Abstract
Background and Objective: The growing prevalence of bladder cancer worldwide has become a major concern for researchers, and the side effects of chemotherapy drugs have always been a major problem in cancer treatment. Cinnamaldehyde, the active ingredient in the Cinnamon plant, has long been considered with anti-oxidant and anti-inflammatory effects.
Methods: Bladder cancer 5637 cell lines were treated with the different concentrations of Cinnamaldehyde. MTT assay was performed to evaluate cell viability at 24, 48, and 72 hours. The concentration of 0.02, 0.04, and 0.08 mg/ml of Cinnamaldehyde was selected. Apoptosis was assessed with Annexin V-FITC/PI and Hochest33258 staining. Cell migration was performed by the scratch test. To evaluate Cinnamaldehyde effect on glycolysis, the gene expression of epidermal growth factor receptor 2 (ErbB2), Heat Shock Protein Transcription Factor-1 (HSF1) and lactate dehydrogenase A (LDHA), as well as the protein levels of HSF1 and LDHA, LDH activity and finally glucose consumption and lactate production, were measured.
Results: Cinnamaldehyde significantly increased apoptosis rate in the 5637 cells (p<0.05). Furthermore, it significantly reduced the gene expression of ErbB2, HSF1, and LDHA, protein level of HSF1 and LDHA, LDH activity, as well as cell migration, glucose consumption, and lactate production (p<0.05). These changes were dose-dependent.
Conclusion: Thus, Cinnamaldehyde induced apoptosis and decreased growth in 5637 cells by reducing ErbB2-HSF1- LDHA pathway.
Keywords: Cinnamaldehyde, bladder cancer, cancer cell metabolism, LDHA, HSF1, ErbB2.
Graphical Abstract
[http://dx.doi.org/10.7150/jca.28989] [PMID: 31417648]
(b) Prout, G.R., Jr; Barton, B.A.; Griffin, P.P.; Friedell, G.H. Treated history of noninvasive grade 1 tran-sitional cell carcinoma. J. Urol., 1992, 148(5), 1413-1419.
[http://dx.doi.org/10.1016/S0022-5347(17)36924-0] [PMID: 1433540]
(c) dos Santos Silva, I. Cancer epidemiology: principles and methods; IARC, 1999.
(d) Peto, J. Cancer epidemiology in the last century and the next decade. Nature, 2001, 411(6835), 390-395.
[http://dx.doi.org/10.1038/35077256] [PMID: 11357148]
(e) Kaufman, D.S.; Shipley, W.U.; Feldman, A.S. Bladder cancer. Lancet, 2009, 374(9685), 239-249.
[http://dx.doi.org/10.1016/S0140-6736(09)60491-8] [PMID: 19520422]
(f) Fankhauser, C.D.; Mostafid, H. Prevention of bladder cancer incidence and recurrence: nutrition and lifestyle. Curr. Opin. Urol., 2018, 28(1), 88-92.
[http://dx.doi.org/10.1097/MOU.0000000000000452] [PMID: 29211694]
[http://dx.doi.org/10.1016/j.freeradbiomed.2010.09.006] [PMID: 20840865]
(b) Kwan, M.L.; Garren, B.; Nielsen, M.E.; Tang, L. Lifestyle and nutritional modifiable factors in the pre-vention and treatment of bladder cancer.Urologic oncology: seminars and original investigations; Elsevier, 2019, pp. 380-386.
[http://dx.doi.org/10.1042/BJ20061131] [PMID: 17150040]
(b) Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative stress in cancer. Cancer Cell, 2020, 38(2), 167-197.
[http://dx.doi.org/10.1016/j.ccell.2020.06.001] [PMID: 32649885]
[http://dx.doi.org/10.1155/2017/4586068]
(b) Klaunig, J.E. Oxidative stress and cancer. Curr. Pharm. Des., 2018, 24(40), 4771-4778.
[http://dx.doi.org/10.2174/1381612825666190215121712] [PMID: 30767733]
(c) Toyokuni, S.; Okamoto, K.; Yodoi, J.; Hiai, H. Persistent oxidative stress in cancer. FEBS Lett., 1995, 358(1), 1-3.
[http://dx.doi.org/10.1016/0014-5793(94)01368-B] [PMID: 7821417]
(d) Valko, M.; Rhodes, C.J.; Moncol, J.; Izakovic, M.; Mazur, M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact., 2006, 160(1), 1-40.
[http://dx.doi.org/10.1016/j.cbi.2005.12.009] [PMID: 16430879]
[http://dx.doi.org/10.1007/978-3-030-40204-4_11]
(b) Carpenter, R.L.; Gökmen-Polar, Y. HSF1 as a cancer biomarker and therapeutic target. Curr. Cancer Drug Targets, 2019, 19(7), 515-524.
[http://dx.doi.org/10.2174/1568009618666181018162117] [PMID: 30338738]
(c) Wang, G.; Cao, P.; Fan, Y.; Tan, K. Emerging roles of HSF1 in cancer: Cellular and molecular episodes. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 2020. 188390
(d) Ciocca, D.R.; Calderwood, S.K. Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones, 2005, 10(2), 86-103.
[http://dx.doi.org/10.1379/CSC-99r.1] [PMID: 16038406]
(e) Jiang, S.; Tu, K.; Fu, Q.; Schmitt, D.C.; Zhou, L.; Lu, N.; Zhao, Y. Multifaceted roles of HSF1 in can-cer. Tumour Biol., 2015, 36(7), 4923-4931.
[http://dx.doi.org/10.1007/s13277-015-3674-x] [PMID: 26108999]
[http://dx.doi.org/10.1016/j.cell.2012.06.031] [PMID: 22863008]
(b) Vihervaara, A.; Sistonen, L. HSF1 at a glance. J. Cell Sci., 2014, 127(Pt 2), 261-266.
[http://dx.doi.org/10.1242/jcs.132605] [PMID: 24421309]
[http://dx.doi.org/10.1074/jbc.M112.377481] [PMID: 22847003]
(b) Meng, L.; Gabai, V.L.; Sherman, M.Y. Heat-shock transcription factor HSF1 has a critical role in hu-man epidermal growth factor receptor-2-induced cellular transformation and tumorigenesis. Oncogene, 2010, 29(37), 5204-5213.
[http://dx.doi.org/10.1038/onc.2010.277] [PMID: 20622894]
(c) Zou, J.; Guo, Y.; Guettouche, T.; Smith, D.F.; Voellmy, R. Repression of heat shock transcription fac-tor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell, 1998, 94(4), 471-480.
[http://dx.doi.org/10.1016/S0092-8674(00)81588-3] [PMID: 9727490]
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1501] [PMID: 16982728]
(b) Menendez, J.A.; Lupu, R. Fatty acid synthase and the lipogenic phenotype in cancer pathogenesis. Nat. Rev. Cancer, 2007, 7(10), 763-777.
[http://dx.doi.org/10.1038/nrc2222] [PMID: 17882277]
[http://dx.doi.org/10.3390/cells9041046] [PMID: 32331382]
(b) Dai, C.; Whitesell, L.; Rogers, A.B.; Lindquist, S. Heat shock factor 1 is a powerful multifaceted mod-ifier of carcinogenesis. Cell, 2007, 130(6), 1005-1018.
[http://dx.doi.org/10.1016/j.cell.2007.07.020] [PMID: 17889646]
(c) Baler, R.; Dahl, G.; Voellmy, R. Activation of human heat shock genes is accompanied by oligomeriza-tion, modification, and rapid translocation of heat shock transcription factor HSF1. Mol. Cell. Biol., 1993, 13(4), 2486-2496.
[http://dx.doi.org/10.1128/MCB.13.4.2486] [PMID: 8455624]
(d) Cigliano, A.; Wang, C.; Pilo, M.G.; Szydlowska, M.; Brozzetti, S.; Latte, G.; Pes, G.M.; Pascale, R.M.; Seddaiu, M.A.; Vidili, G.; Ribback, S.; Dombrowski, F.; Evert, M.; Chen, X.; Calvisi, D.F. Inhibition of HSF1 suppresses the growth of hepatocarcinoma cell lines in vitro and AKT-driven hepatocarcinogenesis in mice. Oncotarget, 2017, 8(33), 54149-54159.
[http://dx.doi.org/10.18632/oncotarget.16927] [PMID: 28903330]
[http://dx.doi.org/10.1093/carcin/bgt343] [PMID: 24130164]
[http://dx.doi.org/10.1073/pnas.1115031108] [PMID: 22042860]
(b) Yang, T.; Ren, C.; Lu, C.; Qiao, P.; Han, X.; Wang, L.; Wang, D.; Lv, S.; Sun, Y.; Yu, Z. Phosphoryla-tion of HSF1 by PIM2 induces PD-L1 expression and promotes tumor growth in breast cancer. Cancer Res., 2019, 79(20), 5233-5244.
[http://dx.doi.org/10.1158/0008-5472.CAN-19-0063] [PMID: 31409638]
[http://dx.doi.org/10.1016/S0002-9440(10)64954-1] [PMID: 10702402]
(b) Björk, J.K.; Ahonen, I.; Mirtti, T.; Erickson, A.; Rannikko, A.; Bützow, A.; Nordling, S.; Lundin, J.; Lundin, M.; Sistonen, L.; Nees, M.; Åkerfelt, M. Increased HSF1 expression predicts shorter disease-specific survival of prostate cancer patients following radical prostatectomy. Oncotarget, 2018, 9(58), 31200-31213.
[http://dx.doi.org/10.18632/oncotarget.25756] [PMID: 30131848]
[http://dx.doi.org/10.3748/wjg.v10.i21.3122] [PMID: 15457556]
(b) Li, J.; Song, P.; Jiang, T.; Dai, D.; Wang, H.; Sun, J.; Zhu, L.; Xu, W.; Feng, L.; Shin, V.Y.; Morrison, H.; Wang, X.; Jin, H. Heat shock factor 1 epigenetically stimulates glutaminase-1-dependent mTOR acti-vation to promote colorectal carcinogenesis. Mol. Ther., 2018, 26(7), 1828-1839.
[http://dx.doi.org/10.1016/j.ymthe.2018.04.014] [PMID: 29730197]
[http://dx.doi.org/10.1038/onc.2009.229] [PMID: 19668225]
(b) Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer, 2011, 11(2), 85-95.
[http://dx.doi.org/10.1038/nrc2981] [PMID: 21258394]
(c) Cairns, R.; Harris, I.; McCracken, S.; Mak, T. Cancer cell metabolism, Cold Spring Harbor symposia on quantitative biology; Cold Spring Harbor Laboratory Press, 2011, pp. 299-311.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002] [PMID: 18177721]
(b) Vaupel, P.; Schmidberger, H.; Mayer, A. The Warburg effect: essential part of metabolic reprogram-ming and central contributor to cancer progression. Int. J. Radiat. Biol., 2019, 95(7), 912-919.
[http://dx.doi.org/10.1080/09553002.2019.1589653] [PMID: 30822194]
(c) Kalyanaraman, B. Teaching the basics of cancer metabolism: Developing antitumor strategies by ex-ploiting the differences between normal and cancer cell metabolism. Redox Biol., 2017, 12, 833-842.
[http://dx.doi.org/10.1016/j.redox.2017.04.018] [PMID: 28448945]
(b) Jurisic, V.; Radenkovic, S.; Konjevic, G. The actual role of LDH as tumor marker, biochemical and clinical aspects.Advances in cancer biomarkers; 2015, 115-124.
[http://dx.doi.org/10.1007/978-94-017-7215-0_8]
(c) Luo, J.; Solimini, N.L.; Elledge, S.J. Principles of cancer therapy: oncogene and non-oncogene addic-tion. Cell, 2009, 136(5), 823-837.
[http://dx.doi.org/10.1016/j.cell.2009.02.024] [PMID: 19269363]
(d) Hamanaka, R.B.; Chandel, N.S. Targeting glucose metabolism for cancer therapy. J. Exp. Med., 2012, 209(2), 211-215.
[http://dx.doi.org/10.1084/jem.20120162] [PMID: 22330683]
[http://dx.doi.org/10.1158/0008-5472.CAN-05-2747] [PMID: 16585203]
[http://dx.doi.org/10.1126/science.2470152] [PMID: 2470152]
[http://dx.doi.org/10.1002/jcb.24684] [PMID: 24122876]
[http://dx.doi.org/10.1038/sj.onc.1203972] [PMID: 11156524]
(b) Jin, L.; Chun, J.; Pan, C.; Alesi, G.N.; Li, D.; Magliocca, K.R.; Kang, Y.; Chen, Z.G.; Shin, D.M.; Khuri, F.R.; Fan, J.; Kang, S. Phosphorylation-mediated activation of LDHA promotes cancer cell inva-sion and tumour metastasis. Oncogene, 2017, 36(27), 3797-3806.
[http://dx.doi.org/10.1038/onc.2017.6] [PMID: 28218905]
(c) Guy, C.T.; Webster, M.A.; Schaller, M.; Parsons, T.J.; Cardiff, R.D.; Muller, W.J. Expression of the neu protooncogene in the mammary epithelium of transgenic mice induces metastatic disease. Proc. Natl. Acad. Sci. USA, 1992, 89(22), 10578-10582.
[http://dx.doi.org/10.1073/pnas.89.22.10578] [PMID: 1359541]
[http://dx.doi.org/10.1080/10408390902773052] [PMID: 20924865]
(b) Rao, P. V.; Gan, S. H. Cinnamon: a multifaceted medicinal plant. Evidence-based complementary and alternative medicine, 2014, 2014
[http://dx.doi.org/10.1155/2014/642942]
[http://dx.doi.org/10.1111/j.1742-7843.2006.pto_560.x] [PMID: 17076691]
[http://dx.doi.org/10.1080/08923973.2018.1424902] [PMID: 29355056]
[http://dx.doi.org/10.1016/j.phymed.2006.11.005] [PMID: 17140783]
[http://dx.doi.org/10.3389/fmicb.2019.02241] [PMID: 31608045]
[http://dx.doi.org/10.3233/JAD-122113] [PMID: 23531502]
[http://dx.doi.org/10.3109/13880200903019242]
[http://dx.doi.org/10.1056/NEJM195801302580506] [PMID: 13504449]
(b) Goetzman, E.S.; Prochownik, E.V. The role for Myc in coordinating glycolysis, oxidative phosphoryla-tion, glutaminolysis, and fatty acid metabolism in normal and neoplastic tissues. Front. Endocrinol. (Lausanne), 2018, 9, 129.
[http://dx.doi.org/10.3389/fendo.2018.00129] [PMID: 29706933]
(c) Sciacovelli, M.; Gaude, E.; Hilvo, M.; Frezza, C. The metabolic alterations of cancer cells. Methods Enzymol., 2014, 542, 1-23.
[http://dx.doi.org/10.1016/B978-0-12-416618-9.00001-7] [PMID: 24862258]
[http://dx.doi.org/10.1097/MCO.0b013e32833a5577] [PMID: 20473153]
(b) Hay, N. Reprogramming glucose metabolism in cancer: can it be exploited for cancer therapy? Nat. Rev. Cancer, 2016, 16(10), 635-649.
[http://dx.doi.org/10.1038/nrc.2016.77] [PMID: 27634447]
(c) Li, Z.; Zhang, H. Reprogramming of glucose, fatty acid and amino acid metabolism for cancer progres-sion. Cell. Mol. Life Sci., 2016, 73(2), 377-392.
[http://dx.doi.org/10.1007/s00018-015-2070-4] [PMID: 26499846]
[http://dx.doi.org/10.1038/cddis.2013.508] [PMID: 24384723]
(b) Groenendijk, F.H.; de Jong, J.; Fransen van de Putte, E.E.; Michaut, M.; Schlicker, A.; Peters, D.; Velds, A.; Nieuwland, M.; van den Heuvel, M.M.; Kerkhoven, R.M.; Wessels, L.F.; Broeks, A.; van Rhijn, B.W.; Bernards, R.; van der Heijden, M.S. ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur. Urol., 2016, 69(3), 384-388.
[http://dx.doi.org/10.1016/j.eururo.2015.01.014] [PMID: 25636205]
[http://dx.doi.org/10.3390/cancers12020311] [PMID: 32013122]
[http://dx.doi.org/10.1016/j.biocel.2017.01.005] [PMID: 28093328]
[http://dx.doi.org/10.1007/s12032-020-01417-2] [PMID: 2960365]