Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Synergistic Cytotoxicity Effect of 5-Fluorouracil and SHP2 Inhibitor Demethylincisterol A3 on Cervical Cancer Cell

Author(s): Yang Liu, Hua Fu and Li Zuo*

Volume 22, Issue 7, 2022

Published on: 08 July, 2021

Page: [1313 - 1319] Pages: 7

DOI: 10.2174/1871520621666210708130703

Price: $65

conference banner
Abstract

Background: Demethylincisterol A3 (DTA3) has been identified as an SHP2 inhibitor and suppresses the growth of many cancer cells. 5-Fluorouracil (5-FU) is widely used for the clinical treatment of various cancers. However, the combination effects of 5-FU and DTA3 on cervical cancer cells remain unknown.

Objective: This study evaluates the mechanism of the combination effects of 5-FU and DTA3 in cervical cancer cells.

Methods: The synergistic cytotoxic effects of 5-FU and DTA3 in cervical cancer cells were calculated. Apoptosis was analysed by flow cytometry. Western blot analyses were used to examine the related signalling pathways.

Results: DTA3 and 5-FU synergized to induce apoptosis and repress proliferation of cervical cancer cells by downregulating the activation of PI3K/AKT and NF-κB signalling pathways. We provided evidence that the upregulation of SHP2 expression by transfection significantly inhibited the cytotoxicity of 5-FU and DTA3. SHP2 knockdown enhanced the anti-proliferation activity of 5-FU, indicating targeting SHP2 sensitized cervical cancer cells to 5-FU.

Conclusion: Our study demonstrates that SHP2 inhibitor DTA3 and 5-FU have a synergistic cytotoxic effect on cervical cancer cells. The synergistic combination of SHP2 inhibitor and 5-FU may present a promising strategy for the treatment of cervical cancer.

Keywords: Demethylincisterol A3, 5-fluorouracil, cervical cancer cells, synergy effects, SHP2, NF-κB.

Graphical Abstract

[1]
Tao, X.H.; Shen, J.G.; Pan, W.L.; Dong, Y.E.; Meng, Q.; Honn, K.V.; Jin, R. Significance of SHP-1 and SHP-2 expression in human papillomavirus infected Condyloma acuminatum and cervical cancer. Pathol. Oncol. Res., 2008, 14(4), 365-371.
[http://dx.doi.org/10.1007/s12253-008-9065-5] [PMID: 18543080]
[2]
Meng, F.; Zhao, X.; Zhang, S. Expression and significance of SHP-2 in human papillomavirus infected cervical cancer. Journal of Huazhong Univ. Sci. Technolo., 2012, 32(2), 247-251.
[3]
Rehman, A.U.; Rahman, M.U.; Khan, M.T.; Saud, S.; Liu, H.; Song, D.; Sultana, P.; Wadood, A.; Chen, H.F. The landscape of protein tyrosine phosphatase (shp2) and cancer. Curr. Pharm. Des., 2018, 24(32), 3767-3777.
[http://dx.doi.org/10.2174/1381612824666181106100837] [PMID: 30398108]
[4]
Hu, Z.; Wang, X.; Fang, H.; Liu, Y.; Chen, D.; Zhang, Q.; Liu, X.; Wei, D.; Qu, C.; Wang, S. A tyrosine phosphatase SHP2 gain-of-function mutation enhances malignancy of breast carcinoma. Oncotarget, 2016, 7(5), 5664-5676.
[http://dx.doi.org/10.18632/oncotarget.6561] [PMID: 26673822]
[5]
Idrees, M.; Oh, S.H.; Muhammad, T.; El-Sheikh, M.; Song, S.H.; Lee, K.L.; Kong, I.K. Growth factors, and cytokines; understanding the role of tyrosine phosphatase shp2 in gametogenesis and early embryo development. Cells, 2020, 9(8), E1798.
[http://dx.doi.org/10.3390/cells9081798] [PMID: 32751109]
[6]
Zheng, H.; Yu, W.M.; Waclaw, R.R.; Kontaridis, M.I.; Neel, B.G.; Qu, C.K. Gain-of-function mutations in the gene encoding the tyrosine phosphatase SHP2 induce hydrocephalus in a catalytically dependent manner. Sci. Signal., 2018, 11(522), eaao1591.
[http://dx.doi.org/10.1126/scisignal.aao1591] [PMID: 29559584]
[7]
Shen, D.; Chen, W.; Zhu, J.; Wu, G.; Shen, R.; Xi, M.; Sun, H. Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur. J. Med. Chem., 2020, 190, 112117.
[http://dx.doi.org/10.1016/j.ejmech.2020.112117] [PMID: 32061959]
[8]
Tajan, M.; de Rocca Serra, A.; Valet, P.; Edouard, T.; Yart, A. SHP2 sails from physiology to pathology. Eur. J. Med. Genet., 2015, 58(10), 509-525.
[http://dx.doi.org/10.1016/j.ejmg.2015.08.005] [PMID: 26341048]
[9]
Yuan, X.; Bu, H.; Zhou, J.; Yang, C.Y.; Zhang, H. Recent advances of shp2 inhibitors in cancer therapy: Current development and clinical application. J. Med. Chem., 2020, 63(20), 11368-11396.
[http://dx.doi.org/10.1021/acs.jmedchem.0c00249] [PMID: 32460492]
[10]
Chen, C.; Liang, F.; Chen, B.; Sun, Z.; Xue, T.; Yang, R.; Luo, D. Identification of demethylincisterol A3 as a selective inhibitor of protein tyrosine phosphatase Shp2. Eur. J. Pharmacol., 2017, 795, 124-133.
[http://dx.doi.org/10.1016/j.ejphar.2016.12.012] [PMID: 27939989]
[11]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-fluorouracil: Mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[12]
Blondy, S.; David, V.; Verdier, M.; Mathonnet, M.; Perraud, A.; Christou, N. 5-Fluorouracil resistance mechanisms in colorectal cancer: From classical pathways to promising processes. Cancer Sci., 2020, 111(9), 3142-3154.
[http://dx.doi.org/10.1111/cas.14532] [PMID: 32536012]
[13]
Zheng, G.; Xiong, Y.; Yi, S.; Zhang, W.; Peng, B.; Zhang, Q.; He, Z. 14-3-3σ regulation by p53 mediates a chemotherapy response to 5-fluorouracil in MCF-7 breast cancer cells via Akt inactivation. FEBS Lett., 2012, 586(2), 163-168.
[http://dx.doi.org/10.1016/j.febslet.2011.11.034] [PMID: 22192357]
[14]
Zhang, W.; Ding, W.; Chen, Y.; Feng, M.; Ouyang, Y.; Yu, Y.; He, Z. Up-regulation of breast cancer resistance protein plays a role in HER2-mediated chemoresistance through PI3K/Akt and nuclear factor-kappa B signaling pathways in MCF7 breast cancer cells. Acta Biochim. Biophys. Sin. (Shanghai), 2011, 43(8), 647-653.
[http://dx.doi.org/10.1093/abbs/gmr050] [PMID: 21712253]
[15]
Zheng, H.C. The molecular mechanisms of chemoresistance in cancers. Oncotarget, 2017, 8(35), 59950-59964.
[http://dx.doi.org/10.18632/oncotarget.19048] [PMID: 28938696]
[16]
Shiga, T.; Hiraide, M. Cardiotoxicities of 5-fluorouracil and other fluoropyrimidines. Curr. Treat. Options Oncol., 2020, 21(4), 27.
[http://dx.doi.org/10.1007/s11864-020-0719-1] [PMID: 32266582]
[17]
Wei, Y.; Yang, P.; Cao, S.; Zhao, L. The combination of curcumin and 5-fluorouracil in cancer therapy. Arch. Pharm. Res., 2018, 41(1), 1-13.
[http://dx.doi.org/10.1007/s12272-017-0979-x] [PMID: 29230689]
[18]
Oberic, L.; Viret, F.; Baey, C.; Ychou, M.; Bennouna, J.; Adenis, A.; Peiffert, D.; Mornex, F.; Pignon, J.P.; Celier, P.; Berille, J.; Ducreux, M. Docetaxel- and 5-FU-concurrent radiotherapy in patients presenting unresectable locally advanced pancreatic cancer: A FNCLCC-ACCORD/0201 randomized phase II trial’s pre-planned analysis and case report of a 5.5-year disease-free survival. Radiat. Oncol., 2011, 6, 124.
[http://dx.doi.org/10.1186/1748-717X-6-124] [PMID: 21943032]
[19]
Zhou, Y.; Zhang, M.; Zhang, Z.; Jia, Y.; Zhang, C.; Peng, L. Hydrazinocurcumin and 5-fluorouracil enhance apoptosis and restrain tumorigenicity of HepG2 cells via disrupting the PTEN-mediated PI3K/Akt signaling pathway. Biomed. Pharmacother., 2020, 129, 109851.
[20]
Liu, Q.; Qu, J.; Zhao, M.; Xu, Q.; Sun, Y. Targeting SHP2 as a promising strategy for cancer immunotherapy. Pharmacol. Res., 2020, 152, 104595.
[http://dx.doi.org/10.1016/j.phrs.2019.104595] [PMID: 31838080]
[21]
Tsang, Y.H.; Han, X.; Man, W.Y.; Lee, N.; Poon, R.Y. Novel functions of the phosphatase SHP2 in the DNA replication and damage checkpoints. PLoS One, 2012, 7(11), e49943.
[http://dx.doi.org/10.1371/journal.pone.0049943] [PMID: 23189174]
[22]
Edlich, F. BCL-2 proteins and apoptosis: Recent insights and unknowns. Biochem. Biophys. Res. Commun., 2018, 500(1), 26-34.
[http://dx.doi.org/10.1016/j.bbrc.2017.06.190] [PMID: 28676391]
[23]
García-Aranda, M.; Pérez-Ruiz, E.; Redondo, M. Bcl-2 inhibition to overcome resistance to chemo- and immunotherapy. Int. J. Mol. Sci., 2018, 19(12), E3950.
[http://dx.doi.org/10.3390/ijms19123950] [PMID: 30544835]
[24]
Mirjolet, J.F.; Barberi-Heyob, M.; Didelot, C.; Peyrat, J.P.; Abecassis, J.; Millon, R.; Merlin, J.L. Bcl-2/Bax protein ratio predicts 5-fluorouracil sensitivity independently of p53 status. Br. J. Cancer, 2000, 83(10), 1380-1386.
[http://dx.doi.org/10.1054/bjoc.2000.1455] [PMID: 11044365]
[25]
Wu, D.W.; Huang, C.C.; Chang, S.W.; Chen, T.H.; Lee, H. Bcl-2 stabilization by paxillin confers 5-fluorouracil resistance in colorectal cancer. Cell Death Differ., 2015, 22(5), 779-789.
[http://dx.doi.org/10.1038/cdd.2014.170] [PMID: 25323586]
[26]
Kim, E.J.; Kang, G.J.; Kang, J.I.; Boo, H.J.; Hyun, J.W.; Koh, Y.S.; Chang, W.Y.; Kim, Y.R.; Kwon, J.M.; Maeng, Y.H.; Yoo, E.S.; Lee, C.H.; Kang, H.K. Over-activation of AKT signaling leading to 5-fluorouracil resistance in SNU-C5/5-FU cells. Oncotarget, 2018, 9(28), 19911-19928.
[http://dx.doi.org/10.18632/oncotarget.24952] [PMID: 29731993]
[27]
Ischenko, I.; Camaj, P.; Seeliger, H.; Kleespies, A.; Guba, M.; De Toni, E.N.; Schwarz, B.; Graeb, C.; Eichhorn, M.E.; Jauch, K.W.; Bruns, C.J. Inhibition of Src tyrosine kinase reverts chemoresistance toward 5-fluorouracil in human pancreatic carcinoma cells: An involvement of epidermal growth factor receptor signaling. Oncogene, 2008, 27(57), 7212-7222.
[http://dx.doi.org/10.1038/onc.2008.326] [PMID: 18794807]
[28]
Tsubaki, M.; Takeda, T.; Asano, R.T.; Matsuda, T.; Fujimoto, S.I.; Itoh, T.; Imano, M.; Satou, T.; Nishida, S. Rebamipide suppresses 5-fluorouracil-induced cell death via the activation of Akt/mTOR pathway and regulates the expression of Bcl-2 family proteins. Toxicol. In Vitro, 2018, 46(284), 293.
[29]
Endo, F.; Nishizuka, S.S.; Kume, K.; Ishida, K.; Katagiri, H.; Ishida, K.; Sato, K.; Iwaya, T.; Koeda, K.; Wakabayashi, G. A compensatory role of NF-κB to p53 in response to 5-FU-based chemotherapy for gastric cancer cell lines. PLoS One, 2014, 9(2), e90155.
[http://dx.doi.org/10.1371/journal.pone.0090155] [PMID: 24587255]
[30]
Zhang, X.; Tang, N.; Hadden, T.J.; Rishi, A.K. Akt, FoxO and regulation of apoptosis. Biochim. Biophys. Acta, 2011, 1813(11), 1978-1986.
[http://dx.doi.org/10.1016/j.bbamcr.2011.03.010] [PMID: 21440011]
[31]
Ghoneum, A.; Said, N. PI3K-AKT-mTOR and NFκB pathways in ovarian cancer: Implications for targeted therapeutics. 2019, 11, 7.
[32]
Yan, D.; Zhu, D.; Zhao, X.; Su, J. SHP-2 restricts apoptosis induced by chemotherapeutic agents via Parkin-dependent autophagy in cervical cancer. Cancer Cell Int., 2018, 18, 8.
[http://dx.doi.org/10.1186/s12935-018-0505-3] [PMID: 29371831]
[33]
Chan, C.K.; Aimagambetova, G.; Ukybassova, T.; Kongrtay, K.; Azizan, A. Human papillomavirus infection and cervical cancer: Epidemiology, screening, and vaccination-review of current perspectives. J. Oncol., 2019, 2019, 3257939.
[http://dx.doi.org/10.1155/2019/3257939] [PMID: 31687023]
[34]
Pal, A.; Kundu, R. Human papillomavirus E6 and E7: The cervical cancer hallmarks and targets for therapy. Front. Microbiol., 2020, 10, 3116.
[http://dx.doi.org/10.3389/fmicb.2019.03116] [PMID: 32038557 ]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy