Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Molecular Mechanisms Responsible for In Vitro Cytotoxic Attributes of Conyza bonariensis Extract against Lymphoblastic Leukaemia Jurkat Cells

Author(s): Mohammad Saleem*, Valerie B. Schini-Kerth*, Khalid Hussain, Syed H. Khalid, Muhammad Asif, Mahmoud Alhosin, Muhammad F. Akhtar, Bashir Ahmad, Atif Raza and Mahrukh

Volume 22, Issue 9, 2022

Published on: 06 January, 2022

Page: [1793 - 1801] Pages: 9

DOI: 10.2174/1871520621666210906092314

Price: $65

conference banner
Abstract

Background: Conyza bonariensis is known to have anti-cancer properties.

Objective: The current study investigated the in vitro pro-apoptotic properties of Conyza bonariensis (C. bonariensis) towards human lymphoblastic leukemia Jurkat cells.

Methods: Ariel parts of C. bonariensis were macerated in a non-polar (n-Hexane) solvent. MTS cell viability assay was employed to determine the cytotoxic activity of the extract towards human leukemia Jurket cells and normal Peripheral Blood Mononuclear Cells (PBMCs). The phytochemical composition of the extract was screened using HPLC method. Flow cytometric studies (FACS) were conducted to explore the pro-apoptotic potential of the extract. Western blot studies were employed to identify the molecular targets involved in the induction of apoptosis.

Results: The n-hexane extract showed selective cytotoxic activity towards Jurkat cells. FACS analysis indicated that the extract induced early and late apoptosis in Jurkat cells. Western blot studies revealed that the extract downregulated the expression of DNMT1, SIRT1, and UHRF1 with a simultaneous up-regulation of p73 and caspases-3 proteins expression. HPLC characterization of the extract revealed the presence of phenolic compounds.

Conclusion: Overall, these findings demonstrate that the anti-cancer effects of a Conyza bonariensis extract towards human lymphoblastic leukemia Jurkat cells are due to the modulation of the activity of multiple oncogenic and tumor suppressor proteins. Phenolic contents of the extract are proposed to be responsible for these activities.

Keywords: Conyza bonariensis, Jurkat cells, pro-apoptotic, phenolic contents, flow-cytometry, peripheral blood mononuclear cells.

Graphical Abstract

[1]
Akhtar, B.; Muhammad, F.; Sharif, A.; Akhtar, M.F.; Majeed, W. Diverse signaling pathways and current status of molecular targeted treatments for hepatocellular carcinoma. Crit. Rev. Eukaryot. Gene Expr., 2017, 27(4), 373-385.
[http://dx.doi.org/10.1615/CritRevEukaryotGeneExpr.2017021006] [PMID: 29283332]
[2]
Boedefeld, W.M., II; Bland, K.I.; Heslin, M.J. Recent insights into angiogenesis, apoptosis, invasion, and metastasis in colorectal carcinoma. Ann. Surg. Oncol., 2003, 10(8), 839-851.
[http://dx.doi.org/10.1245/ASO.2003.02.021] [PMID: 14527901]
[3]
Fulda, S. Tumor resistance to apoptosis. Int. J. Cancer, 2009, 124(3), 511-515.
[http://dx.doi.org/10.1002/ijc.24064] [PMID: 19003982]
[4]
Sarwar, M.R.; Saqib, A. Cancer prevalence, incidence and mortality rates in Pakistan in 2012. Cogent Med., 2017, 4(1)1288773
[http://dx.doi.org/10.1080/2331205X.2017.1288773]
[5]
Daniyal, M.; Ahmad, S.; Ahmad, M.; Asif, H.M.; Akram, M.; Ur Rehman, S.; Sultana, S. Risk factors and epidemiology of gastric cancer in Pakistan. Asian Pac. J. Cancer Prev., 2015, 16(12), 4821-4824.
[http://dx.doi.org/10.7314/APJCP.2015.16.12.4821] [PMID: 26163597]
[6]
Chiaretti, S.; Foà, R. T-cell acute lymphoblastic leukemia. Haematologica, 2009, 94(2), 160-162.
[http://dx.doi.org/10.3324/haematol.2008.004150] [PMID: 19181788]
[7]
Lucas, D.M.; Still, P.C.; Pérez, L.B.; Grever, M.R.; Kinghorn, A.D. Potential of plant-derived natural products in the treatment of leukemia and lymphoma. Curr. Drug Targets, 2010, 11(7), 812-822.
[http://dx.doi.org/10.2174/138945010791320809] [PMID: 20370646]
[8]
Akhtar, M.F.; Sharif, A.; Saleem, M.; Saleem, A.; Akhtar, B.; Raza, M.; Ijaz, H.; Shabbir, M.; Ali, S.; Sharif, A.; Nasim, M.B.; Peerzada, S. Genotoxic and cytotoxic potential of Alternanthera Bettzickiana, an important ethno-medicinal plant. Cell. Mol. Biol., 2017, 63(8), 109-114.
[http://dx.doi.org/10.14715/cmb/2017.63.8.23] [PMID: 28886323]
[9]
Xiong, Y.; Ji, W.; Fei, Y.; Zhao, Y.; Wang, L.; Wang, W.; Han, M.; Tan, C.; Fei, X.; Huang, Q.; Liang, Z. Cathepsin L is involved in X-ray-induced invasion and migration of human glioma U251 cells. Cell. Signal., 2017, 29, 181-191.
[http://dx.doi.org/10.1016/j.cellsig.2016.10.012] [PMID: 27989700]
[10]
Akhtar, M.F.; Saleem, A. Alamgeer; Saleem, M. A comprehensive review on ethnomedicinal, pharmacological and phytochemical basis of anticancer medicinal plants of pakistan. Curr. Cancer Drug Targets, 2019, 19(2), 120-151.
[http://dx.doi.org/10.2174/1568009618666180706164536] [PMID: 29984657]
[11]
Uzair, M. Phytochemical and biological studies of Conyza bonariensis (compositae), Euphorbia prostrata and Euphorbia helioscopia (Euphorbiaceae); Bahauddin Zakariya University: Multan, 2009.
[12]
Thabit, R.A.S.; Cheng, X-R.; Tang, X.; Sun, J.; Shi, Y-H.; Le, G-W. Antioxidant and antibacterial activities of extracts from Conyza bonariensis growing in Yemen. Pak. J. Pharm. Sci., 2015, 28(1), 129-134.
[PMID: 25553691]
[13]
R. A. Cheng, X.-R.; Al-Hajj, N.; Rahman, M.; Lei, G., Antioxidant and Conyza bonariensis: a review. European Academic Research, 2014, 2, 8454-8474.
[14]
Araujo, L.; Moujir, L.M.; Rojas, J.; Rojas, L.; Carmona, J.; Rondón, M. Chemical composition and biological activity of Conyza bonariensis essential oil collected in Mérida, Venezuela. Nat. Prod. Commun., 2013, 8(8), 1175-1178.
[http://dx.doi.org/10.1177/1934578X1300800838] [PMID: 24079198]
[15]
Bukhari, I.A.; Sheikh, S.A.; Shaikh, N.A.; Assiri, A.M.; Gilani, A.H. Peripheral analgesic and anti-inflammatory activities of the methanolic extracts of Conyza bonariensis and its fractions in rodents models. Int. J. Pharmacol., 2018, 14(1), 144-150.
[http://dx.doi.org/10.3923/ijp.2018.144.150]
[16]
Chaudhry, B.A.; Janbaz, K.H.; Uzair, M.; Ejaz, A.S. Biological studies of Conyza and Euphorbia species. J. Res. (Sci.), 2001, 12(1), 85-88.
[17]
Shahwar, D.; Raza, M.A.; Saeed, A.; Riasat, M.; Chattha, F.I.; Javaid, M.; Ullah, S. Antioxidant potential of the extracts of Putranjiva roxburghii, Conyza bonariensis, Woodfordia fruiticosa and Senecio chrysanthemoids. Afr. J. Biotechnol., 2012, 11(18), 4288-4295.
[18]
Espinoza, R.V.; Peñarreta, J.; Quijano-Avilés, M.; Lucas, A.B.; Chóez-Guaranda, I.; Santana, P.M. Antioxidant activity and GC-MS profile of Conyza bonariensis L. leaves extract and fractions. Rev. Fac. Nac. Agron., 2020, 73(3), 9305-9313.
[http://dx.doi.org/10.15446/rfnam.v73n3.81452]
[19]
Aktivitesi, S. Cytotoxic Effect of Conyza canadensis (L.) Cronquist on human lung cancer cell lines. Turkish J. Pharma. Sci., 2016, 13(3), 342-346.
[http://dx.doi.org/10.4274/tjps.2016.10]
[20]
Hurrell, J.A.; Puentes, J.P. Medicinal and aromatic species of Asteraceae commercialized in the conurbation Buenos Aires-La Plata Argentina; Ethnobiol. Conserv, 2013, p. 2.
[21]
El Zalabani, S.M.; Hetta, M.H.; Ismail, A.S. Genetic profiling, chemical characterization and biological evaluation of two Conyza species growing in Egypt. J. Appl. Pharm. Sci., 2012, 2(11), 54.
[22]
Araujo, L.; Moujir, L.M.; Rojas, J.; Rojas, L.; Carmona, J.; Rondón, M. Medicinal and aromatic species of Asteraceae commercialized in the conurbation Buenos Aires-La Plata. (Argentina) Ethnobiol. Conserv; , 2013. 2
[23]
Saleem, M.; Naseer, F.; Hussain, K. Cytotoxic effect of methanol extract of Conyza bonariensis on DMBA-induced skin carcinogenesis: An in vivo study. Bangladesh J. Pharmacol., 2015, 10(2), 467-474.
[http://dx.doi.org/10.3329/bjp.v10i2.23063]
[24]
Akhtar, M.F.; Saleem, A.; Sharif, A.; Akhtar, B.; Nasim, M.B.; Peerzada, S.; Raza, M.; Ijaz, H.; Ahmed, S.; Shabbir, M.; Ali, S.; Akbar, Z.; Ul Hassan, S.S. Genotoxic and cytotoxic action potential of Terminalia citrina, a medicinal plant of ethnopharmacological significance. EXCLI J., 2016, 15, 589-598.
[PMID: 28096789]
[25]
Wang, P.; Henning, S.M.; Heber, D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One, 2010, 5(4)e10202
[http://dx.doi.org/10.1371/journal.pone.0010202] [PMID: 20419137]
[26]
Freshney, R.I. Culture of animal cells: a manual of basic technique and specialized applications; John Wiley & Sons, 2015.
[27]
Crowley, L. C.; Marfell, B. J.; Christensen, M. E.; Waterhouse, N. J. Measuring cell death by trypan blue uptake and light microscopy. Cold Spring Harbor Protocols,, 2016, 2016(7) pdb. prot087155.
[http://dx.doi.org/10.1101/pdb.prot087155]
[28]
Rahbar Saadat, Y.; Saeidi, N.; Zununi Vahed, S.; Barzegari, A.; Barar, J. An update to DNA ladder assay for apoptosis detection. Bioimpacts, 2015, 5(1), 25-28.
[http://dx.doi.org/10.15171/bi.2015.01] [PMID: 25901294]
[29]
Kim, J.Y.; Cho, T.J.; Woo, B.H.; Choi, K.U.; Lee, C.H.; Ryu, M.H.; Park, H.R. Curcumin-induced autophagy contributes to the decreased survival of oral cancer cells. Arch. Oral Biol., 2012, 57(8), 1018-1025.
[http://dx.doi.org/10.1016/j.archoralbio.2012.04.005] [PMID: 22554995]
[30]
Syed Abdul Rahman, S.N.; Abdul Wahab, N.; Abd Malek, S.N.; Malek, A.; Nurestri, S. In vitro morphological assessment of apoptosis induced by antiproliferative constituents from the rhizomes of Curcuma zedoaria. Evid. Based Complement. Alternat. Med., 2013, 2013257108
[http://dx.doi.org/10.1155/2013/257108] [PMID: 23762112]
[31]
Jagani, Z.; Singh, A.; Khosravi-Far, R. FoxO tumor suppressors and BCR-ABL-induced leukemia: a matter of evasion of apoptosis. Biochim. Biophys. Acta, 2008, 1785(1), 63-84.
[PMID: 17980712]
[32]
Shen, T.; Han, X-Z.; Wang, X-N.; Fan, P-H.; Ren, D-M.; Lou, H-X. Protective effects of dietary polyphenols in human diseases and mechanisms of action.Nutritional Antioxidant Therapies: Treatments and Perspectives; Springer, 2017, pp. 307-345.
[http://dx.doi.org/10.1007/978-3-319-67625-8_13]
[33]
Sharma, S.; Kelly, T.K.; Jones, P.A. Epigenetics in cancer. Carcinogenesis, 2010, 31(1), 27-36.
[http://dx.doi.org/10.1093/carcin/bgp220] [PMID: 19752007]
[34]
Fuks, F.; Burgers, W.A.; Brehm, A.; Hughes-Davies, L.; Kouzarides, T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat. Genet., 2000, 24(1), 88-91.
[http://dx.doi.org/10.1038/71750] [PMID: 10615135]
[35]
Achour, M.; Jacq, X.; Rondé, P.; Alhosin, M.; Charlot, C.; Chataigneau, T.; Jeanblanc, M.; Macaluso, M.; Giordano, A.; Hughes, A.D.; Schini-Kerth, V.B.; Bronner, C. The interaction of the SRA domain of ICBP90 with a novel domain of DNMT1 is involved in the regulation of VEGF gene expression. Oncogene, 2008, 27(15), 2187-2197.
[http://dx.doi.org/10.1038/sj.onc.1210855] [PMID: 17934516]
[36]
Egger, G.; Liang, G.; Aparicio, A.; Jones, P.A. Epigenetics in human disease and prospects for epigenetic therapy. Nature, 2004, 429(6990), 457-463.
[http://dx.doi.org/10.1038/nature02625] [PMID: 15164071]
[37]
Fujiwara, H.; Matsunaga, K.; Saito, M.; Hagiya, S.; Furukawa, K.; Nakamura, H.; Ohizumi, Y. Halenaquinone, a novel phosphatidylinositol 3-kinase inhibitor from a marine sponge, induces apoptosis in PC12 cells. Eur. J. Pharmacol., 2001, 413(1), 37-45.
[http://dx.doi.org/10.1016/S0014-2999(00)00944-4] [PMID: 11173061]
[38]
Lorenzi, S.; Forloni, M.; Cifaldi, L.; Antonucci, C.; Citti, A.; Boldrini, R.; Pezzullo, M.; Castellano, A.; Russo, V.; van der Bruggen, P.; Giacomini, P.; Locatelli, F.; Fruci, D. IRF1 and NF-kB restore MHC class I-restricted tumor antigen processing and presentation to cytotoxic T cells in aggressive neuroblastoma. PLoS One, 2012, 7(10)e46928
[http://dx.doi.org/10.1371/journal.pone.0046928] [PMID: 23071666]
[39]
Gagnon, J.; Shaker, S.; Primeau, M.; Hurtubise, A.; Momparler, R.L. Interaction of 5-aza-2¢-deoxycytidine and depsipeptide on antineoplastic activity and activation of 14-3-3σ, E-cadherin and tissue inhibitor of metalloproteinase 3 expression in human breast carcinoma cells. Anticancer Drugs, 2003, 14(3), 193-202.
[http://dx.doi.org/10.1097/00001813-200303000-00002] [PMID: 12634613]
[40]
Bronner, C.; Achour, M.; Arima, Y.; Chataigneau, T.; Saya, H.; Schini-Kerth, V.B. The UHRF family: oncogenes that are drugable targets for cancer therapy in the near future? Pharmacol. Ther., 2007, 115(3), 419-434.
[http://dx.doi.org/10.1016/j.pharmthera.2007.06.003] [PMID: 17658611]
[41]
Arima, Y.; Hirota, T.; Bronner, C.; Mousli, M.; Fujiwara, T.; Niwa, S.; Ishikawa, H.; Saya, H. Down-regulation of nuclear protein ICBP90 by p53/p21Cip1/WAF1-dependent DNA-damage checkpoint signals contributes to cell cycle arrest at G1/S transition. Genes Cells, 2004, 9(2), 131-142.
[http://dx.doi.org/10.1111/j.1356-9597.2004.00710.x] [PMID: 15009091]
[42]
Avvakumov, G.V.; Walker, J.R.; Xue, S.; Li, Y.; Duan, S.; Bronner, C.; Arrowsmith, C.H.; Dhe-Paganon, S. Structural basis for recognition of hemi-methylated DNA by the SRA domain of human UHRF1. Nature, 2008, 455(7214), 822-825.
[http://dx.doi.org/10.1038/nature07273] [PMID: 18772889]
[43]
Alhosin, M.; Abusnina, A.; Achour, M.; Sharif, T.; Muller, C.; Peluso, J.; Chataigneau, T.; Lugnier, C.; Schini-Kerth, V.B.; Bronner, C.; Fuhrmann, G. Induction of apoptosis by thymoquinone in lymphoblastic leukemia Jurkat cells is mediated by a p73-dependent pathway which targets the epigenetic integrator UHRF1. Biochem. Pharmacol., 2010, 79(9), 1251-1260.
[http://dx.doi.org/10.1016/j.bcp.2009.12.015] [PMID: 20026309]
[44]
Jost, C.A.; Marin, M.C.; Kaelin, W.G., Jr p73 is a human p53-related protein that can induce apoptosis. Nature, 1997, 389(6647), 191.
[http://dx.doi.org/10.1038/38298] [PMID: 9296498]
[45]
Allison, S.J.; Jiang, M.; Milner, J. Oncogenic viral protein HPV E7 up-regulates the SIRT1 longevity protein in human cervical cancer cells. Aging (Albany NY), 2009, 1(3), 316-327.
[http://dx.doi.org/10.18632/aging.100028] [PMID: 20157519]
[46]
Wu, Y-M.; Su, F.; Kalyana-Sundaram, S.; Khazanov, N.; Ateeq, B.; Cao, X.; Lonigro, R.J.; Vats, P.; Wang, R.; Lin, S-F.; Cheng, A.J.; Kunju, L.P.; Siddiqui, J.; Tomlins, S.A.; Wyngaard, P.; Sadis, S.; Roychowdhury, S.; Hussain, M.H.; Feng, F.Y.; Zalupski, M.M.; Talpaz, M.; Pienta, K.J.; Rhodes, D.R.; Robinson, D.R.; Chinnaiyan, A.M. Identification of targetable FGFR gene fusions in diverse cancers. Cancer Discov., 2013, 3(6), 636-647.
[http://dx.doi.org/10.1158/2159-8290.CD-13-0050] [PMID: 23558953]
[47]
Xavier, A.P.; Santharam, L.; Panigrahi, S.; Muthuraman, M.S.; Pemiah, B. Antitumor potential of ethanolic extract of Solanum trilobatum against Ehrlich’s Ascites Carcinoma. Int. J. Pharm. Tech. Res., 2013, 5(3), 1119-1125.
[48]
Zahoor, A.; Hussain, H.; Khan, A.; Ahmed, I.; Ahmad, V.U.; Krohn, K. Chemical Constituents from Erigeron bonariensis L. and their chemotaxonomic importance. Rec. Nat. Prod., 2012, 6(4), 376.
[49]
Kong, L.D.; Abliz, Z.; Zhou, C.X.; Li, L.J.; Cheng, C.H.; Tan, R.X. Glycosides and xanthine oxidase inhibitors from Conyza bonariensis. Phytochemistry, 2001, 58(4), 645-651.
[http://dx.doi.org/10.1016/S0031-9422(01)00176-5] [PMID: 11576616]
[50]
Ren, W.; Qiao, Z.; Wang, H.; Zhu, L.; Zhang, L. Flavonoids: promising anticancer agents. Med. Res. Rev., 2003, 23(4), 519-534.
[http://dx.doi.org/10.1002/med.10033] [PMID: 12710022]
[51]
Yaseen, H.S.; Asif, M.; Saadullah, M. Mahrukh; Asghar, S.; Shams, M.U.; Bazmi, R.R.; Saleem, M.; Yousaf, H.M.; Yaseen, M. Methanolic extract of Ephedra ciliata promotes wound healing and arrests inflammatory cascade in vivo through downregulation of TNF-α. Inflammopharmacology, 2020, 28(6), 1691-1704.
[http://dx.doi.org/10.1007/s10787-020-00713-7] [PMID: 32385747]
[52]
Subramanian, V.; Venkatesan, B.; Tumala, A.; Vellaichamy, E. Topical application of Gallic acid suppresses the 7,12-DMBA/Croton oil induced two-step skin carcinogenesis by modulating anti-oxidants and MMP-2/MMP-9 in Swiss albino mice. Food Chem. Toxicol., 2014, 66, 44-55.
[http://dx.doi.org/10.1016/j.fct.2014.01.017] [PMID: 24444547]
[53]
Rajendra Prasad, N.; Karthikeyan, A.; Karthikeyan, S.; Reddy, B.V. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line. Mol. Cell. Biochem., 2011, 349(1-2), 11-19.
[http://dx.doi.org/10.1007/s11010-010-0655-7] [PMID: 21116690]
[54]
Kim, B-W.; Lee, E-R.; Min, H-M.; Jeong, H-S.; Ahn, J-Y.; Kim, J-H.; Choi, H-Y.; Choi, H.; Kim, E.Y.; Park, S.P.; Cho, S.G. Sustained ERK activation is involved in the kaempferol-induced apoptosis of breast cancer cells and is more evident under 3-D culture condition. Cancer Biol. Ther., 2008, 7(7), 1080-1089.
[http://dx.doi.org/10.4161/cbt.7.7.6164] [PMID: 18443432]
[55]
Senawong, T.; Khaopha, S.; Misuna, S.; Komaikul, J.; Senawong, G.; Wongphakham, P.; Yunchalard, S. Phenolic acid composition and anticancer activity against human cancer cell lines of the commercially available fermentation products of Houttuynia cordata. Sci. Asia, 2014, 40, 420-427.
[http://dx.doi.org/10.2306/scienceasia1513-1874.2014.40.420]
[56]
Yamagata, K.; Izawa, Y.; Onodera, D.; Tagami, M. Chlorogenic acid regulates apoptosis and stem cell marker-related gene expression in A549 human lung cancer cells. Mol. Cell. Biochem., 2018, 441(1-2), 9-19.
[http://dx.doi.org/10.1007/s11010-017-3171-1] [PMID: 28875417]
[57]
Yiang, G-T.; Chou, P-L.; Hung, Y-T.; Chen, J-N.; Chang, W-J.; Yu, Y-L.; Wei, C-W. Vitamin C enhances anticancer activity in methotrexate treated Hep3B hepatocellular carcinoma cells. Oncol. Rep., 2014, 32(3), 1057-1063.
[http://dx.doi.org/10.3892/or.2014.3289] [PMID: 24969544]
[58]
Rauf, A.; Imran, M.; Khan, I.A.; Ur-Rehman, M.; Gilani, S.A.; Mehmood, Z.; Mubarak, M.S. Anticancer potential of quercetin: A comprehensive review. Phytother. Res., 2018, 32(11), 2109-2130.
[http://dx.doi.org/10.1002/ptr.6155] [PMID: 30039547]
[59]
Aborehab, N.M.; Osama, N. Effect of Gallic acid in potentiating chemotherapeutic effect of Paclitaxel in HeLa cervical cancer cells. Cancer Cell Int., 2019, 19(1), 154.
[http://dx.doi.org/10.1186/s12935-019-0868-0] [PMID: 31171918]
[60]
Espíndola, K.M.M.; Ferreira, R.G.; Narvaez, L.E.M.; Silva Rosario, A.C.R.; da Silva, A.H.M.; Silva, A.G.B.; Vieira, A.P.O.; Monteiro, M.C. Chemical and pharmacological aspects of caffeic acid and its activity in hepatocarcinoma. Front. Oncol., 2019, 9, 541.
[http://dx.doi.org/10.3389/fonc.2019.00541] [PMID: 31293975]
[61]
Imran, M.; Salehi, B.; Sharifi-Rad, J.; Aslam Gondal, T.; Saeed, F.; Imran, A.; Shahbaz, M.; Tsouh Fokou, P.V.; Umair Arshad, M.; Khan, H.; Guerreiro, S.G.; Martins, N.; Estevinho, L.M. Kaempferol: A key emphasis to its anticancer potential. Molecules, 2019, 24(12), 2277.
[http://dx.doi.org/10.3390/molecules24122277] [PMID: 31248102]
[62]
Gong, J.; Zhou, S.; Yang, S. Vanillic acid suppresses HIF-1α expression via inhibition of mTOR/p70S6K/4E-BP1 and Raf/MEK/ERK pathways in human colon cancer HCT116 cells. Int. J. Mol. Sci., 2019, 20(3), 465.
[http://dx.doi.org/10.3390/ijms20030465] [PMID: 30678221]
[63]
Gouthamchandra, K.; Sudeep, H.; Venkatesh, B.; Prasad, K.S. Chlorogenic acid complex (CGA7), standardized extract from green coffee beans exerts anticancer effects against cultured human colon cancer HCT-116 cells. Food Sci. Hum. Wellness, 2017, 6(3), 147-153.
[http://dx.doi.org/10.1016/j.fshw.2017.06.001]
[64]
Periyannan, V.; Veerasamy, V. Syringic acid may attenuate the oral mucosal carcinogenesis via improving cell surface glycoconjugation and modifying cytokeratin expression. Toxicol. Rep., 2018, 5, 1098-1106.
[http://dx.doi.org/10.1016/j.toxrep.2018.10.015] [PMID: 30425931]
[65]
Pawlowska, E.; Szczepanska, J.; Blasiak, J. Pro-And antioxidant effects of Vitamin C in cancer in correspondence to its dietary and pharmacological concentrations; Oxid. Med. Cellu. Longe 2019, 2019.
[http://dx.doi.org/10.1155/2019/7286737]
[66]
Wang, T.Y.; Li, Q.; Bi, K.S. Bioactive flavonoids in medicinal plants: Structure, activity and biological fate. Asian J Pharm Sci, 2018, 13(1), 12-23.
[http://dx.doi.org/10.1016/j.ajps.2017.08.004] [PMID: 32104374]
[67]
Asif, M.; Yehya, A.H.S.; Dahham, S.S.; Mohamed, S.K.; Shafaei, A.; Ezzat, M.O.; Abdul Majid, A.S.; Oon, C.E.; Abdul Majid, A.M.S. Establishment of in vitro and in vivo anti-colon cancer efficacy of essential oils containing oleo-gum resin extract of Mesua ferrea. Biomed. Pharmacother., 2019, 109, 1620-1629.
[http://dx.doi.org/10.1016/j.biopha.2018.10.127] [PMID: 30551416]
[68]
Asif, M.; Al-Mansoub, M.A.; Khan, M.D.S.S.; Yehya, A.H.S.; Ezzat, M.O.; Oon, C.E.; Atif, M.; Abdul Majid, A.S.; Abdul Majid, A.M.S. Molecular mechanisms responsible for programmed cell death-inducing attributes of terpenes from Mesua ferrea stem bark towards human colorectal carcinoma HCT 116 cells. J. Appl. Biomed. 2017, 15(1), 71-80.
[http://dx.doi.org/10.1016/j.jab.2016.10.003]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy