therapy. Cold Spring Harb. Perspect. Med., 2016, 6(10)a026831
[http://dx.doi.org/10.1101/cshperspect.a026831] [PMID: 27599530]
[11]
Kim, H.J.; Bae, S.C. Histone deacetylase inhibitors: molecular mechanisms of action and clinical trials as anti-cancer drugs. Am. J. Transl. Res., 2011, 3(2), 166-179.
[PMID: 21416059]
[12]
Damaskos, C.; Garmpis, N.; Valsami, S.; Kontos, M.; Spartalis, E.; Kalampokas, T.; Kalampokas, E.; Athanasiou, A.; Moris, D.; Daskalopoulou, A.; Davakis, S.; Tsourouflis, G.; Kontzoglou, K.; Perrea, D.; Nikiteas, N.; Dimitroulis, D. Histone deacetylase inhibitors: An attractive therapeutic strategy against breast cancer. Anticancer Res., 2017, 37(1), 35-46.
[http://dx.doi.org/10.21873/anticanres.11286] [PMID: 28011471]
[13]
Reichert, N.; Choukrallah, M-A.; Matthias, P. Multiple roles of class I HDACs in proliferation, differentiation, and development. Cell. Mol. Life Sci., 2012, 69(13), 2173-2187.
[http://dx.doi.org/10.1007/s00018-012-0921-9] [PMID: 22286122]
[14]
Kenny, R.G.; Ude, Z.; Docherty, J.R.; Marmion, C.J. Vorinostat and Belinostat, hydroxamate-based anti-cancer agents, are nitric oxide donors. J. Inorg. Biochem., 2020, 206110981https://doi.org/https://doi.org/10.1016/j.jinorgbio.2019.110981
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110981] [PMID: 32088592]
[15]
Marijon, H.; Lee, D.H.; Ding, L.; Sun, H.; Gery, S.; de Gramont, A.; Koeffler, H.P. Co-targeting poly(ADP-ribose) polymerase (PARP) and histone deacetylase (HDAC) in triple-negative breast cancer: Higher synergism in BRCA mutated cells. Biomed. Pharmacother., 2018, 99(99), 543-551.
[http://dx.doi.org/10.1016/j.biopha.2018.01.045] [PMID: 29902865]
[16]
Tan, W.W.; Allred, J.B.; Moreno-Aspitia, A.; Northfelt, D.W.; Ingle, J.N.; Goetz, M.P.; Perez, E.A.; Phase, I. Phase I study of panobinostat (LBH589) and letrozole in postmenopausal metastatic breast cancer patients. Clin. Breast Cancer, 2016, 16(2), 82-86.https://doi.org/https://doi.org/10.1016/j.clbc.2015.11.003
[http://dx.doi.org/10.1016/j.clbc.2015.11.003] [PMID: 26774555]
[17]
Barlocco, E.P.; Romidepsin, D. (FK228), A histone deacetylase inhibitor and its analogues in cancer chemotherapy. Curr. Med. Chem., 2020, 27, 1-14.https://doi.org/http://dx.doi.org/10.2174/0929867327666200203113926
[18]
Gao, S.; Li, X.; Zang, J.; Xu, W.; Zhang, Y. Preclinical and clinical studies of chidamide (CS055/HBI-8000), An orally available subtype-selective HDAC inhibitor for cancer therapy. Anticancer. Agents Med. Chem., 2017, 17(6), 802-812.https://doi.org/http://dx.doi.org/10.2174/1871520616666160901150427
[http://dx.doi.org/10.2174/1871520616666160901150427] [PMID: 27592546]
[19]
Biswas, S.; Rao, C.M. Epigenetic tools (The Writers, The Readers and The Erasers) and their implications in cancer therapy. Eur. J. Pharmacol., 2018, 837, 8-24.https://doi.org/https://doi.org/10.1016/j.ejphar.2018.08.021
[http://dx.doi.org/10.1016/j.ejphar.2018.08.021] [PMID: 30125562]
[20]
Adhikari, N.; Amin, S.A.; Jha, T. Selective and nonselective HDAC8 inhibitors: a therapeutic patent review. Pharm. Pat. Anal., 2018, 7(6), 259-276.
[http://dx.doi.org/10.4155/ppa-2018-0019] [PMID: 30632447]
[21]
Connolly, R.M.; Rudek, M.A.; Piekarz, R. Entinostat: a promising treatment option for patients with advanced breast cancer. Future Oncol., 2017, 13(13), 1137-1148.
[http://dx.doi.org/10.2217/fon-2016-0526] [PMID: 28326839]
[22]
Pérez-gonzález, O.A.; Bermudez-lugo, J.A.; Correa-basurto, J.; Vasquez-moctezuma, I.; Padilla-martínez, I.I; Trujillo-ferrara, J.G MX 363005 B. 363005, 2019.
[23]
Sixto-López, Y.; Rosales-Hernández, M.C.; Contis-Montes de Oca, A.; Fragoso-Morales, L.G.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Abarca-Rojano, E.; Correa-Basurto, J.N -(2'-Hydroxyphenyl)-2-Propylpentanamide (HO-AAVPA) Inhibits HDAC1 and Increases the Translocation of HMGB1 Levels in Human Cervical Cancer Cells. Int. J. Mol. Sci., 2020, 21(16)E5873
[http://dx.doi.org/10.3390/ijms21165873] [PMID: 32824279]
[24]
Correa-Basurto, A.M.; Romero-Castro, A.; Correa-Basurto, J.; Hernández-Rodríguez, M.; Soriano-Ursúa, M.A.; García-Machorro, J.; Tolentino-López, L.E.; Rosales-Hernández, M.C.; Mendieta-Wejebe, J.E. Pharmacokinetics and tissue distribution of N-(2-hydroxyphenyl)-2-propylpentanamide in Wistar Rats and its binding properties to human serum albumin. J. Pharm. Biomed. Anal., 2019, 162, 130-139.
[http://dx.doi.org/10.1016/j.jpba.2018.09.010] [PMID: 30236821]
[25]
Cristóbal-Luna, J.M.; Correa-Basurto, J.; Mendoza-Figueroa, H.L.; Chamorro-Cevallos, G. Anti-epileptic activity, toxicity and teratogenicity in CD1 mice of a novel valproic acid arylamide derivative, N-(2-hydroxyphenyl)-2-propylpentanamide. Toxicol. Appl. Pharmacol., 2020, 399115033
[http://dx.doi.org/10.1016/j.taap.2020.115033] [PMID: 32387339]
[26]
Mendieta-Wejebe, J.E.; Silva-Trujillo, A.; Bello, M.; Mendoza-Figueroa, H.L.; Galindo-Alvarez, N.L.; Albores, A.; Tamay-Cach, F.; Rosales-Hernández, M.C.; Romero-Castro, A.; Correa-Basurto, J. Exploring the biotransformation of N-(2-hydroxyphenyl)-2-propylpentanamide (an aryl valproic acid derivative) by CYP2C11, using in silico predictions and in vitro studies. J. Pharm. Pharmacol., 2020, 72(7), 938-955.
[http://dx.doi.org/10.1111/jphp.13270] [PMID: 32307724]
[27]
Ávila-Gálvez, M.Á.; Giménez-Bastida, J.A.; Espín, J.C.; González-Sarrías, A. Dietary phenolics against breast cancer. A critical evidence-based review and future perspectives. Int. J. Mol. Sci., 2020, 21(16)E5718
[http://dx.doi.org/10.3390/ijms21165718] [PMID: 32784973]
[28]
Zhang, H-W.; Hu, J-J.; Fu, R-Q.; Liu, X.; Zhang, Y-H.; Li, J.; Liu, L.; Li, Y-N.; Deng, Q.; Luo, Q-S.; Ouyang, Q.; Gao, N. Flavonoids inhibit cell proliferation and induce apoptosis and autophagy through downregulation of PI3Kγ mediated PI3K/AKT/mTOR/p70S6K/ULK signaling pathway in human breast cancer cells. Sci. Rep., 2018, 8(1), 11255.
[http://dx.doi.org/10.1038/s41598-018-29308-7] [PMID: 30050147]
[29]
Anantharaju, P.G.; Reddy, B.D.; Padukudru, M.A.; Kumari Chitturi, C.M.; Vimalambike, M.G.; Madhunapantula, S.V. Naturally occurring benzoic acid derivatives retard cancer cell growth by inhibiting histone deacetylases (HDAC). Cancer Biol. Ther., 2017, 18(7), 492-504.
[http://dx.doi.org/10.1080/15384047.2017.1324374] [PMID: 28506198]
[30]
Anantharaju, P.G.; Reddy, D.B.; Padukudru, M.A.; Chitturi, C.M.K.; Vimalambike, M.G.; Madhunapantula, S.V. Induction of colon and cervical cancer cell death by cinnamic acid derivatives is mediated through the inhibition of Histone Deacetylases (HDAC). PLoS One, 2017, 12(11)e0186208
[http://dx.doi.org/10.1371/journal.pone.0186208] [PMID: 29190639]
[31]
Dai, X.; Cheng, H.; Bai, Z.; Li, J. Breast cancer cell line classification and its relevance with breast tumor subtyping. J. Cancer, 2017, 8(16), 3131-3141.
[http://dx.doi.org/10.7150/jca.18457] [PMID: 29158785]
[32]
Huang, Z.; Yu, P.; Tang, J. Characterization of triple-negative breast cancer MDA-MB-231 cell spheroid model. OncoTargets Ther., 2020, 13, 5395-5405.
[http://dx.doi.org/10.2147/OTT.S249756] [PMID: 32606757]
[33]
Prestegui-Martel, B.; Bermúdez-Lugo, J.A.; Chávez-Blanco, A.; Dueñas-González, A.; García-Sánchez, J.R.; Pérez-González, O.A.; Padilla-Martínez, I.I.; Fragoso-Vázquez, M.J.; Mendieta-Wejebe, J.E.; Correa-Basurto, A.M.; Méndez-Luna, D.; Trujillo-Ferrara, J.; Correa-Basurto, J. N -(2-hydroxyphenyl)-2-propylpentanamide, a valproic acid aryl derivative designed in silico with improved antiproliferative activity in HeLa, rhabdomyosarcoma and breast cancer cells. J. Enzyme Inhib. Med. Chem. 2016, 31(sup3), 140-149.
[http://dx.doi.org/10.1080/14756366.2016.1210138] [PMID: 27483122]
[34]
Cicenas, J.; Kalyan, K.; Sorokinas, A.; Stankunas, E.; Lery, J.; Meskinyte, I.; Stankevicius, V.; Kaupinis, A.; Valius, M. Roscovitine in cancer and other diseases. Ann. Transl. Med., 2015, 3(10), 135.
[35]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The protein data bank. Nucleic Acids Res., 2000, 28(1), 235-242.
[http://dx.doi.org/10.1093/nar/28.1.235] [PMID: 10592235]
[36]
Waterhouse, A.; Bertoni, M.; Bienert, S.; Studer, G.; Tauriello, G.; Gumienny, R.; Heer, F.T.; de Beer, T.A.P.; Rempfer, C.; Bordoli, L.; Lepore, R.; Schwede, T. SWISS-MODEL: homology modelling of protein structures and complexes. Nucleic Acids Res., 2018, 46(W1), W296-W303.
[http://dx.doi.org/10.1093/nar/gky427] [PMID: 29788355]
[37]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. J. Comput. Chem., 2009, 30(16), 2785-2791.
[http://dx.doi.org/10.1002/jcc.21256] [PMID: 19399780]
[38]
ACD/ChemSketch; Advanced Chemistry Development, Inc.: Toronto, ON, Canada, 2020.
[39]
Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G.A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H.P.; Izmaylov, A.F.; Bloino, J.; Zheng, G.; Sonnenberg, J.L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J.A. Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, Jr.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox; D.J. Gaussian, Inc.: Wallingford, CT, 2009.
[40]
Kosak, T.M.; Conrad, H.A.; Korich, A.L.; Lord, R.L. Ether Cleavage Re-investigated: Elucidating the mechanism of BBr3-facilitated demethylation of aryl methyl ethers. Eur. J. Org. Chem., 2015, 2015(34), 7460-7467.
[http://dx.doi.org/10.1002/ejoc.201501042] [PMID: 26693209]
[41]
Sordon, S.; Popłoński, J.; Milczarek, M.; Stachowicz, M.; Tronina, T.; Kucharska, A.Z.; Wietrzyk, J.; Huszcza, E. Structure-antioxidant-antiproliferative activity relationships of natural C7 and C7-C8 hydroxylated flavones and flavanones. Antioxidants, 2019, 8(7)E210
[http://dx.doi.org/10.3390/antiox8070210] [PMID: 31284642]
[42]
Jamalzadeh, L.; Ghafoori, H.; Aghamaali, M.; Sariri, R. Induction of apoptosis in human breast cancer MCF-7 cells by a semi-synthetic derivative of artemisinin: A caspase-related mechanism. Iranian J. Biotechnol., 2017, 15(3), 157-165.
[http://dx.doi.org/10.15171/ijb.1567] [PMID: 29845064]
[43]
Surichan, S.; Arroo, R.R.; Ruparelia, K.; Tsatsakis, A.M.; Androutsopoulos, V.P. Nobiletin bioactivation in MDA-MB-468 breast cancer cells by cytochrome P450 CYP1 enzymes. Food Chem. Toxicol., 2018, 113(January), 228-235.
[http://dx.doi.org/10.1016/j.fct.2018.01.047] [PMID: 29408579]
[44]
Surichan, S.; Androutsopoulos, V.P.; Sifakis, S.; Koutala, E.; Tsatsakis, A.; Arroo, R.R.J.; Boarder, M.R. Bioactivation of the citrus flavonoid nobiletin by CYP1 enzymes in MCF7 breast adenocarcinoma cells. Food Chem. Toxicol., 2012, 50(9), 3320-3328.https://doi.org/https://doi.org/10.1016/j.fct.2012.06.030
[http://dx.doi.org/10.1016/j.fct.2012.06.030] [PMID: 22743247]
[45]
Ravishankar, D.; Watson, K.A.; Greco, F.; Osborn, H.M.I. Novel synthesised flavone derivatives provide significant insight into the structural features required for enhanced anti-proliferative activity. RSC Advances, 2016, 6(69), 64544-64556.
[http://dx.doi.org/10.1039/C6RA11041J]
[46]
Wilsher, N.E.; Arroo, R.R.; Matsoukas, M.T.; Tsatsakis, A.M.; Spandidos, D.A.; Androutsopoulos, V.P. Cytochrome P450 CYP1 metabolism of hydroxylated flavones and flavonols: Selective bioactivation of luteolin in breast cancer cells. Food Chem. Toxicol., 2017, 110, 383-394.
[http://dx.doi.org/10.1016/j.fct.2017.10.051] [PMID: 29097115]
[47]
Luo, Y.; Li, H. Structure-based inhibitor discovery of class I histone deacetylases (HDACs). Int. J. Mol. Sci., 2020, 21(22), 8828.
[http://dx.doi.org/10.3390/ijms21228828] [PMID: 33266366]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy