Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Mini-Review Article

Anti-evolution Drugs: A New Paradigm to Combat Drug Resistance

Author(s): Ramalingam Peraman, Santhivardhan Chinni*, Sathish Kumar Sure, Vinay Kumar Kutagulla, Muthukumaran Peraman, Azger V.N. and Padmanabha Reddy Y.

Volume 19, Issue 1, 2022

Published on: 04 August, 2021

Page: [2 - 9] Pages: 8

DOI: 10.2174/1570180818666210804142612

Price: $65

Abstract

Drug resistance confronts chemotherapy of neoplasm and microbial infections. A vast array of molecular mechanisms was implicated in drug resistance, including generation of drug efflux transporters, mutation of drug targets, and alteration of drug metabolism. With the alarming rate of increase in drug resistance, pathogens are bolstering in such a way that many new drugs face efficacy problems within a short span of entry into the market. Evolution is the driving force towards the development of drug resistance. By adopting the modern genomic and functionomic analytical techniques, scientists have now identified novel genes and signalling proteins involved in the evolution of drug resistance in microorganisms. Given the current knowledge of bacterial evolution, antibiotic drug discovery is ready for a paradigm shift to explore the newer ways to tackle drug resistance. The article discusses such recent developments and reviews their merits and demerits in an attempt to envisage the findings in this new domain of medicine.

Keywords: Mfd, competence blockers, Hsp90, APOBEC, MPS1, drug resistance, anti-evolution.

« Previous
Graphical Abstract

[1]
Gautret, P.; Lagier, JC.; Parola, P.; Meddeb, L.; Sevestre, J.; Mailhe, M.; Doudier, B.; Aubry, C.; Amrane, S.; Seng, P.; Hocquart, M. Clinical and microbiological effect of a combination of hydroxychloroquine and azithromycin in 80 COVID-19 patients with at least a six-day follow up: A pilot observational study. Travel Med Infect Di., 2020.e101663
[2]
Tagliabue, A.; Rappuoli, R. Changing priorities in vaccinology: Antibiotic resistance moving to the top. Front. Immunol., 2018, 9, 1068.
[http://dx.doi.org/10.3389/fimmu.2018.01068] [PMID: 29910799]
[3]
WHO publishes list of bacteria for which new antibiotics are urgently needed. World Health Organization (WHO). 2017.https://www.who.int/news-room/detail/27-02-2017-who-publishes-list-of-bacteria-for-which-new-antibiotics-are-urgently-needed
[4]
Ford, C.B.; Shah, R.R.; Maeda, M.K.; Gagneux, S.; Murray, M.B.; Cohen, T.; Johnston, J.C.; Gardy, J.; Lipsitch, M.; Fortune, S.M. Mycobacterium tuberculosis mutation rate estimates from different lineages predict substantial differences in the emergence of drug-resistant tuberculosis. Nat. Genet., 2013, 45(7), 784-790.
[http://dx.doi.org/10.1038/ng.2656] [PMID: 23749189]
[5]
Ragheb, M.; Merrikh, H. The enigmatic role of Mfd in replication-transcription conflicts in bacteria. DNA Repair (Amst.), 2019, 81102659
[http://dx.doi.org/10.1016/j.dnarep.2019.102659] [PMID: 31311770]
[6]
Ragheb, M.N.; Thomason, M.K.; Hsu, C.; Nugent, P.; Gage, J.; Samadpour, A.N.; Kariisa, A.; Merrikh, C.N.; Miller, S.I.; Sherman, D.R.; Merrikh, H. Inhibiting the evolution of antibiotic resistance. Mol. Cell, 2019, 73(1), 157-165.e5.
[http://dx.doi.org/10.1016/j.molcel.2018.10.015] [PMID: 30449724]
[7]
Domenech, A.; Brochado, A.R.; Sender, V.; Hentrich, K.; Henriques-Normark, B.; Typas, A.; Veening, J.W. Proton motive force disruptors block bacterial competence and horizontal gene transfer. Cell Host Microbe, 2020, 27(4), 544-555.e3.
[http://dx.doi.org/10.1016/j.chom.2020.02.002] [PMID: 32130952]
[8]
Janion, C. Inducible SOS response system of DNA repair and mutagenesis in Escherichia coli. Int. J. Biol. Sci., 2008, 4(6), 338-344.
[http://dx.doi.org/10.7150/ijbs.4.338] [PMID: 18825275]
[9]
López, E.; Elez, M.; Matic, I.; Blázquez, J. Antibiotic-mediated recombination: Ciprofloxacin stimulates SOS-independent recombination of divergent sequences in escherichia coli. Mol. Microbiol., 2007, 64(1), 83-93.
[http://dx.doi.org/10.1111/j.1365-2958.2007.05642.x] [PMID: 17376074]
[10]
Dwyer, D.J.; Kohanski, M.A.; Hayete, B.; Collins, J.J. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol., 2007, 3, 91.
[http://dx.doi.org/10.1038/msb4100135] [PMID: 17353933]
[11]
Pribis, J.P.; García-Villada, L.; Zhai, Y.; Lewin-Epstein, O.; Wang, A.Z.; Liu, J.; Xia, J.; Mei, Q.; Fitzgerald, D.M.; Bos, J.; Austin, R.H.; Herman, C.; Bates, D.; Hadany, L.; Hastings, P.J.; Rosenberg, S.M. Gamblers: An antibiotic-induced evolvable cell subpopulation differentiated by reactive-oxygen-induced general stress response. Mol. Cell, 2019, 74(4), 785-800.e7.
[http://dx.doi.org/10.1016/j.molcel.2019.02.037] [PMID: 30948267]
[12]
Liu, Y.; Liu, X.; Qu, Y.; Wang, X.; Li, L.; Zhao, X. Inhibitors of reactive oxygen species accumulation delay and/or reduce the lethality of several antistaphylococcal agents. Antimicrob. Agents Chemother., 2012, 56(11), 6048-6050.
[http://dx.doi.org/10.1128/AAC.00754-12] [PMID: 22948880]
[13]
Rodríguez-Rosado, A.I.; Valencia, E.Y.; Rodríguez-Rojas, A.; Costas, C.; Galhardo, R.S.; Rodríguez-Beltrán, J.; Blázquez, J. N-acetylcysteine blocks SOS induction and mutagenesis produced by fluoroquinolones in escherichia coli. J. Antimicrob. Chemother., 2019, 74(8), 2188-2196.
[http://dx.doi.org/10.1093/jac/dkz210] [PMID: 31102529]
[14]
Butler, L.M.; Ferraldeschi, R.; Armstrong, H.K.; Centenera, M.M.; Workman, P. Maximizing the therapeutic potential of hsp90 inhibitors. Mol. Cancer Res., 2015, 13(11), 1445-1451.
[http://dx.doi.org/10.1158/1541-7786.MCR-15-0234] [PMID: 26219697]
[15]
Whitesell, L.; Bagatell, R.; Falsey, R. The stress response: Implications for the clinical development of hsp90 inhibitors. Curr. Cancer Drug Targets, 2003, 3(5), 349-358.
[http://dx.doi.org/10.2174/1568009033481787] [PMID: 14529386]
[16]
Kryeziu, K.; Bruun, J.; Guren, T.K.; Sveen, A.; Lothe, R.A. Combination therapies with HSP90 inhibitors against colorectal cancer. Biochim. Biophys. Acta Rev. Cancer, 2019, 1871(2), 240-247.
[http://dx.doi.org/10.1016/j.bbcan.2019.01.002] [PMID: 30708039]
[17]
Nik-Zainal, S.; Alexandrov, L.B.; Wedge, D.C.; Van Loo, P.; Greenman, C.D.; Raine, K.; Jones, D.; Hinton, J.; Marshall, J.; Stebbings, L.A.; Menzies, A.; Martin, S.; Leung, K.; Chen, L.; Leroy, C.; Ramakrishna, M.; Rance, R.; Lau, K.W.; Mudie, L.J.; Varela, I.; McBride, D.J.; Bignell, G.R.; Cooke, S.L.; Shlien, A.; Gamble, J.; Whitmore, I.; Maddison, M.; Tarpey, P.S.; Davies, H.R.; Papaemmanuil, E.; Stephens, P.J.; McLaren, S.; Butler, A.P.; Teague, J.W.; Jönsson, G.; Garber, J.E.; Silver, D.; Miron, P.; Fatima, A.; Boyault, S.; Langerød, A.; Tutt, A.; Martens, J.W.; Aparicio, S.A.; Borg, Å.; Salomon, A.V.; Thomas, G.; Børresen-Dale, A.L.; Richardson, A.L.; Neuberger, M.S.; Futreal, P.A.; Campbell, P.J.; Stratton, M.R. Mutational processes molding the genomes of 21 breast cancers. Cell, 2012, 149(5), 979-993.
[http://dx.doi.org/10.1016/j.cell.2012.04.024] [PMID: 22608084]
[18]
Burns, M.B.; Temiz, N.A.; Harris, R.S. Evidence for APOBEC3B mutagenesis in multiple human cancers. Nat. Genet., 2013, 45(9), 977-983.
[http://dx.doi.org/10.1038/ng.2701] [PMID: 23852168]
[19]
Burns, M.B.; Lackey, L.; Carpenter, M.A.; Rathore, A.; Land, A.M.; Leonard, B.; Refsland, E.W.; Kotandeniya, D.; Tretyakova, N.; Nikas, J.B.; Yee, D.; Temiz, N.A.; Donohue, D.E.; McDougle, R.M.; Brown, W.L.; Law, E.K.; Harris, R.S. APOBEC3B is an enzymatic source of mutation in breast cancer. Nature, 2013, 494(7437), 366-370.
[http://dx.doi.org/10.1038/nature11881] [PMID: 23389445]
[20]
Venkatesan, S.; Rosenthal, R.; Kanu, N.; McGranahan, N.; Bartek, J.; Quezada, S.A.; Hare, J.; Harris, R.S.; Swanton, C. Perspective: APOBEC mutagenesis in drug resistance and immune escape in HIV and cancer evolution. Ann. Oncol., 2018, 29(3), 563-572.
[http://dx.doi.org/10.1093/annonc/mdy003] [PMID: 29324969]
[21]
Matsumoto, T.; Shirakawa, K.; Yokoyama, M.; Fukuda, H.; Sarca, A.D.; Koyabu, S.; Yamazaki, H.; Kazuma, Y.; Matsui, H.; Maruyama, W.; Nagata, K.; Tanabe, F.; Kobayashi, M.; Shindo, K.; Morishita, R.; Sato, H.; Takaori-Kondo, A. Protein kinase A inhibits tumor mutator APOBEC3B through phosphorylation. Sci. Rep., 2019, 9(1), 8307.
[http://dx.doi.org/10.1038/s41598-019-44407-9] [PMID: 31165764]
[22]
Anderhub, S.J.; Mak, G.W.Y.; Gurden, M.D.; Faisal, A.; Drosopoulos, K.; Walsh, K.; Woodward, H.L.; Innocenti, P.; Westwood, I.M.; Naud, S.; Hayes, A.; Theofani, E.; Filosto, S.; Saville, H.; Burke, R.; van Montfort, R.L.M.; Raynaud, F.I.; Blagg, J.; Hoelder, S.; Eccles, S.A.; Linardopoulos, S. high proliferation rate and a compromised spindle assembly checkpoint confers sensitivity to the mps1 inhibitor bos172722 in triple-negative breast cancers. Mol. Cancer Ther., 2019, 18(10), 1696-1707.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-1203] [PMID: 31575759]
[23]
Foley, E.A.; Kapoor, T.M. Microtubule attachment and spindle assembly checkpoint signalling at the kinetochore. Nat. Rev. Mol. Cell Biol., 2013, 14(1), 25-37.
[http://dx.doi.org/10.1038/nrm3494] [PMID: 23258294]
[24]
Study of paclitaxel in combination with bos172722 in patients with advanced nonhaematologic malignancies. NCT03328494, 2020.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy