Generic placeholder image

Current Medical Imaging

Editor-in-Chief

ISSN (Print): 1573-4056
ISSN (Online): 1875-6603

Research Article

Quantitative Comparisons of Deep-learning-based and Atlas-based Auto- segmentation of the Intermediate Risk Clinical Target Volume for Nasopharyngeal Carcinoma

Author(s): Yisong He, Shengyuan Zhang, Yong Luo, Hang Yu, Yuchuan Fu*, Zhangwen Wu, Xiaoxuan Jiang and Ping Li

Volume 18, Issue 3, 2022

Published on: 27 August, 2021

Article ID: e270821195916 Pages: 11

DOI: 10.2174/1573405617666210827165031

Price: $65

Abstract

Background: Manual segment target volumes were time-consuming and inter-observer variability couldn’t be avoided. With the development of computer science, auto-segmentation had the potential to solve this problem.

Objective: To evaluate the accuracy and stability of Atlas-based and deep-learning-based auto-segmentation of the intermediate risk clinical target volume, composed of CTV2 and CTVnd, for nasopharyngeal carcinoma quantitatively.

Methods and Materials: A cascade-deep-residual neural network was constructed to automatically segment CTV2 and CTVnd by deep learning method. Meanwhile, a commercially available software was used to automatically segment the same regions by Atlas-based method. The datasets included contrast computed tomography scans from 102 patients. For each patient, the two regions were manually delineated by one experienced physician. The similarity between the two auto-segmentation methods was quantitatively evaluated by Dice similarity coefficient, the 95th Hausdorff distance, volume overlap error and relative volume difference, respectively. Statistical analyses were performed using the ranked Wilcoxon test.

Results: The average Dice similarity coefficient (±standard deviation) given by the deep-learning- based and Atlas-based auto-segmentation were 0.84 (±0.03) and 0.74 (±0.04) for CTV2, 0.79 (±0.02) and 0.68 (±0.03) for CTVnd, respectively. For the 95th Hausdorff distance, the corresponding values were 6.30±3.55 mm and 9.34±3.39 mm for CTV2, 7.09±2.27 mm and 14.33±3.98 mm for CTVnd. Besides, volume overlap error and relative volume difference could also predict the same situations. Statistical analyses showed significant difference between the two auto-segmentation methods (p<0.01).

Conclusion: Compared with the Atlas-based segmentation approach, the deep-learning-based segmentation method performed better both in accuracy and stability for meaningful anatomical areas other than organs at risk.

Keywords: Atlas-based auto-segmentation, deep-learning-based auto-segmentation, STAPLE, nasopharyngeal carcinoma, cascade-deep-residual neural network, cancer.

Graphical Abstract

[1]
Haberer-Guillerm S, Touboul E, Huguet F. Intensity modulated radiation therapy in nasopharyngeal carcinoma. Eur Ann Otorhinolaryngol Head Neck Dis 2015; 132(3): 147-51.
[http://dx.doi.org/10.1016/j.anorl.2014.02.008] [PMID: 25553970]
[2]
Liu WS, Hsin CH, Chou YH, et al. Long-term results of intensity- modulated radiotherapy concomitant with chemotherapy for hypopharyngeal carcinoma aimed at laryngeal preservation. BMC Cancer 2010; 10: 102.
[http://dx.doi.org/10.1186/1471-2407-10-102] [PMID: 20298550]
[3]
Vorwerk H, Zink K, Schiller R, et al. Protection of quality and innovation in radiation oncology: The prospective multicenter trial the german society of radiation oncology (DEGRO-QUIRO study). evaluation of time, attendance of medical staff, and resources during radiotherapy with IMRT. Strahlenther Onkol 2014; 190(5): 433-43.
[http://dx.doi.org/10.1007/s00066-014-0634-0] [PMID: 24595416]
[4]
Harari PM, Song S, Tomé WA. Emphasizing conformal avoidance versus target definition for IMRT planning in head-and- neck cancer. Int J Radiat Oncol Biol Phys 2010; 77(3): 950-8.
[http://dx.doi.org/10.1016/j.ijrobp.2009.09.062] [PMID: 20378266]
[5]
Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother Oncol 2016; 121(2): 169-79.
[http://dx.doi.org/10.1016/j.radonc.2016.09.009] [PMID: 27729166]
[6]
Kosmin M, Ledsam J, Romera-Paredes B, et al. Rapid advances in auto-segmentation of organs at risk and target volumes in head and neck cancer. Radiother Oncol 2019; 135: 130-40.
[http://dx.doi.org/10.1016/j.radonc.2019.03.004] [PMID: 31015159]
[7]
Rohlfing T, Brandt R, Menzel R, et al. Quo vadis, atlas-based segmentation? bt-handbook of biomedical image analysis. In: Springer US: Boston, MA 2005; pp. 435-68.
[8]
Teguh DN, Levendag PC, Voet PWJ, et al. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck. Int J Radiat Oncol Biol Phys 2011; 81(4): 950-7.
[http://dx.doi.org/10.1016/j.ijrobp.2010.07.009] [PMID: 20932664]
[9]
Hoang Duc AK, Eminowicz G, Mendes R, et al. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer. Med Phys 2015; 42(9): 5027-34.
[http://dx.doi.org/10.1118/1.4927567] [PMID: 26328953]
[10]
Tao CJ, Yi JL, Chen NY, et al. Multi-subject atlas-based auto-segmentation reduces interobserver variation and improves dosimetric parameter consistency for organs at risk in nasopharyngeal carcinoma: A multi-institution clinical study. Radiother Oncol 2015; 115(3): 407-11.
[http://dx.doi.org/10.1016/j.radonc.2015.05.012] [PMID: 26025546]
[11]
Stapleford LJ, Lawson JD, Perkins C, et al. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer. Int J Radiat Oncol Biol Phys 2010; 77(3): 959-66.
[http://dx.doi.org/10.1016/j.ijrobp.2009.09.023] [PMID: 20231069]
[12]
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature 2015; 521(7553): 436-44.
[http://dx.doi.org/10.1038/nature14539] [PMID: 26017442]
[13]
Dong H, Yang G, Liu F, et al. Automatic brain tumor detection and segmentation using u-net based fully convolutional networks. Commun Comput Inf Sci 2017; 723: 506-17. https://arxiv.org/abs/1705.03820v1
[14]
Tong N, Gou S, Yang S, Ruan D, Sheng K. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Med Phys 2018; 45(10): 4558-67.
[http://dx.doi.org/10.1002/mp.13147] [PMID: 30136285]
[15]
Nikolov S, Blackwell S, Mendes R, et al. Deep learning to achieve clinically applicable segmentation of head and neck anatomy for Radiotherapy. arXiv 2018. https://arxiv.org/abs/1809.04430
[16]
Lee H, Lee E, Kim N, et al. Clinical evaluation of commercial atlas-based auto-segmentation in the head and neck region. Front Oncol 2019; 9: 239.
[http://dx.doi.org/10.3389/fonc.2019.00239] [PMID: 31024843]
[17]
Lustberg T, van Soest J, Gooding M, et al. Clinical evaluation of atlas and deep learning based automatic contouring for lung cancer. Radiother Oncol 2018; 126(2): 312-7.
[http://dx.doi.org/10.1016/j.radonc.2017.11.012] [PMID: 29208513]
[18]
Ahn SH, Yeo AU, Kim KH, et al. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Radiat Oncol 2019; 14(1): 213.
[http://dx.doi.org/10.1186/s13014-019-1392-z] [PMID: 31775825]
[19]
Lee AW, Ng WT, Pan JJ, et al. International guideline for the delineation of the clinical target volumes (CTV) for nasopharyngeal carcinoma. Radiother Oncol 2018; 126(1): 25-36.
[http://dx.doi.org/10.1016/j.radonc.2017.10.032] [PMID: 29153464]
[20]
Huang SH, O’Sullivan B. Overview of the 8th edition TNM classification for head and neck cancer. Curr Treat Options Oncol 2017; 18(7): 40.
[21]
Hua Q, Zheng J, Hu B, Shu M, Shen L, Chen J. Patterns of retropharyngeal lymph node metastasis in nasopharyngeal carcinoma. Biomed Res (Aligarh) 2017; 28: 5914-9.
[22]
Han X, Hoogeman MS, Levendag PC, et al. Atlas-based auto-segmentation of head and neck CT images.Lecture Notes in Computer Science. Berlin, Heidelberg: Springer 2008; p. 5242.
[http://dx.doi.org/10.1007/978-3-540-85990-1_52]
[23]
Wong WKH, Leung LHT, Kwong DLW. Evaluation and optimization of the parameters used in multiple-atlas-based segmentation of prostate cancers in radiation therapy. Br J Radiol 2016; 89(1057): 20140732.
[http://dx.doi.org/10.1259/bjr.20140732] [PMID: 26539630]
[24]
Warfield SK, Zou KH, Wells WM. Simultaneous truth and performance level estimation (STAPLE): An algorithm for the validation of image segmentation. IEEE Trans Med Imaging 2004; 23(7): 903-21.
[http://dx.doi.org/10.1109/TMI.2004.828354] [PMID: 15250643]
[25]
Yu Q, Xie L, Wang Y, Zhou Y, Fishman E, Yuille A. Recurrent saliency transformation network: Incorporating multi-stage visual cues for small organ segmentation. Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit 2018; 2: 8280-9.
[26]
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: Lecture Notes in Computer Science. Springer, Cham 2015; 9351.
[27]
Falk T, Mai D, Bensch R, et al. U-Net: Deep learning for cell counting, detection, and morphometry. Nat Methods 2019; 16(1): 67-70.
[http://dx.doi.org/10.1038/s41592-018-0261-2] [PMID: 30559429]
[28]
Milletari F, Navab N, Ahmadi SA. V-Net: Fully convolutional neural networks for volumetric medical image segmentation. Proc - 2016 4th Int Conf 3D Vision, 3DV 2016; 565-71. https://arxiv.org/abs/1606.04797
[29]
Ulyanov D, Vedaldi A, Lempitsky V. Instance normalization. The missing ingredient for fast stylization 2016. https://arxiv.org/abs/1607.08022v3
[30]
Chen H, Wang X, Huang Y, Wu X, Yu Y, Wang L. Harnessing 2D networks and 3D features for automated pancreas segmentation from volumetric CT images. In: Medical image computing and computer assisted intervention. Springer, Cham. 2019; 11769.
[31]
He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. In 2016 IEEE conference on computer vision and pattern recognition CVPR 2016. https://arxiv.org/abs/1512.03385?ivk_sa=1024320u
[32]
Lee H, Kim M, Do S. Practical window setting optimization for medical image deep learning. 2018. https://arxiv.org/abs/1812.00572
[33]
Zuiderveld K. Contrast limited adaptive histogram equalization. Graph Gems 1994; 474-85.
[34]
Men K, Dai J, Li Y. Automatic segmentation of the clinical target volume and organs at risk in the planning ct for rectal cancer using deep dilated convolutional neural networks. Med Phys 2017; 44(12): 6377-89.
[http://dx.doi.org/10.1002/mp.12602] [PMID: 28963779]
[35]
Kingma DP, Ba JL. A method for stochastic optimization. 3rd International Conference for Learning Representations, San Diego, 2015.
[36]
Sharp G, Fritscher KD, Pekar V, et al. Vision 20/20: Perspectives on automated image segmentation for radiotherapy. Med Phys 2014; 41(5): 050902.
[http://dx.doi.org/10.1118/1.4871620] [PMID: 24784366]
[37]
Christ PF, Ettlinger F, Grün F, et al. Automatic liver and tumor segmentation of CT and MRI volumes using cascaded fully convolutional neural networks. arxiv 2017. https://arxiv.org/abs/1702.05970
[38]
Fedorov A, Beichel R, Kalpathy-Cramer J, et al. 3D Slicer as an image computing platform for the quantitative imaging network. Magn Reson Imaging 2012; 30(9): 1323-41.
[http://dx.doi.org/10.1016/j.mri.2012.05.001] [PMID: 22770690]
[39]
Round CE, Williams MV, Mee T, et al. Radiotherapy demand and activity in England 2006-2020. Clin Oncol (R Coll Radiol) 2013; 25(9): 522-30.
[http://dx.doi.org/10.1016/j.clon.2013.05.005] [PMID: 23768454]
[40]
Walker GV, Awan M, Tao R, et al. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer. Radiother Oncol 2014; 112(3): 321-5.
[http://dx.doi.org/10.1016/j.radonc.2014.08.028] [PMID: 25216572]
[41]
Brunt JNH. Computed tomography-magnetic resonance image registration in radiotherapy treatment planning. Clin Oncol (R Coll Radiol) 2010; 22(8): 688-97.
[http://dx.doi.org/10.1016/j.clon.2010.06.016] [PMID: 20674300]
[42]
Sjöberg C, Lundmark M, Granberg C, Johansson S, Ahnesjö A, Montelius A. Clinical evaluation of multi-atlas based segmentation of lymph node regions in head and neck and prostate cancer patients. Radiat Oncol 2013; 8: 229.
[http://dx.doi.org/10.1186/1748-717X-8-229] [PMID: 24090107]
[43]
Jemal A, Bray F, Ferlay J. Global cancer statistics: 2011. CA Cancer J Clin 1999; 49(1): 33-64.
[44]
Chen YP, Chan ATC, Le QT, Blanchard P, Sun Y, Ma J. Nasopharyngeal carcinoma. Lancet 2019; 394(10192): 64-80.
[http://dx.doi.org/10.1016/S0140-6736(19)30956-0] [PMID: 31178151]
[45]
Kim H, Monroe JI, Lo S, et al. Quantitative evaluation of image segmentation incorporating medical consideration functions. Med Phys 2015; 42(6): 3013-23.
[http://dx.doi.org/10.1118/1.4921067] [PMID: 26127054]
[46]
Li J, Udupa JK, Tong Y, Wang L, Torigian DA. LinSEM: Linearizing segmentation evaluation metrics for medical images. Med Image Anal 2020; 60: 101601.
[http://dx.doi.org/10.1016/j.media.2019.101601] [PMID: 31811980]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy