Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In Silico Identification of New Anti-SARS-CoV-2 Agents from Bioactive Phytocompounds Targeting the Viral Spike Glycoprotein and Human TLR4

Author(s): Nabarun Chandra Das, Rajendra Kumar Labala, Ritwik Patra, Asamanja Chattoraj and Suprabhat Mukherjee*

Volume 19, Issue 3, 2022

Published on: 01 September, 2021

Page: [175 - 191] Pages: 17

DOI: 10.2174/1570180818666210901125519

Price: $65

Abstract

Background: The recent outbreak of novel coronavirus disease (COVID-19) pandemic caused by SARS-CoV-2 has posed a tremendous threat to mankind. The unavailability of a specific drug or vaccine has been the major concern to date. Spike (S) glycoprotein of SARS-CoV-2 plays the most crucial role in viral infection and immunopathogenesis, and hence this protein appears to be an efficacious target for drug discovery.

Objective: The objective of this study was to identify potent bioactive phytocompound that can target viral spike (S) glycoprotein and human TLR4 to reduce immunopathological manifestations of COVID- 19.

Methods: A series of thirty (30) bioactive phytocompounds, previously documented for antiviral activity, were theoretically screened for their binding efficacy against key proteins related to the pathogenesis of SARS-CoV-2, namely viral spike (S) glycoprotein, and human TLR4. MD simulation was employed to verify the postulations of molecular docking study, and further ADME analysis was performed to predict the most effective one.

Results: Studies hypothesized that two new phytochemicals, viz. cajaninstilbene acid (-8.83 kcal/mol) and papaverine (-5.81 kcal/mol), might be the potent inhibitors of spike glycoprotein with stout binding affinity and favourable ADME attributes. MD simulation further ratified the stability of the docked complexes between the phytochemicals and S protein through strong hydrogen bonding. Our In Silico data also indicated that cajaninstilbene acid and papaverine might block human TLR4, which could be useful in mitigating SARS-CoV-2-induced lethal proinflammatory responses.

Conclusion: Experimental data collectively predict cajaninstilbene acid as the potential blocker of S protein which may be used as an anti-viral against COVID-19 in the future. However, further experimental validations alongside toxicological detailing are needed for claiming the candidature of these molecules as future anti-corona therapeutics.

Keywords: SARS-CoV-2, phytocompounds, spike protein, TLR4, molecular docking, MD simulation.

Next »
Graphical Abstract

[1]
Coronavirus disease (COVID-19).. 2020. Available at: https://www.physio-pedia.com/Coronavirus_Disease_ (COVID-19)
[2]
WHO. WHO coronavirus disease (COVID-19). 2020. Available at: https://www.who.int/emergencies/diseases/novel-coronavirus-2019
[3]
Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K.S.M.; Lau, E.H.Y.; Wong, J.Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.; Chen, C.; Jin, L.; Yang, R.; Wang, Q.; Zhou, S.; Wang, R.; Liu, H.; Luo, Y.; Liu, Y.; Shao, G.; Li, H.; Tao, Z.; Yang, Y.; Deng, Z.; Liu, B.; Ma, Z.; Zhang, Y.; Shi, G.; Lam, T.T.Y.; Wu, J.T.; Gao, G.F.; Cowling, B.J.; Yang, B.; Leung, G.M.; Feng, Z.; Selvi, V.S.; Bhaskar, A. Early transmission dynamics in wuhan, china, of novel coronavirus-infected pneumonia. N. Engl. J. Med., 2020, 382(13), 1199-1207.
[http://dx.doi.org/10.1056/NEJMoa2001316] [PMID: 31995857]
[4]
Xie, M.; Chen, Q. Insight into 2019 novel coronavirus - an updated interim review and lessons from SARS-CoV and MERS-CoV. Int. J. Infect. Dis., 2020, 94, 119-124.
[http://dx.doi.org/10.1016/j.ijid.2020.03.071] [PMID: 32247050]
[5]
Perico, L.; Benigni, A.; Remuzzi, G. Should covid-19 concern nephrologists? why and to what extent? the emerging impasse of angiotensin blockade. Nephron, 2020, 144(5), 213-221.
[http://dx.doi.org/10.1159/000507305] [PMID: 32203970]
[6]
Mousavizadeh, L.; Ghasemi, S. Genotype and phenotype of COVID-19: Their roles in pathogenesis. J. Microbiol. Immunol. Infect., 2021, 54(2), 159-163.
[http://dx.doi.org/10.1016/j.jmii.2020.03.022]
[7]
Sahin, A.R. 2019 novel coronavirus (COVID-19) outbreak: a review of the current literature. Eurasian J. Med. Oncol., 2020, 4, 1-7.
[http://dx.doi.org/10.14744/ejmo.2020.12220]
[8]
Chen, Y.; Liu, Q.; Guo, D. Emerging coronaviruses: Genome structure, replication, and pathogenesis. J. Med. Virol., 2020, 92(4), 418-423.
[http://dx.doi.org/10.1002/jmv.25681] [PMID: 31967327]
[9]
Choudhury, A.; Mukherjee, S. In silico studies on the comparative characterization of the interactions of SARS-CoV-2 spike glycoprotein with ACE-2 receptor homologs and human TLRs. J. Med. Virol., 2020, 92(10), 2105-2113.
[http://dx.doi.org/10.1002/jmv.25987] [PMID: 32383269]
[10]
Patra, R.; Chandra Das, N.; Mukherjee, S. Targeting human TLRs to combat COVID‐19: A solution? J. Med. Virol., 2020.
[http://dx.doi.org/10.1002/jmv.26387]
[11]
Cao, X. COVID-19: immunopathology and its implications for therapy. Nat. Rev. Immunol., 2020, 20(5), 269-270.
[http://dx.doi.org/10.1038/s41577-020-0308-3] [PMID: 32273594]
[12]
Gautret, P.; Lagier, J-C.; Parola, P.; Hoang, V.T.; Meddeb, L.; Mailhe, M.; Doudier, B.; Courjon, J.; Giordanengo, V.; Vieira, V.E.; Tissot Dupont, H.; Honoré, S.; Colson, P.; Chabrière, E.; La Scola, B.; Rolain, J-M.; Brouqui, P.; Raoult, D. Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int. J. Antimicrob. Agents, 2020, 56(1)105949
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105949] [PMID: 32205204]
[13]
Grein, J.; Ohmagari, N.; Shin, D.; Diaz, G.; Asperges, E.; Castagna, A.; Feldt, T.; Green, G.; Green, M.L.; Lescure, F-X.; Nicastri, E.; Oda, R.; Yo, K.; Quiros-Roldan, E.; Studemeister, A.; Redinski, J.; Ahmed, S.; Bernett, J.; Chelliah, D.; Chen, D.; Chihara, S.; Cohen, S.H.; Cunningham, J.; D’Arminio Monforte, A.; Ismail, S.; Kato, H.; Lapadula, G.; L’Her, E.; Maeno, T.; Majumder, S.; Massari, M.; Mora-Rillo, M.; Mutoh, Y.; Nguyen, D.; Verweij, E.; Zoufaly, A.; Osinusi, A.O.; DeZure, A.; Zhao, Y.; Zhong, L.; Chokkalingam, A.; Elboudwarej, E.; Telep, L.; Timbs, L.; Henne, I.; Sellers, S.; Cao, H.; Tan, S.K.; Winterbourne, L.; Desai, P.; Mera, R.; Gaggar, A.; Myers, R.P.; Brainard, D.M.; Childs, R.; Flanigan, T. Compassionate use of remdesivir for patients with severe covid-19. N. Engl. J. Med., 2020, 382(24), 2327-2336.
[http://dx.doi.org/10.1056/NEJMoa2007016] [PMID: 32275812]
[14]
Choudhury, A.; Das, N.C.; Patra, R.; Bhattacharya, M.; Ghosh, P.; Patra, B.C.; Mukherjee, S. Exploring the binding efficacy of ivermectin against the key proteins of SARS-CoV-2 pathogenesis: An in silico approach. Future Virol., 2021, 16(4)
[http://dx.doi.org/10.2217/fvl-2020-0342]
[15]
Lee, B.K.; Richards, F.M. Solvent accessibility of groups in proteins. J. Mol. Biol., 1971, 55, 379-400.
[http://dx.doi.org/10.1016/0022-2836(71)90324-X] [PMID: 5551392]
[16]
Shrake, A.; Rupley, J.A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol., 1973, 79(2), 351-371.
[http://dx.doi.org/10.1016/0022-2836(73)90011-9] [PMID: 4760134]
[17]
López-Blanco, J.R.; Aliaga, J.I.; Quintana-Ortí, E.S.; Chacón, P. iMODS: internal coordinates normal mode analysis server. Nucleic Acids Res., 2014, 42(Web Server issue), W271-6.
[http://dx.doi.org/10.1093/nar/gku339] [PMID: 24771341]
[18]
Wang, G.; Zhu, W. Molecular docking for drug discovery and development: A widely used approach but far from perfect. Future Med. Chem., 2016, 8(14)
[http://dx.doi.org/10.4155/fmc-2016-0143]
[19]
Pinzi, L.; Rastelli, G. Molecular docking: Shifting paradigms in drug discovery. Int. J. Mol. Sci., 2019, 20(18), 4331.
[http://dx.doi.org/10.3390/ijms20184331] [PMID: 31487867]
[20]
Joshi, T.; Sharma, P.; Joshi, T.; Pundir, H.; Mathpal, S.; Chandra, S. Structure-based screening of novel lichen compounds against SARS Coronavirus main protease (Mpro) as potentials inhibitors of COVID-19. Mol. Divers., 2020, 25(3), 1665-1677.
[http://dx.doi.org/10.1007/s11030-020-10118-x] [PMID: 32602074]
[21]
Hulme, E.C.; Trevethick, M.A. Ligand binding assays at equilibrium: validation and interpretation. Br. J. Pharmacol., 2010, 161(6), 1219-1237.
[http://dx.doi.org/10.1111/j.1476-5381.2009.00604.x] [PMID: 20132208]
[22]
Salahudeen, M.S.; Nishtala, P.S. An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice. Saudi Pharm. J., 2017, 25(2), 165-175.
[http://dx.doi.org/10.1016/j.jsps.2016.07.002] [PMID: 28344466]
[23]
Shang, J.; Wan, Y.; Luo, C.; Ye, G.; Geng, Q.; Auerbach, A.; Li, F. Cell entry mechanisms of SARS-CoV-2. Proc. Natl. Acad. Sci. USA, 2020, 117(21), 11727-11734.
[http://dx.doi.org/10.1073/pnas.2003138117] [PMID: 32376634]
[24]
Kovacs, J.A.; Chacón, P.; Abagyan, R. Predictions of protein flexibility: first-order measures. Proteins, 2004, 56(4), 661-668.
[http://dx.doi.org/10.1002/prot.20151] [PMID: 15281119]
[25]
Kalita, P.; Padhi, A.K.; Zhang, K.Y.J.; Tripathi, T. Design of a peptide-based subunit vaccine against novel coronavirus SARS-CoV-2. Microb. Pathog., 2020, 145104236
[http://dx.doi.org/10.1016/j.micpath.2020.104236] [PMID: 32376359]
[26]
Shah, B.; Modi, P.; Sagar, S.R. In silico studies on therapeutic agents for COVID-19: Drug repurposing approach. Life Sci., 2020, 252117652
[http://dx.doi.org/10.1016/j.lfs.2020.117652] [PMID: 32278693]
[27]
Bhattacharya, M.; Sharma, A.R.; Patra, P.; Ghosh, P.; Sharma, G.; Patra, B.C.; Lee, S.S.; Chakraborty, C. Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. J. Med. Virol., 2020, 92(6), 618-631.
[http://dx.doi.org/10.1002/jmv.25736] [PMID: 32108359]
[28]
Kundu, D.; Selvaraj, C.; Singh, S.K.; Dubey, V.K. Identification of new anti-nCoV drug chemical compounds from Indian spices exploiting SARS-CoV-2 main protease as target. J. Biomol. Struct. Dyn., 2020, 39(9), 3061-3070.
[http://dx.doi.org/10.1080/07391102.2020.1760138] [PMID: 32362243]
[29]
Rout, J.; Swain, B.C.; Tripathy, U. In silico investigation of spice molecules as potent inhibitor of SARS-CoV-2. J. Biomol. Struct. Dyn., 2022, 40(2), 860-874.
[http://dx.doi.org/10.1080/07391102.2020.1819879] [PMID: 32938313]
[30]
Chikhale, R.V.; Gupta, V.K.; Eldesoky, G.E.; Wabaidur, S.M.; Patil, S.A.; Islam, M.A. Identification of potential anti-TMPRSS2 natural products through homology modelling, virtual screening and molecular dynamics simulation studies. J. Biomol. Struct. Dyn., 2020, 39(17), 6660-6675.
[http://dx.doi.org/10.1080/07391102.2020.1798813] [PMID: 32741259]
[31]
Wan, Y.; Shang, J.; Graham, R.; Baric, R.S.; Li, F. Receptor recognition by the novel coronavirus from wuhan: an analysis based on decade-long structural studies of SARS coronavirus. J. Virol., 2020, 94(7), e00127-e20.
[http://dx.doi.org/10.1128/JVI.00127-20] [PMID: 31996437]
[32]
Pal, M.; Berhanu, G.; Desalegn, C.; Kandi, V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus, 2020, 12(3)e7423
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[33]
Rismanbaf, A.; Zarei, S. Liver and kidney injuries in covid-19 and their effects on drug therapy; a letter to editor. Arch. Acad. Emerg. Med., 2020, 8(1), e17-e17.
[PMID: 32185369]
[34]
Mukherjee, S.; Mukherjee, N.; Gayen, P.; Roy, P.; Babu, S.P.S. Metabolic inhibitors as antiparasitic drugs: pharmacological, biochemical and molecular perspectives. Curr. Drug Metab., 2016, 17(10), 937-970.
[http://dx.doi.org/10.2174/1389200217666161004143152] [PMID: 27719626]
[35]
Yang, R.; Liu, H.; Bai, C.; Wang, Y.; Zhang, X.; Guo, R.; Wu, S.; Wang, J.; Leung, E.; Chang, H.; Li, P.; Liu, T.; Wang, Y. Chemical composition and pharmacological mechanism of Qingfei Paidu Decoction and Ma Xing Shi Gan Decoction against Coronavirus Disease 2019 (COVID-19): in silico and experimental study. Pharmacol. Res., 2020, 157104820
[http://dx.doi.org/10.1016/j.phrs.2020.104820] [PMID: 32360484]
[36]
Hwang, J-K.; Noh, E-M.; Moon, S-J.; Kim, J-M.; Kwon, K-B.; Park, B-H.; You, Y-O.; Hwang, B-M.; Kim, H-J.; Kim, B-S.; Lee, S-J.; Kim, J-S.; Lee, Y-R. Emodin suppresses inflammatory responses and joint destruction in collagen-induced arthritic mice. Rheumatology (Oxford), 2013, 52(9), 1583-1591.
[http://dx.doi.org/10.1093/rheumatology/ket178] [PMID: 23685361]
[37]
Selvi, V.S.; Bhaskar, A. Characterization of anti-inflammatory activities and antinociceptive effects of papaverine from Sauropus androgynus (L.) merr. Glob. J. Pharmacol., 2012, 6(3), 186-192.
[http://dx.doi.org/10.5829/idosi.gjp.2012.6.3.65179]
[38]
Huang, M-Y.; Lin, J.; Lu, K.; Xu, H-G.; Geng, Z-Z.; Sun, P-H.; Chen, W-M. Anti-inflammatory effects of cajaninstilbene acid and its derivatives. J. Agric. Food Chem., 2016, 64(14), 2893-2900.
[http://dx.doi.org/10.1021/acs.jafc.6b00227] [PMID: 26998619]
[39]
Liang, L.; Luo, M.; Fu, Y.; Zu, Y.; Wang, W.; Gu, C.; Zhao, C.; Li, C.; Efferth, T. Cajaninstilbene acid (CSA) exerts cytoprotective effects against oxidative stress through the Nrf2-dependent antioxidant pathway. Toxicol. Lett., 2013, 219(3), 254-261.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.008] [PMID: 23535287]
[40]
Wang, L.S.; Tao, X.; Liu, X.M.; Zhou, Y.F.; Zhang, M.D.; Liao, Y.H.; Pan, R.L.; Chang, Q. Cajaninstilbene acid ameliorates cognitive impairment induced by intrahippocampal injection of amyloid-β1-42 oligomers. Front. Pharmacol., 2019, 10, 1084.
[http://dx.doi.org/10.3389/fphar.2019.01084] [PMID: 31680939]
[41]
Terra, X.; Valls, J.; Vitrac, X.; Mérrillon, J-M.; Arola, L.; Ardèvol, A.; Bladé, C.; Fernández-Larrea, J.; Pujadas, G.; Salvadó, J.; Blay, M. Grape-seed procyanidins act as antiinflammatory agents in endotoxin-stimulated RAW 264.7 macrophages by inhibiting NFkB signaling pathway. J. Agric. Food Chem., 2007, 55(11), 4357-4365.
[http://dx.doi.org/10.1021/jf0633185] [PMID: 17461594]
[42]
Zhang, M.; Wu, Q.; Chen, Y.; Duan, M.; Tian, G.; Deng, X.; Sun, Y.; Zhou, T.; Zhang, G.; Chen, W.; Chen, J. Inhibition of proanthocyanidin A2 on porcine reproductive and respiratory syndrome virus replication in vitro. PLoS One, 2018, 13(2)e0193309
[http://dx.doi.org/10.1371/journal.pone.0193309] [PMID: 29489892]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy