Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Biotechnological Potential of Streptomyces Siderophores as New Antibiotics

Author(s): Luciana Terra, Norman Ratcliffe, Helena Carla Castro*, Ana Carolina Paulo Vicente* and Paul Dyson*

Volume 28, Issue 7, 2021

Published on: 10 May, 2020

Page: [1407 - 1421] Pages: 15

DOI: 10.2174/0929867327666200510235512

Price: $65

Abstract

Background: Siderophores are small-molecule iron-chelators produced by microorganisms and plants growing mostly under low iron conditions. Siderophores allow iron capture and transport through cell membranes into the cytoplasm, where iron is released for use in biological processes. These bacterial iron uptake systems can be used for antibiotic conjugation or as targets for killing pathogenic bacteria. Siderophores have been explored recently because of their potential applications in environmental and therapeutic research. They are present in Streptomyces, Grampositive bacteria that are an important source for discovering new siderophores.

Objective: This review summarizes siderophore molecules produced by the genus Streptomyces emphasizing their potential as biotechnological producers and also illustrating genomic tools for discovering siderophores useful for treating bacterial infections.

Methods: The literature search was performed using PUBMED and MEDLINE databases with keywords siderophore, secondary metabolites, Trojan horse strategy, sideromycin and Streptomyces. The literature research focused on bibliographic databases including all siderophores identified in the genus Streptomyces. In addition, reference genomes of Streptomyces from GenBank were used to identify siderophore biosynthetic gene clusters by using the antiSMASH platform.

Results: This review has highlighted some of the many siderophore molecules produced by Streptomyces, illustrating the diversity of their chemical structures and a wide spectrum of bioactivities against pathogenic bacteria. Furthermore, the possibility of using siderophores conjugated with antibiotics could be an alternative to overcome bacterial resistance to drugs and could improve their therapeutic efficacy.

Conclusion: This review confirms the importance of Streptomyces as a rich source of siderophores, and underlines their potential as antibacterial agents.

Keywords: Siderophores, Streptomyces, actinomycetes, sideromycin, bacterial infection, “Trojan horse” approach.

[1]
Kämpfer, P. Bergey’s Manual of Systematic Bacteriology: The Proteobacteria, 2nd ed; Springer: New York, 2012.
[2]
Barka, E.A.; Vatsa, P.; Sanchez, L.; Gaveau-Vaillant, N.; Jacquard, C.; Meier-Kolthoff, J.P.; Klenk, H.P.; Clément, C.; Ouhdouch, Y.; van Wezel, G.P. Taxonomy, physiology, and natural products of actinobacteria. Microbiol. Mol. Biol. Rev., 2015, 80(1), 1-43.
[http://dx.doi.org/10.1128/MMBR.00019-15] [PMID: 26609051]
[3]
Kinkel, L.L.; Schlatter, D.C.; Bakker, M.G.; Arenz, B.E. Streptomyces competition and co-evolution in relation to plant disease suppression. Res. Microbiol., 2012, 163(8), 490-499.
[http://dx.doi.org/10.1016/j.resmic.2012.07.005] [PMID: 22922402]
[4]
Prakash, D.; Nawani, N.; Prakash, M.; Bodas, M.; Mandal, A.; Khetmalas, M.; Kapadnis, B. Actinomycetes: a repertory of green catalysts with a potential revenue resource. Biomed Res. Int., 2013, 2013264020
[http://dx.doi.org/10.1155/2013/264020] [PMID: 23691495]
[5]
Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov., 2013, 12(5), 371-387.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[6]
Guimarães, D.O.; Momesso, L.S.; Pupo, M.T. Antibiotics: therapeutic importance and perspectives for the discovery and development of new agents. Quim. Nova, 2010, 33(3), 667-679.
[7]
Chater, K.F. Recent advances in understanding Streptomyces. F1000 Res., 2016, 5, 2795.
[http://dx.doi.org/10.12688/f1000research.9534.1] [PMID: 27990276]
[8]
Ventola, C.L. The antibiotic resistance crisis: part 1: causes and threats. P&T, 2015, 40(4), 277-283.
[PMID: 25859123]
[9]
Labreche, M.J.; Lee, G.C.; Attridge, R.T.; Mortensen, E.M.; Koeller, J.; Du, L.C.; Nyren, N.R.; Treviño, L.B.; Treviño, S.B.; Peña, J.; Mann, M.W.; Muñoz, A.; Marcos, Y.; Rocha, G.; Koretsky, S.; Esparza, S.; Finnie, M.; Dallas, S.D.; Parchman, M.L.; Frei, C.R. Treatment failure and costs in patients with methicillin-resistant Staphylococcus aureus (MRSA) skin and soft tissue infections: a South Texas Ambulatory Research Network (STARNet) study. J. Am. Board Fam. Med., 2013, 26(5), 508-517.
[http://dx.doi.org/10.3122/jabfm.2013.05.120247] [PMID: 24004702]
[10]
Friedman, N.D.; Temkin, E.; Carmeli, Y. The negative impact of antibiotic resistance. Clin. Microbiol. Infect., 2016, 22(5), 416-422.
[http://dx.doi.org/10.1016/j.cmi.2015.12.002] [PMID: 26706614]
[11]
Hiramatsu, K.; Katayama, Y.; Matsuo, M.; Sasaki, T.; Morimoto, Y.; Sekiguchi, A.; Baba, T. Multi-drug-resistant Staphylococcus aureus and future chemotherapy. J. Infect. Chemother., 2014, 20(10), 593-601.
[http://dx.doi.org/10.1016/j.jiac.2014.08.001] [PMID: 25172776]
[12]
Peleg, A.Y.; Hooper, D.C. Hospital-acquired infections due to gram-negative bacteria. N. Engl. J. Med., 2010, 362(19), 1804-1813.
[http://dx.doi.org/10.1056/NEJMra0904124] [PMID: 20463340]
[13]
Mehrad, B.; Clark, N.M.; Zhanel, G.G.; Lynch, J.P., III Antimicrobial resistance in hospital-acquired gram-negative bacterial infections. Chest, 2015, 147(5), 1413-1421.
[http://dx.doi.org/10.1378/chest.14-2171] [PMID: 25940252]
[14]
Santajit, S.; Indrawattana, N. Mechanisms of antimicrobial resistance in ESKAPE pathogens. Biomed Res. Int., 2016, 20162475067
[http://dx.doi.org/10.1155/2016/2475067] [PMID: 27274985]
[15]
Högberg, L.D.; Heddini, A.; Cars, O. The global need for effective antibiotics: challenges and recent advances. Trends Pharmacol. Sci., 2010, 31(11), 509-515.
[http://dx.doi.org/10.1016/j.tips.2010.08.002] [PMID: 20843562]
[16]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N. WHO Pathogens Priority List Working Group. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[17]
Frieri, M.; Kumar, K.; Boutin, A. Antibiotic resistance. J. Infect. Public Health, 2017, 10(4), 369-378.
[http://dx.doi.org/10.1016/j.jiph.2016.08.007] [PMID: 27616769]
[18]
Ellermann, M.; Arthur, J.C. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med., 2017, 105, 68-78.
[http://dx.doi.org/10.1016/j.freeradbiomed.2016.10.489] [PMID: 27780750]
[19]
Golonka, R.; Yeoh, B.S.; Kumar, M.V. The iron tug-of-war between bacterial siderophores and innate immunity. J. Innate Immun., 2019, 11(3), 249-262.
[http://dx.doi.org/10.1159/000494627] [PMID: 30605903]
[20]
Wright, G.D. Something old, something new: revisiting natural products in antibiotic drug discovery. Can. J. Microbiol., 2014, 60(3), 147-154.
[http://dx.doi.org/10.1139/cjm-2014-0063] [PMID: 24588388]
[21]
Khan, A.; Singh, P.; Srivastava, A. Synthesis, nature and utility of universal iron chelator - siderophore: a review. Microbiol. Res., 2018, 212-213, 103-111.
[http://dx.doi.org/10.1016/j.micres.2017.10.012] [PMID: 29103733]
[22]
Ahmed, E.; Holmström, S.J. Siderophores in environmental research: roles and applications. Microb. Biotechnol., 2014, 7(3), 196-208.
[http://dx.doi.org/10.1111/1751-7915.12117] [PMID: 24576157]
[23]
Hesse, E.; O’Brien, S.; Tromas, N.; Bayer, F.; Luján, A.M.; van Veen, E.M.; Hodgson, D.J.; Buckling, A. Ecological selection of siderophore-producing microbial taxa in response to heavy metal contamination. Ecol. Lett., 2018, 21(1), 117-127.
[http://dx.doi.org/10.1111/ele.12878] [PMID: 29161760]
[24]
Johnstone, T.C.; Nolan, E.M. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans., 2015, 44(14), 6320-6339.
[http://dx.doi.org/10.1039/C4DT03559C] [PMID: 25764171]
[25]
Morrissey, J.; Guerinot, M.L. Iron uptake and transport in plants: the good, the bad, and the ionome. Chem. Rev., 2009, 109(10), 4553-4567.
[http://dx.doi.org/10.1021/cr900112r] [PMID: 19754138]
[26]
Lau, C.K.; Krewulak, K.D.; Vogel, H.J. Bacterial ferrous iron transport: the feo system. FEMS Microbiol. Rev., 2016, 40(2), 273-298.
[http://dx.doi.org/10.1093/femsre/fuv049] [PMID: 26684538]
[27]
Aguado-Santacruz, G.A.A.; Moreno-Gómez, B.A.; Jiménez-Francisco, B.B.; Gárcia-Moya, E.B.; Preciado-Ortiz, R.E. Impact of the microbial siderophores and phytosiderophores on the iron assimilation by plants: a synthesis. Rev. Fitotec. Mex., 2012, 35(1), 9-21.
[http://dx.doi.org/10.35196/rfm.2012.1.9]
[28]
Oglesby-Sherrouse, A.G.; Djapgne, L.; Nguyen, A.T.; Vasil, A.I.; Vasil, M.L. The complex interplay of iron, biofilm formation, and mucoidy affecting antimicrobial resistance of Pseudomonas aeruginosa. Pathog. Dis., 2014, 70(3), 307-320.
[http://dx.doi.org/10.1111/2049-632X.12132] [PMID: 24436170]
[29]
Saha, M.; Sarkar, S.; Sarkar, B.; Sharma, B.K.; Bhattacharjee, S.; Tribedi, P. Microbial siderophores and their potential applications: a review. Environ. Sci. Pollut. Res. Int., 2016, 23(5), 3984-3999.
[http://dx.doi.org/10.1007/s11356-015-4294-0] [PMID: 25758420]
[30]
Touati, D. Iron and oxidative stress in bacteria. Arch. Biochem. Biophys., 2000, 373(1), 1-6.
[http://dx.doi.org/10.1006/abbi.1999.1518] [PMID: 10620317]
[31]
Frawley, E.R.; Fang, F.C. The ins and outs of bacterial iron metabolism. Mol. Microbiol., 2014, 93(4), 609-616.
[http://dx.doi.org/10.1111/mmi.12709] [PMID: 25040830]
[32]
Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Regulators of iron homeostasis: new players in metabolism, cell death, and disease. Trends Biochem. Sci., 2016, 41(3), 274-286.
[http://dx.doi.org/10.1016/j.tibs.2015.11.012] [PMID: 26725301]
[33]
Zajdowicz, S.; Haller, J.C.; Krafft, A.E.; Hunsucker, S.W.; Mant, C.T.; Duncan, M.W.; Hodges, R.S.; Jones, D.N.; Holmes, R.K. Purification and structural characterization of siderophore (corynebactin) from Corynebacterium diphtheriae. PLoS One, 2012, 7(4)e34591
[http://dx.doi.org/10.1371/journal.pone.0034591] [PMID: 22514641]
[34]
Galet, J.; Deveau, A.; Hôtel, L.; Frey-Klett, P.; Leblond, P.; Aigle, B. Pseudomonas fluorescens pirates both ferrioxamine and ferricoelichelin siderophores from Streptomyces ambofaciens. Appl. Environ. Microbiol., 2015, 81(9), 3132-3141.
[http://dx.doi.org/10.1128/AEM.03520-14] [PMID: 25724953]
[35]
Traxler, M.F.; Seyedsayamdost, M.R.; Clardy, J.; Kolter, R. Interspecies modulation of bacterial development through iron competition and siderophore piracy. Mol. Microbiol., 2012, 86(3), 628-644.
[http://dx.doi.org/10.1111/mmi.12008] [PMID: 22931126]
[36]
Krewulak, K.D.; Vogel, H.J. Structural biology of bacterial iron uptake. Biochim. Biophys. Acta, 2008, 1778(9), 1781-1804.
[http://dx.doi.org/10.1016/j.bbamem.2007.07.026] [PMID: 17916327]
[37]
Cornelis, P. Iron uptake and metabolism in pseudomonads. Appl. Microbiol. Biotechnol., 2010, 86(6), 1637-1645.
[http://dx.doi.org/10.1007/s00253-010-2550-2] [PMID: 20352420]
[38]
Fukushima, T.; Allred, B.E.; Sia, A.K.; Nichiporuk, R.; Andersen, U.N.; Raymond, K.N. Gram-positive siderophore-shuttle with iron-exchange from Fe-siderophore to apo-siderophore by Bacillus cereus YxeB. Proc. Natl. Acad. Sci. USA, 2013, 110(34), 13821-13826.
[http://dx.doi.org/10.1073/pnas.1304235110] [PMID: 23924612]
[39]
Wilson, B.R.; Bogdan, A.R.; Miyazawa, M.; Hashimoto, K.; Tsuji, Y. Siderophores in iron metabolism: from mechanism to therapy potential. Trends Mol. Med., 2016, 22(12), 1077-1090.
[http://dx.doi.org/10.1016/j.molmed.2016.10.005] [PMID: 27825668]
[40]
Worrall, J.A.; Vijgenboom, E. Copper mining in Streptomyces: enzymes, natural products and development. Nat. Prod. Rep., 2010, 27(5), 742-756.
[http://dx.doi.org/10.1039/b804465c] [PMID: 20372697]
[41]
van der Heul, H.U.; Bilyk, B.L.; McDowall, K.J.; Seipke, R.F.; van Wezel, G.P. Regulation of antibiotic production in actinobacteria: new perspectives from the post-genomic era. Nat. Prod. Rep., 2018, 35(6), 575-604.
[http://dx.doi.org/10.1039/C8NP00012C] [PMID: 29721572]
[42]
Procópio, R.E.; Silva, I.R.; Martins, M.K.; Azevedo, J.L.; Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis., 2012, 16(5), 466-471.
[http://dx.doi.org/10.1016/j.bjid.2012.08.014] [PMID: 22975171]
[43]
Hwang, K.S.; Kim, H.U.; Charusanti, P.; Palsson, B.Ø.; Lee, S.Y. Systems biology and biotechnology of Streptomyces species for the production of secondary metabolites. Biotechnol. Adv., 2014, 32(2), 255-268.
[http://dx.doi.org/10.1016/j.biotechadv.2013.10.008] [PMID: 24189093]
[44]
Fiedler, H.P.; Krastel, P.; Müller, J.; Gebhardt, K.; Zeeck, A. Enterobactin: the characteristic catecholate siderophore of enterobacteriaceae is produced by Streptomyces species (1). FEMS Microbiol. Lett., 2001, 196(2), 147-151.
[http://dx.doi.org/10.1111/j.1574-6968.2001.tb10556.x] [PMID: 11267771]
[45]
Takehana, Y.; Umekita, M.; Hatano, M.; Kato, C.; Sawa, R.; Igarashi, M. Fradiamine A, a new siderophore from the deep-sea actinomycete Streptomyces fradiae MM456M-mF7. J. Antibiot. (Tokyo), 2017, 70(5), 611-615.
[http://dx.doi.org/10.1038/ja.2017.26] [PMID: 28246378]
[46]
Matsuo, Y.; Kanoh, K.; Jang, J.H.; Adachi, K.; Matsuda, S.; Miki, O.; Kato, T.; Shizuri, Y. Streptobactin, a tricatechol-type siderophore from marine-derived Streptomyces sp. YM5-799. J. Nat. Prod., 2011, 74(11), 2371-2376.
[http://dx.doi.org/10.1021/np200290j] [PMID: 22014204]
[47]
Liu, N.; Shang, F.; Xi, L.; Huang, Y. Tetroazolemycins A and B, two new oxazole-thiazole siderophores from deep-sea Streptomyces olivaceus FXJ8.012. Mar. Drugs, 2013, 11(5), 1524-1533.
[http://dx.doi.org/10.3390/md11051524] [PMID: 23665958]
[48]
Brandel, J.; Humbert, N.; Elhabiri, M.; Schalk, I.J.; Mislin, G.L.; Albrecht-Gary, A.M. Pyochelin, a siderophore of Pseudomonas aeruginosa: physicochemical characterization of the iron(III), copper(II) and zinc(II) complexes. Dalton Trans., 2012, 41(9), 2820-2834.
[http://dx.doi.org/10.1039/c1dt11804h] [PMID: 22261733]
[49]
Seipke, R.F.; Song, L.; Bicz, J.; Laskaris, P.; Yaxley, A.M.; Challis, G.L.; Loria, R. The plant pathogen Streptomyces scabies 87-22 has a functional pyochelin biosynthetic pathway that is regulated by TetR- and AfsR-family proteins. Microbiology (Reading), 2011, 157(Pt. 9), 2681-2693.
[http://dx.doi.org/10.1099/mic.0.047977-0] [PMID: 21757492]
[50]
Anderegg, G.; Raber, M. Metal complex formation of a new siderophore desferrithiocin and of three related ligands. J. Chem. Soc. Chem. Commun., 1990, 17, 1194-1196.
[http://dx.doi.org/10.1039/C39900001194]
[51]
Kicic, A.; Chua, A.C.G.; Baker, E. Desferrithiocin is a more potent antineoplastic agent than desferrioxamine. Br. J. Pharmacol., 2002, 135(6), 1393-1402.
[http://dx.doi.org/10.1038/sj.bjp.0704507] [PMID: 11906952]
[52]
Pohlmann, V.; Marahiel, M.A. δ-amino group hydroxylation of L-ornithine during coelichelin biosynthesis. Org. Biomol. Chem., 2008, 6(10), 1843-1848.
[http://dx.doi.org/10.1039/b801016a] [PMID: 18452021]
[53]
Chiani, M.; Akbarzadeh, A.; Farhangi, A.; Mazinani, M.; Saffari, Z.; Emadzadeh, K.; Mehrabi, M.R. Optimization of culture medium to increase the production of desferrioxamine B (Desferal) in Streptomyces pilosus. Pak. J. Biol. Sci., 2010, 13(11), 546-550.
[http://dx.doi.org/10.3923/pjbs.2010.546.550] [PMID: 21848068]
[54]
Wencewicz, T.A.; Miller, M.J. Biscatecholate-monohydro-xamate mixed ligand siderophore-carbacephalosporin conjugates are selective sideromycin antibiotics that target Acinetobacter baumannii. J. Med. Chem., 2013, 56(10), 4044-4052.
[http://dx.doi.org/10.1021/jm400265k] [PMID: 23614627]
[55]
Mortazavi, M.; Akbarzadeh, A. Improvement of desferrioxamine B production of Streptomyces pilosus ATCC 19797 with use of protease inhibitor and minerals related to its activity. Indian J. Clin. Biochem., 2012, 27(3), 274-277.
[http://dx.doi.org/10.1007/s12291-012-0197-8] [PMID: 26405387]
[56]
Meiwes, J.; Fiedler, H.P.; Zähner, H.; Konetschny-Rapp, S.; Jung, G. Production of desferrioxamine E and new analogues by directed fermentation and feeding fermentation. Appl. Microbiol. Biotechnol., 1990, 32(5), 505-510.
[http://dx.doi.org/10.1007/BF00173718] [PMID: 1367428]
[57]
Müller, G.; Raymond, K.N. Specificity and mechanism of ferrioxamine-mediated iron transport in Streptomyces pilosus. J. Bacteriol., 1984, 160(1), 304-312.
[http://dx.doi.org/10.1128/JB.160.1.304-312.1984] [PMID: 6480557]
[58]
Imbert, M.; Béchet, M.; Blondeau, R. Comparison of the main siderophores produced by some species of Streptomyces. Curr. Microbiol., 1995, 31(2), 129-133.
[http://dx.doi.org/10.1007/BF00294289]
[59]
Gubbens, J.; Wu, C.; Zhu, H.; Filippov, D.V.; Florea, B.I.; Rigali, S.; Overkleeft, H.S.; van Wezel, G.P. Intertwined precursor supply during biosynthesis of the catecholate-hydroxamate siderophores qinichelins in Streptomyces sp. MBT76. ACS Chem. Biol., 2017, 12(11), 2756-2766.
[http://dx.doi.org/10.1021/acschembio.7b00597] [PMID: 28945067]
[60]
Wu, C.; Du, C.; Ichinose, K.; Choi, Y.H.; van Wezel, G.P. Discovery of C-Glycosylpyranonaphthoquinones in Streptomyces sp. MBT76 by a combined NMR-based metabolomics and bioinformatics workflow. J. Nat. Prod., 2017, 80(2), 269-277.
[http://dx.doi.org/10.1021/acs.jnatprod.6b00478] [PMID: 28128554]
[61]
Umezawa, H.; Aoyagi, T.; Ogawa, K.; Obata, T.; Iinuma, H.; Naganawa, H.; Hamada, M.; Takeuchi, T. Foroxymithine, a new inhibitor of angiotensin-converting enzyme, produced by actinomycetes. J. Antibiot. (Tokyo), 1985, 38(12), 1813-1815.
[http://dx.doi.org/10.7164/antibiotics.38.1813] [PMID: 3005216]
[62]
Imoto, M.; Umezawa, K.; Komuro, K.; Sawa, T.; Takeuchi, T.; Umezawa, H. Antitumor activity of erbstatin, a tyrosine protein kinase inhibitor. Jpn. J. Cancer Res., 1987, 78(4), 329-332.
[PMID: 3108212]
[63]
Braun, V.; Pramanik, A.; Gwinner, T.; Köberle, M.; Bohn, E. Sideromycins: tools and antibiotics. Biometals, 2009, 22(1), 3-13.
[http://dx.doi.org/10.1007/s10534-008-9199-7] [PMID: 19130258]
[64]
Hider, R.C.; Kong, X. Chemistry and biology of siderophores. Nat. Prod. Rep., 2010, 27(5), 637-657.
[http://dx.doi.org/10.1039/b906679a] [PMID: 20376388]
[65]
Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-antibiotic conjugate design: new drugs for bad bugs? Molecules, 2019, 24(18), 3314-3330.
[http://dx.doi.org/10.3390/molecules24183314] [PMID: 31514464]
[66]
Reynolds, D.M.; Schatz, A.; Waksman, S.A. Grisein, a new antibiotic produced by a strain of Streptomyces griseus. Proc. Soc. Exp. Biol. Med., 1947, 64(1), 50-54.
[http://dx.doi.org/10.3181/00379727-64-15695] [PMID: 20285459]
[67]
Kulkarni, A.; Zeng, Y.; Zhou, W.; Van Lanen, S.; Zhang, W.; Chen, S. Branch point of Streptomyces sulfur amino acid metabolism controls the production of albomycin. Appl. Environ. Microbiol., 2015, 82(2), 467-477.
[http://dx.doi.org/10.1128/AEM.02517-15] [PMID: 26519385]
[68]
Zeng, Y.; Kulkarni, A.; Yang, Z.; Patil, P.B.; Zhou, W.; Chi, X.; Van Lanen, S.; Chen, S. Biosynthesis of albomycin δ(2) provides a template for assembling siderophore and aminoacyl-tRNA synthetase inhibitor conjugates. ACS Chem. Biol., 2012, 7(9), 1565-1575.
[http://dx.doi.org/10.1021/cb300173x] [PMID: 22704654]
[69]
Lin, Z.; Xu, X.; Zhao, S.; Yang, X.; Guo, J.; Zhang, Q.; Jing, C.; Chen, S.; He, Y. Total synthesis and antimicrobial evaluation of natural albomycins against clinical pathogens. Nat. Commun., 2018, 9(1), 3445-3453.
[http://dx.doi.org/10.1038/s41467-018-05821-1] [PMID: 30181560]
[70]
Vértesy, L.; Aretz, W.; Fehlhaber, H-W.; Koger, H. Salmycin A-D. Antibiotika aus Streptomycese violaceus, DSM 8286, mit siderophore-aminoglycosid-struktur. Helv. Chim. Acta, 1995, 78(1), 46-60.
[http://dx.doi.org/10.1002/hlca.19950780105]
[71]
Wencewicz, T.A.; Möllmann, U.; Long, T.E.; Miller, M.J. Is drug release necessary for antimicrobial activity of siderophore-drug conjugates? Syntheses and biological studies of the naturally occurring salmycin “Trojan Horse” antibiotics and synthetic desferridanoxamine-antibiotic conjugates. Biometals, 2009, 22(4), 633-648.
[http://dx.doi.org/10.1007/s10534-009-9218-3] [PMID: 19221879]
[72]
Urban, A.; Eckermann, S.; Fast, B.; Metzger, S.; Gehling, M.; Ziegelbauer, K.; Rübsamen-Waigmann, H.; Freiberg, C. Novel whole-cell antibiotic biosensors for compound discovery. Appl. Environ. Microbiol., 2007, 73(20), 6436-6443.
[http://dx.doi.org/10.1128/AEM.00586-07] [PMID: 17720843]
[73]
Sackmann, W.; Reusser, P.; Neipp, L.; Kradolfer, F.; Gross, F. Ferrimycin A, a new iron-containing antibiotic. Antibiot. Chemother. (Northfield), 1962, 12, 34-45.
[PMID: 14037612]
[74]
Bickel, H.; Gaeumann, E.; Keller-Schierlein, W.; Prelog, V.; Vischer, E.; Wettstein, A.; Zaehner, H. On iron-containing growth factors, sideramines, and their antagonists, the iron-containing antibiotics, sideromycins. Experientia, 1960, 16, 129-133.
[http://dx.doi.org/10.1007/BF02157712] [PMID: 13800479]
[75]
Tsukiura, H.; Okanishi, M.; Ohmori, T.; Koshiyama, H.; Miyaki, T.; Kitazima, H.; Kawaguchi, H. Danomycin, a new antibiotic. J. Antibiot. (Tokyo), 1964, 17, 39-47.
[PMID: 14157008]
[76]
Haskell, T.H.; Bunge, R.H.; French, J.C.; Bartz, Q.R. Succinimycin, a new iron-containing antibiotic. J. Antibiot., 1963, 16(2), 67-75.
[http://dx.doi.org/10.11554/antibioticsa.16.2_67]]
[77]
Roosenberg, J.M. II.; Lin, Y.M.; Lu, Y.; Miller, M.J. Studies and syntheses of siderophores, microbial iron chelators, and analogs as potential drug delivery agents. Curr. Med. Chem., 2000, 7(2), 159-197.
[http://dx.doi.org/10.2174/0929867003375353] [PMID: 10637361]
[78]
Page, M.G. Siderophore conjugates. Ann. N. Y. Acad. Sci., 2013, 1277, 115-126.
[http://dx.doi.org/10.1111/nyas.12024] [PMID: 23346861]
[79]
Górska, A.; Sloderbach, A.; Marszałł, M.P. Siderophore-drug complexes: potential medicinal applications of the ‘Trojan horse’ strategy. Trends Pharmacol. Sci., 2014, 35(9), 442-449.
[http://dx.doi.org/10.1016/j.tips.2014.06.007] [PMID: 25108321]
[80]
Schalk, I.J.; Mislin, G.L.A. Bacterial iron uptake pathways: gates for the import of bactericide compounds. J. Med. Chem., 2017, 60(11), 4573-4576.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00554] [PMID: 28453272]
[81]
de Carvalho, C.C.C.R.; Fernandes, P. Siderophores as “Trojan Horses”: tackling multidrug resistance? Front. Microbiol., 2014, 5, 290.
[http://dx.doi.org/10.3389/fmicb.2014.00290] [PMID: 24971080]
[82]
Schalk, I.J. Siderophore-antibiotic conjugates: exploiting iron uptake to deliver drugs into bacteria. Clin. Microbiol. Infect., 2018, 24(8), 801-802.
[http://dx.doi.org/10.1016/j.cmi.2018.03.037] [PMID: 29649600]
[83]
Negash, K.H.; Norris, J.K.S.; Hodgkinson, J.T. Siderophore-antibiotic conjugate design: new drugs for bad bugs? Molecules, 2019, 24(18), 3314-3330.
[http://dx.doi.org/10.3390/molecules24183314] [PMID: 31514464]
[84]
Braun, V.; Braun, M. Active transport of iron and siderophore antibiotics. Curr. Opin. Microbiol., 2002, 5(2), 194-201.
[http://dx.doi.org/10.1016/S1369-5274(02)00298-9] [PMID: 11934617]
[85]
Pramanik, A.; Braun, V. Albomycin uptake via a ferric hydroxamate transport system of Streptococcus pneumoniae R6. J. Bacteriol., 2006, 188(11), 3878-3886.
[http://dx.doi.org/10.1128/JB.00205-06] [PMID: 16707680]
[86]
Zheng, T.; Nolan, E.M. Enterobactin-mediated delivery of β-lactam antibiotics enhances antibacterial activity against pathogenic Escherichia coli. J. Am. Chem. Soc., 2014, 136(27), 9677-9691.
[http://dx.doi.org/10.1021/ja503911p] [PMID: 24927110]
[87]
Ji, C.; Miller, M.J. Chemical syntheses and in vitro antibacterial activity of two desferrioxamine B-ciprofloxacin conjugates with potential esterase and phosphatase triggered drug release linkers. Bioorg. Med. Chem., 2012, 20(12), 3828-3836.
[http://dx.doi.org/10.1016/j.bmc.2012.04.034] [PMID: 22608921]
[88]
Wittmann, S.; Schnabelrauch, M.; Scherlitz-Hofmann, I.; Möllmann, U.; Ankel-Fuchs, D.; Heinisch, L. New synthetic siderophores and their beta-lactam conjugates based on diamino acids and dipeptides. Bioorg. Med. Chem., 2002, 10(6), 1659-1670.
[http://dx.doi.org/10.1016/S0968-0896(02)00044-5] [PMID: 11937324]
[89]
Hennard, C.; Truong, Q.C.; Desnottes, J-F.; Paris, J-M.; Moreau, N.J.; Abdallah, M.A. Synthesis and activities of pyoverdin-quinolone adducts: a prospective approach to a specific therapy against Pseudomonas aeruginosa. J. Med. Chem., 2001, 44(13), 2139-2151.
[http://dx.doi.org/10.1021/jm990508g] [PMID: 11405651]
[90]
Milner, S.J.; Seve, A.; Snelling, A.M.; Thomas, G.H.; Kerr, K.G.; Routledge, A.; Duhme-Klair, A.K. Staphyloferrin A as siderophore-component in fluoroquinolone-based Trojan horse antibiotics. Org. Biomol. Chem., 2013, 11(21), 3461-3468.
[http://dx.doi.org/10.1039/c3ob40162f] [PMID: 23575952]
[91]
Paulen, A.; Hoegy, F.; Roche, B.; Schalk, I.J.; Mislin, G.L.A. Synthesis of conjugates between oxazolidinone antibiotics and a pyochelin analogue. Bioorg. Med. Chem. Lett., 2017, 27(21), 4867-4870.
[http://dx.doi.org/10.1016/j.bmcl.2017.09.039] [PMID: 28947150]
[92]
Noël, S.; Gasser, V.; Pesset, B.; Hoegy, F.; Rognan, D.; Schalk, I.J.; Mislin, G.L. Synthesis and biological properties of conjugates between fluoroquinolones and a N3”-functionalized pyochelin. Org. Biomol. Chem., 2011, 9(24), 8288-8300.
[http://dx.doi.org/10.1039/c1ob06250f] [PMID: 22052022]
[93]
Ji, C.; Miller, M.J. Siderophore-fluoroquinolone conjugates containing potential reduction-triggered linkers for drug release: synthesis and antibacterial activity. Biometals, 2015, 28(3), 541-551.
[http://dx.doi.org/10.1007/s10534-015-9830-3] [PMID: 25663417]
[94]
Rivault, F.; Liébert, C.; Burger, A.; Hoegy, F.; Abdallah, M.A.; Schalk, I.J.; Mislin, G.L. Synthesis of pyochelin-norfloxacin conjugates. Bioorg. Med. Chem. Lett., 2007, 17(3), 640-644.
[http://dx.doi.org/10.1016/j.bmcl.2006.11.005] [PMID: 17123817]
[95]
Wencewicz, T.A.; Long, T.E.; Möllmann, U.; Miller, M.J. Trihydroxamate siderophore-fluoroquinolone conjugates are selective sideromycin antibiotics that target Staphylococcus aureus. Bioconjug. Chem., 2013, 24(3), 473-486.
[http://dx.doi.org/10.1021/bc300610f] [PMID: 23350642]
[96]
Juárez-Hernández, R.E.; Miller, P.A.; Miller, M.J. Syntheses of siderophore-drug conjugates using a convergent thiol-maleimide system. ACS Med. Chem. Lett., 2012, 3(10), 799-803.
[http://dx.doi.org/10.1021/ml300150y] [PMID: 23264853]
[97]
Ghosh, M.; Miller, P.A.; Möllmann, U.; Claypool, W.D.; Schroeder, V.A.; Wolter, W.R.; Suckow, M.; Yu, H.; Li, S.; Huang, W.; Zajicek, J.; Miller, M.J. Targeted antibiotic delivery: selective siderophore conjugation with daptomycin confers potent activity against multidrug resistant Acinetobacter baumannii both in vitro and in vivo. J. Med. Chem., 2017, 60(11), 4577-4583.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00102] [PMID: 28287735]
[98]
Portsmouth, S.; van Veenhuyzen, D.; Echols, R.; Machida, M.; Ferreira, J.C.A.; Ariyasu, M.; Tenke, P.; Nagata, T.D. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect. Dis., 2018, 18(12), 1319-1328.
[http://dx.doi.org/10.1016/S1473-3099(18)30554-1] [PMID: 30509675]
[99]
Tillotson, G.S. Trojan horse antibiotics-a novel way to circumvent Gram-negative bacterial resistance? Infect. Dis. (Auckl.), 2016, 9, 45-52.
[http://dx.doi.org/10.4137/IDRT.S31567] [PMID: 27773991]
[100]
Liu, R.; Miller, P.A.; Vakulenko, S.B.; Stewart, N.K.; Boggess, W.C.; Miller, M.J. A synthetic dual drug sideromycin induces Gram-negative bacteria to commit suicide with a Gram-positive antibiotic. J. Med. Chem., 2018, 61(9), 3845-3854.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00218] [PMID: 29554424]
[101]
Wackett, L.P. Genomics for natural product discovery. An annotated selection of World Wide Web sites relevant to the topics in microbial biotechnology. Microb. Biotechnol., 2016, 9(2), 275-276.
[http://dx.doi.org/10.1111/1751-7915.12353]
[102]
Niu, G. Genomics-driven natural product discovery in actinomycetes. Trends Biotechnol., 2018, 36(3), 238-241.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.009] [PMID: 29126570]
[103]
Harrison, J.; Studholme, D.J. Recently published Streptomyces genome sequences. Microb. Biotechnol., 2014, 7(5), 373-380.
[http://dx.doi.org/10.1111/1751-7915.12143] [PMID: 25100265]
[104]
Weber, T.; Kim, H.U. The secondary metabolite bioinformatics portal: computational tools to facilitate synthetic biology of secondary metabolite production. Synth Syst Biotechnol., 2016, 1(2), 69-79.
[http://dx.doi.org/10.1016/j.synbio.2015.12.002] [PMID: 29062930]
[105]
Singh, M.; Chaudhary, S.; Sareen, D. Non-ribosomal peptide synthetases: identifying the cryptic gene clusters and decoding the natural product. J. Biosci., 2017, 42(1), 175-187.
[http://dx.doi.org/10.1007/s12038-017-9663-z] [PMID: 28229977]
[106]
Kadi, N.; Challis, G.L. Chapter 17. Siderophore biosynthesis a substrate specificity assay for nonribosomal peptide synthetase-independent siderophore synthetases involving trapping of acyl-adenylate intermediates with hydroxylamine. Methods Enzymol., 2009, 458, 431-457.
[http://dx.doi.org/10.1016/S0076-6879(09)04817-4] [PMID: 19374993]
[107]
Crosa, J.H.; Walsh, C.T. Genetics and assembly line enzymology of siderophore biosynthesis in bacteria. Microbiol. Mol. Biol. Rev., 2002, 66(2), 223-249.
[http://dx.doi.org/10.1128/MMBR.66.2.223-249.2002] [PMID: 12040125]
[108]
Miethke, M.; Marahiel, M.A. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev., 2007, 71(3), 413-451.
[http://dx.doi.org/10.1128/MMBR.00012-07] [PMID: 17804665]
[109]
Gomes, E.S.; Schuch, V.; de Macedo Lemos, E.G. Biotechnology of polyketides: new breath of life for the novel antibiotic genetic pathways discovery through metagenomics. Braz. J. Microbiol., 2014, 44(4), 1007-1034.
[http://dx.doi.org/10.1590/S1517-83822013000400002] [PMID: 24688489]
[110]
Challis, G.L. Genome mining for novel natural product discovery. J. Med. Chem., 2008, 51(9), 2618-2628.
[http://dx.doi.org/10.1021/jm700948z] [PMID: 18393407]
[111]
Blin, K.; Wolf, T.; Chevrette, M.G.; Lu, X.; Schwalen, C.J.; Kautsar, S.A.; Suarez Duran, H.G.; de Los Santos, E.L.C.; Kim, H.U.; Nave, M.; Dickschat, J.S.; Mitchell, D.A.; Shelest, E.; Breitling, R.; Takano, E.; Lee, S.Y.; Weber, T.; Medema, M.H. antiSMASH 4.0-improvements in chemistry prediction and gene cluster boundary identification. Nucleic Acids Res., 2017, 45(W1), W36-W41.
[http://dx.doi.org/10.1093/nar/gkx319] [PMID: 28460038]
[112]
Iftime, D.; Kulik, A.; Härtner, T.; Rohrer, S.; Niedermeyer, T.H.; Stegmann, E.; Weber, T.; Wohlleben, W. Identification and activation of novel biosynthetic gene clusters by genome mining in the kirromycin producer Streptomyces collinus Tü 365. J. Ind. Microbiol. Biotechnol., 2016, 43(2-3), 277-291.
[http://dx.doi.org/10.1007/s10295-015-1685-7] [PMID: 26433383]
[113]
Xu, M.; Wang, Y.; Zhao, Z.; Gao, G.; Huang, S-X.; Kang, Q.; He, X.; Lin, S.; Pang, X.; Deng, Z.; Tao, M. Functional genome mining for metabolites encoded by large gene clusters through heterologous expression of a whole-genome bacterial artificial chromosome library in Streptomyces spp. Appl. Environ. Microbiol., 2016, 82(19), 5795-5805.
[http://dx.doi.org/10.1128/AEM.01383-16] [PMID: 27451447]
[114]
Lautru, S.; Deeth, R.J.; Bailey, L.M.; Challis, G.L. Discovery of a new peptide natural product by Streptomyces coelicolor genome mining. Nat. Chem. Biol., 2005, 1(5), 265-269.
[http://dx.doi.org/10.1038/nchembio731] [PMID: 16408055]
[115]
Ikeda, H.; Kazuo, S.Y.; Omura, S. Genome mining of the Streptomyces avermitilis genome and development of genome-minimized hosts for heterologous expression of biosynthetic gene clusters. J. Ind. Microbiol. Biotechnol., 2014, 41(2), 233-250.
[http://dx.doi.org/10.1007/s10295-013-1327-x] [PMID: 23990133]
[116]
Komatsu, M.; Komatsu, K.; Koiwai, H.; Yamada, Y.; Kozone, I.; Izumikawa, M.; Hashimoto, J.; Takagi, M.; Omura, S.; Shin-ya, K.; Cane, D.E.; Ikeda, H. Engineered Streptomyces avermitilis host for heterologous expression of biosynthetic gene cluster for secondary metabolites. ACS Synth. Biol., 2013, 2(7), 384-396.
[http://dx.doi.org/10.1021/sb3001003] [PMID: 23654282]
[117]
Nett, M.; Ikeda, H.; Moore, B.S. Genomic basis for natural product biosynthetic diversity in the actinomycetes. Nat. Prod. Rep., 2009, 26(11), 1362-1384.
[http://dx.doi.org/10.1039/b817069j] [PMID: 19844637]
[118]
Park, H.M.; Kim, B.G.; Chang, D.; Malla, S.; Joo, H.S.; Kim, E.J.; Park, S.J.; Sohng, J.K.; Kim, P.I. Genome-based cryptic gene discovery and functional identification of NRPS siderophore peptide in Streptomyces peucetius. Appl. Microbiol. Biotechnol., 2013, 97(3), 1213-1222.
[http://dx.doi.org/10.1007/s00253-012-4268-9] [PMID: 22825833]
[119]
Dhakal, D.; Lim, S.K.; Kim, D.H.; Kim, B.G.; Yamaguchi, T.; Sohng, J.K. Complete genome sequence of Streptomyces peucetius ATCC 27952, the producer of anticancer anthracyclines and diverse secondary metabolites. J. Biotechnol., 2018, 267, 50-54.
[http://dx.doi.org/10.1016/j.jbiotec.2017.12.024] [PMID: 29307836]
[120]
Kodani, S.; Bicz, J.; Song, L.; Deeth, R.J.; Ohnishi-Kameyama, M.; Yoshida, M.; Ochi, K.; Challis, G.L. Structure and biosynthesis of scabichelin, a novel tris-hydroxamate siderophore produced by the plant pathogen Streptomyces scabies 87.22. Org. Biomol. Chem., 2013, 11(28), 4686-4694.
[http://dx.doi.org/10.1039/c3ob40536b] [PMID: 23752895]
[121]
Patzer, S.I.; Braun, V. Gene cluster involved in the biosynthesis of griseobactin, a catechol-peptide siderophore of Streptomyces sp. ATCC 700974. J. Bacteriol., 2010, 192(2), 426-435.
[http://dx.doi.org/10.1128/JB.01250-09] [PMID: 19915026]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy