Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Explorations of ATP-Binding Cassette Transporters and Apoptosis Signal Pathways of 2-Hydroxyanthraquinone Substituted Cyclotriphosphazenes in MCF-7 and DLD-1 Cell Lines

Author(s): Burak Yazgan, Seda Mesci, Nagihan Bayık, Maşuk Akşahin, Gönül Yenilmez Çiftçi* and Tuba Yıldırım*

Volume 22, Issue 6, 2022

Published on: 05 August, 2021

Page: [1124 - 1138] Pages: 15

DOI: 10.2174/1871520621666210805144252

Price: $65

Abstract

Background: As a class with biological properties, such as anti-cancer, anti-bacterial, anti-HIV, and various physical effects, phosphazene derivatives constitute the most striking part of inorganic compounds. Anthraquinones, on the other hand, are a broad family of compounds with a wide variety of biological properties; the biologically active anthraquinones have been used as valuable compounds for biochemical and pharmacological research.

Objective: In this study, we aimed to investigate the effect of the anthraquinone substituted cyclotriphosphazene compounds on apoptosis and drug resistance in MCF-7 and DLD-1 cells.

Methods: In breast and colon cells, mRNA levels of multi-drug resistance genes (ABCB1, ABCC3, ABCC10, ABCC11, and ABCG2), apoptotic genes (BAX, BCL-2, p53, and PARP), heat shock (HSP27, HSP40, HSP60, HSP90α) and endoplasmic reticulum chaperone genes (GRP78, and GRP94) were determined by the qPCR method. The amount of proteins of the cell cycle, HSPs, apoptosis, and related signaling pathways were measured by the membrane array kits.

Results: Compounds 2, 3, 4, and 7 showed the most potent results on the ATP-binding cassette genes in both breast and colon cancer cells. These compounds have a remarkable effect on apoptotic, heat shock, and ER chaperone genes in cancer cells. Besides, these compounds induced protein levels of pro-apoptotic pathways, leading to apoptosis by inhibiting anti-apoptotic pathways. Also, these compounds decreased HSPs.

Conclusion: These compounds have potential properties that eliminate drug resistance, suppress heat shock and ER chaperone genes, and drag cells to apoptotic cell death and are notable for drug studies.

Keywords: ATP-binding cassette transporters, apoptosis, heat shock proteins, hydroxyanthraquinone, cyclotriphosphazenes, cancer cells

Graphical Abstract

[1]
Arruebo, M.; Vilaboa, N.; Sáez-Gutierrez, B.; Lambea, J.; Tres, A.; Valladares, M.; González-Fernández, A. Assessment of the evolution of cancer treatment therapies. Cancers (Basel), 2011, 3(3), 3279-3330.
[http://dx.doi.org/10.3390/cancers3033279] [PMID: 24212956]
[2]
dos Santos, A.F.; de Almeida, D.R.Q.; Terra, L.F. Photodynamic therapy in cancer treatment-an update review. J. Cancer Metastasis Treat., 2019, 5, 25.
[http://dx.doi.org/10.20517/2394-4722.2018.83]
[3]
Abrahamse, H.; Sosthene Mfouo Tynga, I. Photodynamic therapy, a potential therapy for improve cancer management. Breast Cancer and Surgery, 1st ed; Bulut, N., Ed.; , 2018, pp. 181-198.
[http://dx.doi.org/10.5772/intechopen.74697]
[4]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[5]
Ainscough, E.W.; Brodie, A.M.; Davidson, R.J. The first coordination polymer containing a chiral cyclotriphosphazene ligand. Inorg. Chem. Commun., 2008, 11(2), 171-174.
[http://dx.doi.org/10.1016/j.inoche.2007.12.001]
[6]
Gleria, M.; De Jaeger, R. Applicative Aspect of Cyclophosphazenes; references therein; Nova Science Publishers: New York, 2004.
[7]
Malmir, M.; Serrano, R.; Silva, O. Anthraquinones as potential antimicrobial agents A review.In: Research Institute for Medicines (iMed. ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Av. Professor Gama Pinto; , 2013, pp. 1649-2003.
[8]
Chan, K.; Lin, T.X. Treatments used in complementary and alternative medicine.In Side Effects of Drugs Annual; , 2009, 31, pp. 745-756.
[9]
Hacıosmanoglu, E.; Ozkok, F.; Onsu, A.K. Synthesis of new anthraquinone derivatives and anticancer effects on breast cancer cell lines. Eurasia Proceedings of Science Technology Engineering and Mathematics, 2018, 4, 271-276.
[10]
Malik, E.M.; Müller, C.E. Anthraquinones as pharmacological tools and drugs. Med. Res. Rev., 2016, 36(4), 705-748.
[http://dx.doi.org/10.1002/med.21391] [PMID: 27111664]
[11]
Kemegne, G.A.; Mkounga, P.; Essia Ngang, J.J.; Sado Kamdem, S.L.; Nkengfack, A.E. Antimicrobial structure activity relationship of five anthraquinones of emodine type isolated from Vismia laurentii. BMC Microbiol., 2017, 17(1), 41.
[http://dx.doi.org/10.1186/s12866-017-0954-1] [PMID: 28228111]
[12]
Callaghan, R.; Luk, F.; Bebawy, M. Inhibition of the multidrug resistance P-glycoprotein: time for a change of strategy? Drug Metab. Dispos., 2014, 42(4), 623-631.
[http://dx.doi.org/10.1124/dmd.113.056176] [PMID: 24492893]
[13]
Taşkıran, E.; Bebek, N.; Özkan, A. Drug Resistance and Resistance Mechanisms in Epilepsy. J. Turkish Chapter ILAE, 2015, 21(2), 43-53.
[http://dx.doi.org/10.5505/epilepsi.2015.50570]
[14]
Tang, F.; Hartz, A.M.S.; Bauer, B. Drug-resistant epilepsy: Multiple hypotheses, few answers. Front. Neurol., 2017, 8, 301.
[http://dx.doi.org/10.3389/fneur.2017.00301] [PMID: 28729850]
[15]
Heinrich, A.; Zhong, X.B.; Rasmussen, T.P. Variability in expression of the human MDR1 drug efflux transporter and genetic variation of the ABCB1 gene: implications for drug-resistant epilepsy. Curr. Opin. Toxicol., 2018, 11-12(12), 35-42.
[http://dx.doi.org/10.1016/j.cotox.2018.12.004] [PMID: 31602418]
[16]
Kadkol, H.; Jain, V.; Patil, A. Multi drug resistance in cancer therapy-an overview. J. Crit. Rev., 2019, 6(6), 1-6.
[17]
Jin, Z.; El-Deiry, W.S. Overview of cell death signaling pathways. Cancer Biol. Ther., 2005, 4(2), 139-163.
[http://dx.doi.org/10.4161/cbt.4.2.1508] [PMID: 15725726]
[18]
Xu, G.; Shi, Y. Apoptosis signaling pathways and lymphocyte homeostasis. Cell Res., 2007, 17(9), 759-771.
[http://dx.doi.org/10.1038/cr.2007.52] [PMID: 17576411]
[19]
Plati, J.; Bucur, O.; Khosravi-Far, R. Apoptotic cell signaling in cancer progression and therapy. Integr. Biol., 2011, 3(4), 279-296.
[http://dx.doi.org/10.1039/c0ib00144a] [PMID: 21340093]
[20]
Hongmei, Z. Extrinsic and intrinsic apoptosis signal pathway review. InApoptosis and Medicine; Ntuli, T., Ed.; UK: InTech Open, 2012.
[http://dx.doi.org/10.5772/50129]
[21]
Guicciardi, M.E.; Gores, G.J. Life and death by death receptors. FASEB J., 2009, 23(6), 1625-1637.
[http://dx.doi.org/10.1096/fj.08-111005] [PMID: 19141537]
[22]
Fulda, S. Targeting apoptosis signaling pathways for anticancer therapy. Front. Oncol., 2011, 1, 23.
[http://dx.doi.org/10.3389/fonc.2011.00023] [PMID: 22655234]
[23]
Wang, C.; Youle, R.J. The role of mitochondria in apoptosis. Annu. Rev. Genet., 2009, 43, 95-118.
[http://dx.doi.org/10.1146/annurev-genet-102108-134850] [PMID: 19659442]
[24]
Tait, S.W.; Green, D.R. Mitochondrial regulation of cell death. Cold Spring Harb. Perspect. Biol., 2013, 5(9)a008706
[http://dx.doi.org/10.1101/cshperspect.a008706] [PMID: 24003207]
[25]
Leibowitz, B.; Yu, J. Mitochondrial signaling in cell death via the Bcl-2 family. Cancer Biol. Ther., 2010, 9(6), 417-422.
[http://dx.doi.org/10.4161/cbt.9.6.11392] [PMID: 20190564]
[26]
Tzifi, F.; Economopoulou, C.; Gourgiotis, D.; Ardavanis, A.; Papageorgiou, S.; Scorilas, A. The role of BCL2 family of apoptosis regulator proteins in acute and chronic leukemias. Adv. Hematol., 2012, 2012524308
[http://dx.doi.org/10.1155/2012/524308] [PMID: 21941553]
[27]
Naseri, M.H.; Mahdavi, M.; Davoodi, J.; Tackallou, S.H.; Goudarzvand, M.; Neishabouri, S.H. Up regulation of Bax and down regulation of Bcl2 during 3-NC mediated apoptosis in human cancer cells. Cancer Cell Int., 2015, 15, 55.
[http://dx.doi.org/10.1186/s12935-015-0204-2] [PMID: 26074734]
[28]
Ranjan, K.; Pathak, C. FADD regulates NF-κB activation and promotes ubiquitination of cFLIPL to induce apoptosis. Sci. Rep., 2016, 6, 22787.
[http://dx.doi.org/10.1038/srep22787] [PMID: 26972597]
[29]
Verzella, D.; Pescatore, A.; Capece, D.; Vecchiotti, D.; Ursini, M.V.; Franzoso, G.; Alesse, E.; Zazzeroni, F. Life, death, and autophagy in cancer: NF-κB turns up everywhere. Cell Death Dis., 2020, 11(3), 210.
[http://dx.doi.org/10.1038/s41419-020-2399-y] [PMID: 32231206]
[30]
Cheung, C.H.A.; Chang, Y.C.; Lin, T.Y.; Cheng, S.M.; Leung, E. Anti-apoptotic proteins in the autophagic world: an update on functions of XIAP, Survivin, and BRUCE. J. Biomed. Sci., 2020, 27(1), 31.
[http://dx.doi.org/10.1186/s12929-020-0627-5] [PMID: 32019552]
[31]
Portt, L.; Norman, G.; Clapp, C.; Greenwood, M.; Greenwood, M.T. Anti-apoptosis and cell survival: a review. Biochim. et Biophysi. Acta, 2011, 1813(1), 238-259.
[32]
Wang, X.; Chen, M.; Zhou, J.; Zhang, X. HSP27, 70 and 90, anti-apoptotic proteins, in clinical cancer therapy. (Review) Int. J. Oncol., 2014, 45(1), 18-30.
[http://dx.doi.org/10.3892/ijo.2014.2399] [PMID: 24789222]
[33]
Bakthisaran, R.; Tangirala, R.; Rao, ChM. Small heat shock proteins: Role in cellular functions and pathology. Biochim. Biophys. Acta, 2015, 1854(4), 291-319.
[http://dx.doi.org/10.1016/j.bbapap.2014.12.019] [PMID: 25556000]
[34]
Wang, M.; Wey, S.; Zhang, Y.; Ye, R.; Lee, A.S. Role of the unfolded protein response regulator GRP78/BiP in development, cancer, and neurological disorders. Antioxid. Redox Signal., 2009, 11(9), 2307-2316.
[http://dx.doi.org/10.1089/ars.2009.2485] [PMID: 19309259]
[35]
Zhu, G.; Lee, A.S. Role of the unfolded protein response, GRP78 and GRP94 in organ homeostasis. J. Cell. Physiol., 2015, 230(7), 1413-1420.
[http://dx.doi.org/10.1002/jcp.24923] [PMID: 25546813]
[36]
Porwolik-Czomperlik, I.; Siwy, M.; Sęk, D.; Kaczmarczyk, B.; Nasulewicz, A.; Jaroszewicz, I.; Pełczyńska, M.; Opolski, A. Synthesis and in vitro cytostatic activity of some new 1,3-(oxytetraethylenoxy)-cyclotriphosphazatriene derivatives. Acta Pol. Pharm., 2004, 61(4), 267-272.
[PMID: 15580683]
[37]
Siwy, M.; Sek, D.; Kaczmarczyk, B.; Jaroszewicz, I.; Nasulewicz, A.; Pelczyñska, M.; Nevozhay, D.; Opolski, A. Synthesis and in vitro antileukemic activity of some new 1,3-(oxytetraethylenoxy)cyclotriphosphazene derivatives. J. Med. Chem., 2006, 49(2), 806-810.
[http://dx.doi.org/10.1021/jm0490078] [PMID: 16420065]
[38]
Siwy, M.; Sek, D.; Kaczmarczyk, B.; Wietrzyk, J.; Nasulewicz, A.; Opolski, A. Synthesis and in vitro antiproliferative activity of new 1,3-(oxytetraethylenoxy)-cyclotriphosphazene derivatives. Anticancer Res., 2007, 27(3B), 1553-1558.
[PMID: 17595775]
[39]
Yenilmez Çiftçi, G.; Bayık, N.; Tanrıverdi Eçik, E. Synthesis of the first 2-hydroxyanthraquinone substituted cyclotriphosphazenes and their cytotoxic properties. New J. Chem., 2020, 44, 16733-16740.
[http://dx.doi.org/10.1039/D0NJ02723E]
[40]
Riganti, C.; Giampietro, R.; Kopecka, J.; Costamagna, C.; Abatematteo, F.S.; Contino, M.; Abate, C. MRP1-collateral sensitizers as a novel therapeutic approach in resistant cancer therapy: an in vitro and in vivo study in lung resistant tumor. Int. J. Mol. Sci., 2020, 21(9), 3333.
[http://dx.doi.org/10.3390/ijms21093333] [PMID: 32397184]
[41]
Roshan Moniri, M.; Young, A.; Reinheimer, K.; Rayat, J.; Dai, L.J.; Warnock, G.L. Dynamic assessment of cell viability, proliferation and migration using real time cell analyzer system (RTCA). Cytotechnology, 2015, 67(2), 379-386.
[http://dx.doi.org/10.1007/s10616-014-9692-5] [PMID: 24443077]
[42]
Yenilmez Çiftçi, G.; Tanrıverdi Eçik, E.; Yıldırım, T. Synthesis and characterization of new cyclotriphosphazene compounds. Tetrahedron, 2013, 69(5), 1454-1461.
[http://dx.doi.org/10.1016/j.tet.2012.12.027]
[43]
Aviello, G.; Rowland, I.; Gill, C.I.; Acquaviva, A.M.; Capasso, F.; McCann, M.; Capasso, R.; Izzo, A.A.; Borrelli, F. Anti-proliferative effect of rhein, an anthraquinone isolated from Cassia species, on CaCo2 human adenocarcinoma cells. J. Cell. Mol. Med., 2010, 14(7), 2006-2014.
[http://dx.doi.org/10.1111/j.1582-4934.2009.00815.x] [PMID: 19538468]
[44]
Fernand, V.E.; Losso, J.N.; Truax, R.E.; Villar, E.E.; Bwambok, D.K.; Fakayode, S.O.; Lowry, M.; Warner, I.M. Rhein inhibits angiogenesis and the viability of hormone-dependent and -independent cancer cells under normoxic or hypoxic conditions in vitro. Chem. Biol. Interact., 2011, 192(3), 220-232.
[http://dx.doi.org/10.1016/j.cbi.2011.03.013] [PMID: 21457705]
[45]
Choi, R.J.; Ngoc, T.M.; Bae, K.; Cho, H.J.; Kim, D.D.; Chun, J.; Khan, S.; Kim, Y.S. Anti-inflammatory properties of anthraquinones and their relationship with the regulation of P-glycoprotein function and expression. Eur. J. Pharm. Sci., 2013, 48(1-2), 272-281.
[http://dx.doi.org/10.1016/j.ejps.2012.10.027] [PMID: 23174748]
[46]
Genov, M.; Kreiseder, B.; Nagl, M.; Drucker, E.; Wiederstein, M.; Muellauer, B.; Krebs, J.; Grohmann, T.; Pretsch, D.; Baumann, K.; Bacher, M.; Pretsch, A.; Wiesner, C. Tetrahydroanthraquinone derivative (±)-4-deoxyaustrocortilutein induces cell cycle arrest and apoptosis in melanoma cells via upregulation of p21 and p53 and downregulation of NF-kappaB. J. Cancer, 2016, 7(5), 555-568.
[http://dx.doi.org/10.7150/jca.13614] [PMID: 27053954]
[47]
Al-Otaibi, J.S.; Spittle, P.T.; El Gogary, T.M. Interaction of anthraquinone anti-cancer drugs with DNA: Experimental and computational quantum chemical study. J. Mol. Struct., 2017, 1127, 751-760.
[http://dx.doi.org/10.1016/j.molstruc.2016.08.007]
[48]
Abu, N.; Zamberi, N.R.; Yeap, S.K.; Nordin, N.; Mohamad, N.E.; Romli, M.F.; Rasol, N.E.; Subramani, T.; Ismail, N.H.; Alitheen, N.B. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC Complement. Altern. Med., 2018, 18(1), 31.
[http://dx.doi.org/10.1186/s12906-018-2102-3] [PMID: 29374471]
[49]
You, L.; Dong, X.; Yin, X.; Yang, C.; Leng, X.; Wang, W.; Ni, J. Rhein induces cell death in HepaRG cells through cell cycle arrest and apoptotic pathway. Int. J. Mol. Sci., 2018, 19(4), 1060.
[http://dx.doi.org/10.3390/ijms19041060] [PMID: 29614833]
[50]
Yun, C.W.; Kim, H.J.; Lim, J.H.; Lee, S.H. Heat shock proteins: agents of cancer development and therapeutic targets in anti-cancer therapy. Cells, 2019, 9(1), 60.
[http://dx.doi.org/10.3390/cells9010060] [PMID: 31878360]
[51]
Landriscina, M.; Amoroso, M.R.; Piscazzi, A.; Esposito, F. Heat shock proteins, cell survival and drug resistance: the mitochondrial chaperone TRAP1, a potential novel target for ovarian cancer therapy. Gynecol. Oncol., 2010, 117(2), 177-182.
[http://dx.doi.org/10.1016/j.ygyno.2009.10.078] [PMID: 19942270]
[52]
Wu, J.; Liu, T.; Rios, Z.; Mei, Q.; Lin, X.; Cao, S. Heat shock proteins and cancer. Trends Pharmacol. Sci., 2017, 38(3), 226-256.
[http://dx.doi.org/10.1016/j.tips.2016.11.009] [PMID: 28012700]
[53]
Brahmkhatri, V.P.; Prasanna, C.; Atreya, H.S. Insulin-like growth factor system in cancer: novel targeted therapies. BioMed Res. Int., 2015, 2015538019
[http://dx.doi.org/10.1155/2015/538019]
[54]
Sritharan, S.; Sivalingam, N. A comprehensive review on time-tested anticancer drug doxorubicin. Life Sci., 2021.278119527
[http://dx.doi.org/10.1016/j.lfs.2021.119527] [PMID: 33887349]
[55]
Christowitz, C.; Davis, T.; Isaacs, A.; van Niekerk, G.; Hattingh, S.; Engelbrecht, A.M. Mechanisms of doxorubicin-induced drug resistance and drug resistant tumour growth in a murine breast tumour model. BMC Cancer, 2019, 19(1), 757.
[http://dx.doi.org/10.1186/s12885-019-5939-z] [PMID: 31370818]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy