Generic placeholder image

Current Drug Delivery

Editor-in-Chief

ISSN (Print): 1567-2018
ISSN (Online): 1875-5704

Review Article

Recent Advances in Mesoporous Silica Nanoparticles for Targeted Drug Delivery Applications

Author(s): Ahmed M. Abu-Dief*, Mosa Alsehli, Abdullah Al-Enizi and Ayman Nafady*

Volume 19, Issue 4, 2022

Published on: 13 January, 2022

Page: [436 - 450] Pages: 15

DOI: 10.2174/1567201818666210708123007

Price: $65

conference banner
Abstract

Abstract: Nanotechnology provides the means to design and fabricate delivery vehicles capable of overcoming physiologically imposed obstacles and undesirable side effects of systemic drug delivery. This protocol allows maximal targeting effectiveness and therefore enhances therapeutic efficiency. In recent years, Mesoporous Silica Nanoparticles (MSNPs) have sparked interest in nanomedicine research community, particularly for their promising applications in cancer treatment. The intrinsic physio-chemical stability, facile functionalization, high surface area, low toxicity, and great loading capacity for a wide range of chemotherapeutic agents make MSNPs very appealing candidates for controllable drug delivery systems. Importantly, the peculiar nanostructures of MSNPs enabled them to serve as an effective drug, gene, protein and antigen delivery vehicle for a variety of therapeutic regimens. For these reasons, in this review article, we underscore the recent progress in the design and synthesis of MSNPs along with the parameters influencing their characteristic features and activities. In addition, the process of absorption, dissemination and secretion by injection or oral management of MSNPs are also discussed, as they are key directions for potential utilization of MSNPs. Factors influencing the in vivo fate of MSNPs will also be highlighted, with a main focus on particle size, morphology, porosity, surface functionality and oxidation. Given that combining other functional materials with MSNPs may increase their biological compatibility, monitor drug discharge, or improve absorption by tumor cells coated MSNPs; these aspects are also covered and discussed herein.

Keywords: Mesoporous silica nanoparticles, nanomedicine, functionalization, nanocarriers, drug delivery, cancer.

Graphical Abstract

[1]
Davis, M.E.; Chen, Z.G.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[2]
Algar, W.R.; Prasuhn, D.E.; Stewart, M.H.; Jennings, T.L.; Blanco-Canosa, J.B.; Dawson, P.E.; Medintz, I.L. The controlled display of biomolecules on nanoparticles: A challenge suited to bioorthogonal chemistry. Bioconjug. Chem., 2011, 22(5), 825-858.
[http://dx.doi.org/10.1021/bc200065z] [PMID: 21585205]
[3]
Debatri, R.; Sudipta, D.; Arnab, S. Design and in-vitro release kinetics of liposomal formulation of acyclovir. Int. J. Appl. Pharmaceut., 2019, 11, 61-65.
[http://dx.doi.org/10.22159/ijap.2019v11i6.34917]
[4]
Lee, W.H.; Loo, C.Y.; Traini, D.; Young, P.M. Nano- and micro-based inhaled drug delivery systems for targeting alveolar macrophages. Expert Opin. Drug Deliv., 2015, 12(6), 1009-1026.
[http://dx.doi.org/10.1517/17425247.2015.1039509] [PMID: 25912721]
[5]
Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K.A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. USA, 2008, 105(38), 14265-14270.
[http://dx.doi.org/10.1073/pnas.0805135105] [PMID: 18809927]
[6]
Monopoli, M.P.; Walczyk, D.; Campbell, A.; Elia, G.; Lynch, I.; Bombelli, F.B.; Dawson, K.A. Physical-chemical aspects of protein corona: Relevance to in vitro and in vivo biological impacts of nanoparticles. J. Am. Chem. Soc., 2011, 133(8), 2525-2534.
[http://dx.doi.org/10.1021/ja107583h] [PMID: 21288025]
[7]
Hudson, S.P.; Padera, R.F.; Langer, R.; Kohane, D.S. The biocompatibility of mesoporous silicates. Biomaterials, 2008, 29(30), 4045-4055.
[http://dx.doi.org/10.1016/j.biomaterials.2008.07.007] [PMID: 18675454]
[8]
Poorakbar, E.; Shafiee, A.; Saboury, A.A.; Rad, B.L.; Khoshnevisan, K.; Ma’mani, L.; Derakhshankhah, H.; Ganjali, M.R.; Hosseini, M. Synthesis of magnetic gold mesoporous silica nanoparticles core shell for cellulase enzyme immobilization: Improvement of enzymatic activity and thermal stability. Process Biochem., 2018, 71, 92-100.
[http://dx.doi.org/10.1016/j.procbio.2018.05.012]
[9]
Rosenholm, J.; Sahlgren, C.; Lindén, M. Cancer-cell targeting and cell-specific delivery by mesoporous silica nanoparticles. J. Mater. Chem., 2010, 20, 2707-2713.
[http://dx.doi.org/10.1039/b920076b]
[10]
Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Towards multifunctional, targeted drug delivery systems using mesoporous silica nanoparticles opportunities & challenges. Nanoscale, 2010, 2(10), 1870-1883.
[http://dx.doi.org/10.1039/c0nr00156b] [PMID: 20730166]
[11]
Rosenholm, J.M.; Sahlgren, C.; Lindén, M. Multifunctional mesoporous silica nanoparticles for combined therapeutic, diagnostic and targeted action in cancer treatment. Curr. Drug Targets, 2011, 12(8), 1166-1186.
[http://dx.doi.org/10.2174/138945011795906624] [PMID: 21443474]
[12]
Benezra, M.; Penate-Medina, O.; Zanzonico, P.B.; Schaer, D.; Ow, H.; Burns, A.; DeStanchina, E.; Longo, V.; Herz, E.; Iyer, S.; Wolchok, J.; Larson, S.M.; Wiesner, U.; Bradbury, M.S. Multimodal silica nanoparticles are effective cancer-targeted probes in a model of human melanoma. J. Clin. Invest., 2011, 121(7), 2768-2780.
[http://dx.doi.org/10.1172/JCI45600] [PMID: 21670497]
[13]
Li, T.; Shi, S.; Goel, S.; Shen, X.; Xie, X.; Chen, Z.; Zhang, H.; Li, S.; Qin, X.; Yang, H.; Wu, C.; Liu, Y. Recent advancements in mesoporous silica nanoparticles towards therapeutic applications for cancer. Acta Biomater., 2019, 89, 1-13.
[http://dx.doi.org/10.1016/j.actbio.2019.02.031] [PMID: 30797106]
[14]
Shchipunov, Y.A.; Burtseva, Y.V.; Karpenko, T.Y.; Shevchenko, N.M.; Zvyagintseva, T.N. Highly efficient immobilization of endo-1,3-β-d-glucanases (laminarinases) from marine mollusks in novel hybrid polysaccharide-silica nanocomposites with regulated composition. J. Mol. Catal., B Enzym., 2006, 40, 16-23.
[http://dx.doi.org/10.1016/j.molcatb.2006.02.002]
[15]
Klichko, Y.; Liong, M.; Choi, E.; Angelos, S.; Nel, A.E.; Stoddart, J.F.; Tamanoi, F.; Zink, J.I. Mesostructured silica for optical functionality, nanomachines, and drug delivery. J. Am. Ceramic Soc., 2009, 92, s2-s10.
[16]
Bharti, C.; Nagaich, U.; Pal, A.K.; Gulati, N. Mesoporous silica nanoparticles in target drug delivery system: A review. Int. J. Pharm. Investig., 2015, 5(3), 124-133.
[http://dx.doi.org/10.4103/2230-973X.160844] [PMID: 26258053]
[17]
Vivero-Escoto, J.L.; Slowing, I.I.; Trewyn, B.G.; Lin, V.S. Mesoporous silica nanoparticles for intracellular controlled drug delivery. Small, 2010, 6(18), 1952-1967.
[http://dx.doi.org/10.1002/smll.200901789] [PMID: 20690133]
[18]
Lu, J.; Li, Z.; Zink, J.I.; Tamanoi, F. In vivo tumor suppression efficacy of mesoporous silica nanoparticles-based drug-delivery system: Enhanced efficacy by folate modification. Nanomedicine (Lond.), 2012, 8(2), 212-220.
[http://dx.doi.org/10.1016/j.nano.2011.06.002] [PMID: 21703996]
[19]
Deodhar, G.V.; Adams, M.L.; Trewyn, B.G. Controlled release and intracellular protein delivery from mesoporous silica nanoparticles. Biotechnol. J., 2017, 12(1)
[http://dx.doi.org/10.1002/biot.201600408] [PMID: 27973750]
[20]
Tao, C.; Zhu, Y.; Xu, Y.; Zhu, M.; Morita, H.; Hanagata, N. Mesoporous silica nanoparticles for enhancing the delivery efficiency of immunostimulatory DNA drugs. Dalton Trans., 2014, 43(13), 5142-5150.
[http://dx.doi.org/10.1039/C3DT53433B] [PMID: 24496286]
[21]
Möller, K.; Müller, K.; Engelke, H.; Bräuchle, C.; Wagner, E.; Bein, T. Highly efficient siRNA delivery from core-shell mesoporous silica nanoparticles with multifunctional polymer caps. Nanoscale, 2016, 8(7), 4007-4019.
[http://dx.doi.org/10.1039/C5NR06246B] [PMID: 26819069]
[22]
Danks, A.E.; Hall, S.R.; Schnepp, Z. The evolution of ‘sol–gel’ chemistry as a technique for materials synthesis. Mater. Horiz., 2016, 3, 91-112.
[http://dx.doi.org/10.1039/C5MH00260E]
[23]
Ravindran Girija, A.; Balasubramanian, S. Theragnostic potentials of core/shell mesoporous silica nanostructures. Nanotheranostics, 2019, 3(1), 1-40.
[http://dx.doi.org/10.7150/ntno.27877] [PMID: 30662821]
[24]
Li, Z.; Zhang, Y.; Feng, N. Mesoporous silica nanoparticles: Synthesis, classification, drug loading, pharmacokinetics, biocompatibility, and application in drug delivery. Expert Opin. Drug Deliv., 2019, 16(3), 219-237.
[http://dx.doi.org/10.1080/17425247.2019.1575806] [PMID: 30686075]
[25]
Aleem Ali El-Remaily, M.A.E.; Abu-Dief, A.M.; El-Khatib, R.M. A robust synthesis and characterization of superparamagnetic CoFe2O4 nanoparticles as an efficient and reusable catalyst for green synthesis of some heterocyclic rings. Appl. Organomet. Chem., 2016, 30, 1022-1029.
[http://dx.doi.org/10.1002/aoc.3536]
[26]
Marzouk, A.A.; Abu-Dief, A.M.; Abdelhamid, A.A. Hydrothermal preparation and characterization of ZnFe2O4 magnetic nanoparticles as an efficient heterogeneous catalyst for the synthesis of multi-substituted imidazoles and study of their anti-inflammatory activity. Appl. Organomet. Chem., 2018, 32, e3794.
[http://dx.doi.org/10.1002/aoc.3794]
[27]
Mohamed, W.S.; Alzaid, M.; Abdelbaky, M.; Amghouz, Z.; García-Granda, M.; M. Abu-Dief, A. Impact of co2+ substitution on microstructure and magnetic properties of coxzn1-xfe2o4 nanoparticles. Nanomaterials (Basel), 2019, 9, 1602.
[http://dx.doi.org/10.3390/nano9111602]
[28]
Mohamed, W.S.; Abu-Dief, A.M. Impact of rare earth europium (RE-Eu3+) ions substitution on microstructural, optical and magnetic properties of CoFe2−xEuxO4 nanosystems. Ceram. Int., 2020, 46, 16196-16209.
[http://dx.doi.org/10.1016/j.ceramint.2020.03.175]
[29]
Bian, S.; Gao, K.; Shen, H.; Jiang, X.; Long, Y.; Chen, Y. Organic/inorganic hybrid mesoporous silica membrane rapidly synthesized by a microwave-assisted method and its application in enzyme adsorption and electrocatalysis. J. Mater. Chem. B Mater. Biol. Med., 2013, 1(26), 3267-3276.
[http://dx.doi.org/10.1039/c3tb20169d] [PMID: 32261035]
[30]
Wu, C.-G.; Bein, T. Microwave synthesis of molecular sieve MCM-41. Chemical Communications, 1996, 925-926.
[http://dx.doi.org/10.1039/cc9960000925]
[31]
Pasqua, L.; Procopio, A.; Oliverio, M.; Paonessa, R.; Prete, R.; Nardi, M.; Casula, M.F.; Testa, F.; Nagy, J.B. Hybrid MCM-41 grafted by a general microwave-assisted procedure: A characterization study. J. Porous Mater., 2013, 20, 865-873.
[http://dx.doi.org/10.1007/s10934-012-9663-1]
[32]
Celer, E.B.; Jaroniec, M. Temperature-programmed microwave-assisted synthesis of SBA-15 ordered mesoporous silica. J. Am. Chem. Soc., 2006, 128(44), 14408-14414.
[http://dx.doi.org/10.1021/ja065345h] [PMID: 17076515]
[33]
Dement’eva, O.V.; Senchikhin, I.N.; Kartseva, M.E.; Ogarev, V.A.; Zaitseva, A.V.; Matushkina, N.N.; Rudoy, V.M. A new method for loading mesoporous silica nanoparticles with drugs: Sol–gel synthesis using drug micelles as a template. Colloid J., 2016, 78, 586-595.
[http://dx.doi.org/10.1134/S1061933X16050045]
[34]
Li, X.; Shi, B.; Chaikittisilp, W.; Li, M.; Wang, Y.; Liu, Y.; Gao, L.; Mao, L. A general method to synthesize a family of mesoporous silica nanoparticles less than 100 nm and their applications in anti-reflective/fogging coating. J. Mater. Sci., 2016, 51, 6192-6206.
[http://dx.doi.org/10.1007/s10853-016-9916-5]
[35]
Cruz, P.; Pérez, Y.; del Hierro, I. Titanium alkoxides immobilized on magnetic mesoporous silica nanoparticles and their characterization by solid state voltammetry techniques: Application in ring opening polymerization. Microporous Mesoporous Mater., 2017, 240, 227-235.
[http://dx.doi.org/10.1016/j.micromeso.2016.11.028]
[36]
Wu, X-J.; Xu, D. Soft template synthesis of yolk/silica shell particles. Adv. Mater., 2010, 22(13), 1516-1520.
[http://dx.doi.org/10.1002/adma.200903879] [PMID: 20437501]
[37]
Chao, M-C.; Lin, H-P.; Mou, C-Y.; Cheng, B-W.; Cheng, C-F. Synthesis of nano-sized mesoporous silicas with metal incorporation. Catal. Today, 2004, 97, 81-87.
[http://dx.doi.org/10.1016/j.cattod.2004.06.140]
[38]
Fowler, C.E.; Khushalani, D.; Lebeau, B.; Mann, S. Nanoscale materials with mesostructured interiors. Adv. Mater., 2001, 13, 649-652.
[http://dx.doi.org/10.1002/1521-4095(200105)13:9<649::AID-ADMA649>3.0.CO;2-G]
[39]
Niu, D.; Ma, Z.; Li, Y.; Shi, J. Synthesis of core-shell structured dual-mesoporous silica spheres with tunable pore size and controllable shell thickness. J. Am. Chem. Soc., 2010, 132(43), 15144-15147.
[http://dx.doi.org/10.1021/ja1070653] [PMID: 20939576]
[40]
Vallet-Regí, M.; Colilla, M.; González, B. Medical applications of organic-inorganic hybrid materials within the field of silica-based bioceramics. Chem. Soc. Rev., 2011, 40(2), 596-607.
[http://dx.doi.org/10.1039/C0CS00025F] [PMID: 21049136]
[41]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C-W.; Lin, V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[42]
Vallet-Regí, M.; Balas, F.; Arcos, D. Mesoporous materials for drug delivery. Angew. Chem. Int. Ed. Engl., 2007, 46(40), 7548-7558.
[http://dx.doi.org/10.1002/anie.200604488] [PMID: 17854012]
[43]
Chen, J.F.Y.Z.Y.Z.F. Organics modified mesoporous silica for controlled drug delivery systems. In: Nanomaterials in drug delivery, imaging, and tissue engineering; Wiley, USA, 2013; pp. 237-268.
[44]
Kura, A.U.; Fakurazi, S.; Hussein, M.Z.; Arulselvan, P. Nanotechnology in drug delivery: The need for more cell culture based studies in screening. Chem. Cent. J., 2014, 8, 46-46.
[http://dx.doi.org/10.1186/1752-153X-8-46] [PMID: 25057288]
[45]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[46]
Singh, N.; Karambelkar, A.; Gu, L.; Lin, K.; Miller, J.S.; Chen, C.S.; Sailor, M.J.; Bhatia, S.N. Bioresponsive mesoporous silica nanoparticles for triggered drug release. J. Am. Chem. Soc., 2011, 133(49), 19582-19585.
[http://dx.doi.org/10.1021/ja206998x] [PMID: 21981330]
[47]
Saint-Cricq, P.; Deshayes, S.; Zink, J.I.; Kasko, A.M. Magnetic field activated drug delivery using thermodegradable azo-functionalised PEG-coated core-shell mesoporous silica nanoparticles. Nanoscale, 2015, 7(31), 13168-13172.
[http://dx.doi.org/10.1039/C5NR03777H] [PMID: 26181577]
[48]
Vivero-Escoto, J.L.; Taylor-Pashow, K.M.; Huxford, R.C.; Della Rocca, J.; Okoruwa, C.; An, H.; Lin, W.; Lin, W. Multifunctional mesoporous silica nanospheres with cleavable Gd(III) chelates as MRI contrast agents: Synthesis, characterization, target-specificity, and renal clearance. Small, 2011, 7(24), 3519-3528.
[http://dx.doi.org/10.1002/smll.201100521] [PMID: 22069305]
[49]
Lee, S.B.; Kim, H.L.; Jeong, H-J.; Lim, S.T.; Sohn, M-H.; Kim, D.W. Mesoporous silica nanoparticle pretargeting for PET imaging based on a rapid bioorthogonal reaction in a living body. Angew. Chem. Int. Ed. Engl., 2013, 52(40), 10549-10552.
[http://dx.doi.org/10.1002/anie.201304026] [PMID: 23956036]
[50]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[51]
Lin, Y-S.; Abadeer, N.; Haynes, C.L. Stability of small mesoporous silica nanoparticles in biological media. Chem. Commun. (Camb.), 2011, 47(1), 532-534.
[http://dx.doi.org/10.1039/C0CC02923H] [PMID: 21082109]
[52]
Fang, C.; Bhattarai, N.; Sun, C.; Zhang, M. Functionalized nanoparticles with long-term stability in biological media. Small, 2009, 5(14), 1637-1641.
[http://dx.doi.org/10.1002/smll.200801647] [PMID: 19334014]
[53]
Rio-Echevarria, I.M.; Selvestrel, F.; Segat, D.; Guarino, G.; Tavano, R.; Causin, V.; Reddi, E.; Papini, E.; Mancin, F. Highly PEGylated silica nanoparticles: “Ready to use” stealth functional nanocarriers. J. Mater. Chem., 2010, 20, 2780-2787.
[http://dx.doi.org/10.1039/b921735e]
[54]
Xu, C.; Chen, F.; Valdovinos, H.F.; Jiang, D.; Goel, S.; Yu, B.; Sun, H.; Barnhart, T.E.; Moon, J.J.; Cai, W. Bacteria-like mesoporous silica-coated gold nanorods for positron emission tomography and photoacoustic imaging-guided chemo-photothermal combined therapy. Biomaterials, 2018, 165, 56-65.
[http://dx.doi.org/10.1016/j.biomaterials.2018.02.043] [PMID: 29501970]
[55]
Ma, K.; Sai, H.; Wiesner, U. Ultrasmall sub-10 nm near-infrared fluorescent mesoporous silica nanoparticles. J. Am. Chem. Soc., 2012, 134(32), 13180-13183.
[http://dx.doi.org/10.1021/ja3049783] [PMID: 22830608]
[56]
Nejad, M.A.; Urbassek, H.M. Adsorption and diffusion of cisplatin molecules in nanoporous materials: A molecular dynamics study. Biomolecules, 2019, 9(5), 204.
[http://dx.doi.org/10.3390/biom9050204]
[57]
Di Pasqua, A.J.; Sharma, K.K.; Shi, Y.L.; Toms, B.B.; Ouellette, W.; Dabrowiak, J.C.; Asefa, T. Cytotoxicity of mesoporous silica nanomaterials. J. Inorg. Biochem., 2008, 102(7), 1416-1423.
[http://dx.doi.org/10.1016/j.jinorgbio.2007.12.028] [PMID: 18279965]
[58]
Iafisco, M.; Margiotta, N. Silica xerogels and hydroxyapatite nanocrystals for the local delivery of platinum-bisphosphonate complexes in the treatment of bone tumors: A mini-review. J. Inorg. Biochem., 2012, 117, 237-247.
[http://dx.doi.org/10.1016/j.jinorgbio.2012.06.004] [PMID: 22824154]
[59]
Rieter, W.J.; Pott, K.M.; Taylor, K.M.L.; Lin, W. Nanoscale coordination polymers for platinum-based anticancer drug delivery. J. Am. Chem. Soc., 2008, 130(35), 11584-11585.
[http://dx.doi.org/10.1021/ja803383k] [PMID: 18686947]
[60]
Vallet-Regí, M.; Ruiz-González, L.; Izquierdo-Barba, I.; González-Calbet, J.M. Revisiting silica based ordered mesoporous materials: Medical applications. J. Mater. Chem., 2006, 16, 26-31.
[http://dx.doi.org/10.1039/B509744D]
[61]
McInnes, S.J.; Voelcker, N.H. Silicon-polymer hybrid materials for drug delivery. Future Med. Chem., 2009, 1(6), 1051-1074.
[http://dx.doi.org/10.4155/fmc.09.90] [PMID: 21425994]
[62]
Zhang, Q.; Liu, F.; Nguyen, K.T.; Ma, X.; Wang, X.; Xing, B.; Zhao, Y. Multifunctional mesoporous silica nanoparticles for cancer-targeted and controlled drug delivery. Adv. Funct. Mater., 2012, 22, 5144-5156.
[http://dx.doi.org/10.1002/adfm.201201316]
[63]
Wang, J.; Liu, H.; Leng, F.; Zheng, L.; Yang, J.; Wang, W.; Huang, C.Z. Autofluorescent and pH-responsive mesoporous silica for cancer-targeted and controlled drug release. Microporous Mesoporous Mater., 2014, 186, 187-193.
[http://dx.doi.org/10.1016/j.micromeso.2013.11.006]
[64]
Jin, D.; Park, K-W.; Lee, J.H.; Song, K.; Kim, J-G.; Seo, M.L.; Jung, J.H. The selective immobilization of curcumin onto the internal surface of mesoporous hollow silica particles by covalent bonding and its controlled release. J. Mater. Chem., 2011, 21, 3641-3645.
[http://dx.doi.org/10.1039/c0jm03846f]
[65]
Xu, W.; Gao, Q.; Xu, Y.; Wu, D.; Sun, Y.; Shen, W.; Deng, F. Controlled drug release from bifunctionalized mesoporous silica. J. Solid State Chem., 2008, 181, 2837-2844.
[http://dx.doi.org/10.1016/j.jssc.2008.07.011]
[66]
Guo, R.; Li, L-L.; Zhao, W-H.; Chen, Y-X.; Wang, X-Z.; Fang, C-J.; Feng, W.; Zhang, T-L.; Ma, X.; Lu, M.; Peng, S.Q.; Yan, C.H. The intracellular controlled release from bioresponsive mesoporous silica with folate as both targeting and capping agent. Nanoscale, 2012, 4(11), 3577-3583.
[http://dx.doi.org/10.1039/c2nr30425b] [PMID: 22543578]
[67]
Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J.T.; Kim, H.; Cho, J.M.; Yun, G.; Lee, J. Pharmaceutical particle technologies: An approach to improve drug solubility, dissolution and bioavailability. Asian J. Pharmaceut. Sci., 2014, 9, 304-316.
[http://dx.doi.org/10.1016/j.ajps.2014.05.005]
[68]
Zhu, Y.; Shi, J.; Chen, H.; Shen, W.; Dong, X. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Microporous Mesoporous Mater., 2005, 84, 218-222.
[http://dx.doi.org/10.1016/j.micromeso.2005.05.001]
[69]
Song, S.W.; Hidajat, K.; Kawi, S. Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions. Langmuir, 2005, 21(21), 9568-9575.
[http://dx.doi.org/10.1021/la051167e] [PMID: 16207037]
[70]
Hillerström, A.; Andersson, M.; Samuelsson, J.; van Stam, J. Solvent strategies for loading and release in mesoporous silica. Colloid Interface Sci. Communi., 2014, 3, 5-8.
[http://dx.doi.org/10.1016/j.colcom.2015.01.001]
[71]
She, X.; Chen, L.; Li, C.; He, C.; He, L.; Kong, L. Functionalization of hollow mesoporous silica nanoparticles for improved 5-fu loading. J. Nanomater., 2015, 2015, 872035.
[http://dx.doi.org/10.1155/2015/872035]
[72]
Qu, F.; Zhu, G.; Huang, S.; Li, S.; Sun, J.; Zhang, D.; Qiu, S. Controlled release of Captopril by regulating the pore size and morphology of ordered mesoporous silica. Microporous Mesoporous Mater., 2006, 92, 1-9.
[http://dx.doi.org/10.1016/j.micromeso.2005.12.004]
[73]
Pan, G.; Jia, T.T.; Huang, Q.X.; Qiu, Y.Y.; Xu, J.; Yin, P.H.; Liu, T. Mesoporous silica nanoparticles (MSNs)-based organic/inorganic hybrid nanocarriers loading 5-Fluorouracil for the treatment of colon cancer with improved anticancer efficacy. Colloids Surf. B Biointerfaces, 2017, 159, 375-385.
[http://dx.doi.org/10.1016/j.colsurfb.2017.08.013] [PMID: 28818782]
[74]
Kao, K-C.; Mou, C-Y. Pore-expanded mesoporous silica nanoparticles with alkanes/ethanol as pore expanding agent. Microporous Mesoporous Mater., 2013, 169, 7-15.
[http://dx.doi.org/10.1016/j.micromeso.2012.09.030]
[75]
Chen, Y-C.; Smith, T.; Hicks, R.H.; Doekhie, A.; Koumanov, F.; Wells, S.A.; Edler, K.J.; van den Elsen, J.; Holman, G.D.; Marchbank, K.J.; Sartbaeva, A. Thermal stability, storage and release of proteins with tailored fit in silica. Sci. Rep., 2017, 7, 46568.
[http://dx.doi.org/10.1038/srep46568] [PMID: 28436442]
[76]
Doadrio, J.C.; Sousa, E.M.B.; Izquierdo-Barba, I.; Doadrio, A.L.; Perez-Pariente, J.; Vallet-Regí, M. Functionalization of mesoporous materials with long alkyl chains as a strategy for controlling drug delivery pattern. J. Mater. Chem., 2006, 16, 462-466.
[http://dx.doi.org/10.1039/B510101H]
[77]
Qu, F.; Zhu, G.; Huang, S.; Li, S.; Qiu, S. Effective controlled release of captopril by silylation of mesoporous MCM-41. Chemphyschem, 2006, 7, 400-406.
[78]
Chen, F.; Hong, H.; Shi, S.; Goel, S.; Valdovinos, H.F.; Hernandez, R.; Theuer, C.P.; Barnhart, T.E.; Cai, W. Engineering of hollow mesoporous silica nanoparticles for remarkably enhanced tumor active targeting efficacy. Sci. Rep., 2014, 4, 5080.
[http://dx.doi.org/10.1038/srep05080] [PMID: 24875656]
[79]
Yan, Y.; Fu, J.; Liu, X.; Wang, T.; Lu, X. Acid-responsive intracellular doxorubicin release from click chemistry functionalized mesoporous silica nanoparticles. RSC Advances, 2015, 5, 30640-30646.
[http://dx.doi.org/10.1039/C5RA00059A]
[80]
Balas, F.; Manzano, M.; Horcajada, P.; Vallet-Regí, M. Confinement and controlled release of bisphosphonates on ordered mesoporous silica-based materials. J. Am. Chem. Soc., 2006, 128(25), 8116-8117.
[http://dx.doi.org/10.1021/ja062286z] [PMID: 16787058]
[81]
Gu, J.; Huang, M.; Liu, J.; Li, Y.; Zhao, W.; Shi, J. Calcium doped mesoporous silica nanoparticles as efficient alendronate delivery vehicles. New J. Chem., 2012, 36, 1717-1720.
[http://dx.doi.org/10.1039/c2nj40482f]
[82]
Liu, T.; Wang, K.; Jiang, M.; Wan, L. Interactions between mesocellular foam silica carriers and model drugs constructed by central composite design. Colloids Surf. B Biointerfaces, 2019, 180, 221-228.
[http://dx.doi.org/10.1016/j.colsurfb.2019.04.055] [PMID: 31054462]
[83]
Fu, Z.; Li, L.; Wang, Y.; Chen, Q.; Zhao, F.; Dai, L.; Chen, Z.; Liu, D.; Guo, X. Direct preparation of drug-loaded mesoporous silica nanoparticles by sequential flash nanoprecipitation. Chem. Eng. J., 2020, 382, 122905.
[http://dx.doi.org/10.1016/j.cej.2019.122905]
[84]
Jafari, S.; Derakhshankhah, H.; Alaei, L.; Fattahi, A.; Varnamkhasti, B.S.; Saboury, A.A. Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomed. Pharmacother., 2019, 109, 1100-1111.
[http://dx.doi.org/10.1016/j.biopha.2018.10.167] [PMID: 30551360]
[85]
Wang, B.; Zhang, K.; Wang, J.; Zhao, R.; Zhang, Q.; Kong, X. Poly(amidoamine)-modified mesoporous silica nanoparticles as a mucoadhesive drug delivery system for potential bladder cancer therapy. Colloids Surf. B Biointerfaces, 2020, 189, 110832.
[http://dx.doi.org/10.1016/j.colsurfb.2020.110832] [PMID: 32070865]
[86]
Amidon, G.L.; Lennernäs, H.; Shah, V.P.; Crison, J.R. A theoretical basis for a biopharmaceutic drug classification: The correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm. Res., 1995, 12(3), 413-420.
[http://dx.doi.org/10.1023/A:1016212804288] [PMID: 7617530]
[87]
Yu, E.; Lo, A.; Jiang, L.; Petkus, B.; Ileri Ercan, N.; Stroeve, P. Improved controlled release of protein from expanded-pore mesoporous silica nanoparticles modified with co-functionalized poly(n-isopropylacrylamide) and poly(ethylene glycol) (PNIPAM-PEG). Colloids Surf. B Biointerfaces, 2017, 149, 297-300.
[http://dx.doi.org/10.1016/j.colsurfb.2016.10.033] [PMID: 27776334]
[88]
Dai, Y.; Bi, H.; Deng, X.; Li, C.; He, F.; Ma, P.; Yang, P.; Lin, J. 808 nm near-infrared light controlled dual-drug release and cancer therapy in vivo by upconversion mesoporous silica nanostructures. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(11), 2086-2095.
[http://dx.doi.org/10.1039/C7TB00224F] [PMID: 32263682]
[89]
Li, T.; Chen, X.; Liu, Y.; Fan, L.; Lin, L.; Xu, Y.; Chen, S.; Shao, J. pH-Sensitive mesoporous silica nanoparticles anticancer prodrugs for sustained release of ursolic acid and the enhanced anti- cancer efficacy for hepatocellular carcinoma cancer. Eur. J. Pharmaceut. Sci., 2017, 96, 456-463.
[90]
Deng, Y.D.; Zhang, X.D.; Yang, X.S.; Huang, Z.L.; Wei, X.; Yang, X.F.; Liao, W.Z. Subacute toxicity of mesoporous silica nanoparticles to the intestinal tract and the underlying mechanism. J. Hazard. Mater., 2021, 409, 124502.
[http://dx.doi.org/10.1016/j.jhazmat.2020.124502] [PMID: 33229260]
[91]
Chen, X.; Zhu, S.; Hu, X.; Sun, D.; Yang, J.; Yang, C.; Wu, W.; Li, Y.; Gu, X.; Li, M.; Liu, B.; Ge, L.; Gu, Z.; Xu, H. Toxicity and mechanism of mesoporous silica nanoparticles in eyes. Nanoscale, 2020, 12(25), 13637-13653.
[http://dx.doi.org/10.1039/D0NR03208E] [PMID: 32567638]
[92]
Díaz, B.; Sánchez-Espinel, C.; Arruebo, M.; Faro, J.; de Miguel, E.; Magadán, S.; Yagüe, C.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J.; González-Fernández, A. Assessing methods for blood cell cytotoxic responses to inorganic nanoparticles and nanoparticle aggregates. Small, 2008, 4(11), 2025-2034.
[http://dx.doi.org/10.1002/smll.200800199] [PMID: 18855973]
[93]
He, Q.; Zhang, J.; Shi, J.; Zhu, Z.; Zhang, L.; Bu, W.; Guo, L.; Chen, Y. The effect of PEGylation of mesoporous silica nanoparticles on nonspecific binding of serum proteins and cellular responses. Biomaterials, 2010, 31(6), 1085-1092.
[http://dx.doi.org/10.1016/j.biomaterials.2009.10.046] [PMID: 19880176]
[94]
Napierska, D.; Thomassen, L.C.; Rabolli, V.; Lison, D.; Gonzalez, L.; Kirsch-Volders, M.; Martens, J.A.; Hoet, P.H. Size-dependent cytotoxicity of monodisperse silica nanoparticles in human endothelial cells. Small, 2009, 5(7), 846-853.
[http://dx.doi.org/10.1002/smll.200800461] [PMID: 19288475]
[95]
Xie, G.; Sun, J.; Zhong, G.; Shi, L.; Zhang, D. Biodistribution and toxicity of intravenously administered silica nanoparticles in mice. Arch. Toxicol., 2010, 84(3), 183-190.
[http://dx.doi.org/10.1007/s00204-009-0488-x] [PMID: 19936708]
[96]
He, Q.; Zhang, Z.; Gao, F.; Li, Y.; Shi, J. In vivo biodistribution and urinary excretion of mesoporous silica nanoparticles: Effects of particle size and PEGylation. Small, 2011, 7(2), 271-280.
[http://dx.doi.org/10.1002/smll.201001459] [PMID: 21213393]
[97]
Torchilin, V.P. Passive and active drug targeting: Drug delivery to tumors as an example. Handb. Exp. Pharmacol., 2010, (197), 3-53.
[98]
Derakhshankhah, H.; Izadi, Z.; Alaei, L.; Lotfabadi, A.; Saboury, A.A.; Dinarvand, R.; Divsalar, A.; Seyedarabi, A.; Barzegari, E.; Evini, M. Colon cancer and specific ways to deliver drugs to the large intestine. Anticancer Agents Med. Chem., 2017, 17(10), 1317-1327.
[http://dx.doi.org/10.2174/1871520617666170213142030] [PMID: 28270073]
[99]
Jafari, S.; Maleki Dizaj, S.; Adibkia, K. Cell-penetrating peptides and their analogues as novel nanocarriers for drug delivery. Bioimpacts, 2015, 5(2), 103-111.
[http://dx.doi.org/10.15171/bi.2015.10] [PMID: 26191505]
[100]
Jafari, S.; Ahmadian, E.; Fard, J.K.; Yari Khosroushahi, A. Biomacromolecule based nanoscaffolds for cell therapy. J. Drug Deliv. Sci. Technol., 2017, 37, 61-66.
[http://dx.doi.org/10.1016/j.jddst.2016.11.006]
[101]
Lu, J.; Liong, M.; Zink, J.I.; Tamanoi, F. Mesoporous silica nanoparticles as a delivery system for hydrophobic anticancer drugs. Small, 2007, 3(8), 1341-1346.
[http://dx.doi.org/10.1002/smll.200700005] [PMID: 17566138]
[102]
Badruddoza, A.Z.M.; Gupta, A.; Myerson, A.S.; Trout, B.L.; Doyle, P.S. Low energy nanoemulsions as templates for the formulation of hydrophobic drugs. Adv. Ther., 2018, 1, 1700020.
[http://dx.doi.org/10.1002/adtp.201700020]
[103]
Joyce, P.; Yasmin, R.; Bhatt, A.; Boyd, B.J. Comparison across three hybrid lipid-based drug delivery systems for improving the oral absorption of the poorly water-soluble weak base cinnarizine. 2017, 14, 4008-4018.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00676]
[104]
Wais, U.; Jackson, A.W.; He, T.; Zhang, H. Formation of hydrophobic drug nanoparticles via ambient solvent evaporation facilitated by branched diblock copolymers. Int. J. Pharm., 2017, 533(1), 245-253.
[http://dx.doi.org/10.1016/j.ijpharm.2017.09.067] [PMID: 28964901]
[105]
Maleki, A.; Kettiger, H.; Schoubben, A.; Rosenholm, J.M.; Ambrogi, V.; Hamidi, M. Mesoporous silica materials: From physico- chemical properties to enhanced dissolution of poorly water-soluble drugs. J. Control. Release, 2017, 262, 329-347.
[http://dx.doi.org/10.1016/j.jconrel.2017.07.047] [PMID: 28778479]
[106]
Summerlin, N.; Qu, Z.; Pujara, N.; Sheng, Y.; Jambhrunkar, S.; McGuckin, M.; Popat, A. Colloidal mesoporous silica nanoparticles enhance the biological activity of resveratrol. Colloids Surf. B Biointerfaces, 2016, 144, 1-7.
[http://dx.doi.org/10.1016/j.colsurfb.2016.03.076] [PMID: 27060664]
[107]
Jambhrunkar, S.; Qu, Z.; Popat, A.; Karmakar, S.; Xu, C.; Yu, C. Modulating in vitro release and solubility of griseofulvin using functionalized mesoporous silica nanoparticles. J. Colloid Interface Sci., 2014, 434, 218-225.
[http://dx.doi.org/10.1016/j.jcis.2014.08.019] [PMID: 25203914]
[108]
Wang, Y.; Zhao, Q.; Han, N.; Bai, L.; Li, J.; Liu, J.; Che, E.; Hu, L.; Zhang, Q.; Jiang, T.; Wang, S. Mesoporous silica nanoparticles in drug delivery and biomedical applications. Nanomedicine (Lond.), 2015, 11(2), 313-327.
[http://dx.doi.org/10.1016/j.nano.2014.09.014] [PMID: 25461284]
[109]
Wang, Y.; Sun, Y.; Wang, J.; Yang, Y.; Li, Y.; Yuan, Y.; Liu, C. Charge-reversal aptes-modified mesoporous silica nanoparticles with high drug loading and release controllability. ACS Appl. Mater. Interfaces, 2016, 8(27), 17166-17175.
[http://dx.doi.org/10.1021/acsami.6b05370] [PMID: 27314423]
[110]
Li, Q-L.; Xu, S-H.; Zhou, H.; Wang, X.; Dong, B.; Gao, H.; Tang, J.; Yang, Y-W. pH and glutathione dual-responsive dynamic cross-linked supramolecular network on mesoporous silica nanoparticles for controlled anticancer drug release. ACS Appl. Mater. Interfaces, 2015, 7(51), 28656-28664.
[http://dx.doi.org/10.1021/acsami.5b10534] [PMID: 26633741]
[111]
Zhang, Y.; Zhi, Z.; Jiang, T.; Zhang, J.; Wang, Z.; Wang, S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J. Controll. Rel., 2010, 145, 257-263.
[112]
Lu, J.; Liong, M.; Li, Z.; Zink, J.I.; Tamanoi, F. Biocompatibility, biodistribution, and drug-delivery efficiency of mesoporous silica nanoparticles for cancer therapy in animals. Small (Weinheim an der Bergstrasse, Germany), 2010, 6, 1794-1805.
[113]
Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-delivery of doxorubicin and Bcl-2 siRNA by mesoporous silica nanoparticles enhances the efficacy of chemotherapy in multidrug-resistant cancer cells. Small, 2009, 5(23), 2673-2677.
[http://dx.doi.org/10.1002/smll.200900621] [PMID: 19780069]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy