Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Review Article

lncRNAs as Hallmarks for Individualized Treatment of Gastric Cancer

Author(s): Jing Wu, Shan Xu, Wei Li, Yuru Lu, Yu Zhou, Ming Xie, Yichen Luo, Yijing Cao , Yan He, Tiebing Zeng* and Hui Ling*

Volume 22, Issue 8, 2022

Published on: 06 July, 2021

Page: [1440 - 1457] Pages: 18

DOI: 10.2174/1871520621666210706113102

Price: $65

Abstract

Gastric cancer is a global cancer with a high mortality rate. A growing number of studies have found the abnormal expression of lncRNA (long noncoding RNA) in many tumors, which plays a role in promoting or inhibiting cancer. Similarly, lncRNA abnormal expression plays an essential biological function in gastric cancer. This article focuses on lncRNA involvement in the development of gastric cancer in terms of cell cycle disorder, apoptosis inhibition, metabolic remodeling, promotion of tumor inflammation, immune escape, induction of angiogenesis, and Epithelial Mesenchymal Transition (EMT). The involvement of lncRNA in the development of gastric cancer is related to drug resistance, such as cisplatin and multi-drug resistance. It can also be used as a potential marker for the diagnosis and prognosis of gastric cancer and a target for the treatment. With an in-depth understanding of the mechanism of lncRNA in gastric cancer, new ideas for personalized treatment of gastric cancer are expected.

Keywords: Gastric cancer, lncRNAs, hallmarks, drug resistance, target, EMT.

Graphical Abstract

[1]
Van Cutsem, E.; Sagaert, X.; Topal, B.; Haustermans, K.; Prenen, H. Gastric cancer. Lancet, 2016, 388(10060), 2654-2664.
[http://dx.doi.org/10.1016/S0140-6736(16)30354-3]
[2]
Kong, R.; Zhang, E.B.; Yin, D.D.; You, L.H.; Xu, T.P.; Chen, W.M.; Xia, R.; Wan, L.; Sun, M.; Wang, Z.X.; De, W.; Zhang, Z.H. Long noncoding RNA PVT1 indicates a poor prognosis of gastric cancer and promotes cell proliferation through epigenetically regulating p15 and p16. Mol. Cancer, 2015, 14, 82-95.
[http://dx.doi.org/10.1186/s12943-015-0355-8]
[3]
Zhao, Y.; Liu, Y.; Lin, L.; Huang, Q.; He, W.; Zhang, S.; Dong, S.; Wen, Z.; Rao, J.; Liao, W.; Shi, M. The lncRNA MACC1-AS1 promotes gastric cancer cell metabolic plasticity via AMPK/Lin28 mediated mRNA stability of MACC1. Mol. Cancer, 2018, 17(1), 69-84.
[http://dx.doi.org/10.1186/s12943-018-0820-2]
[4]
Wang, C.J.; Zhu, C.C.; Xu, J.; Wang, M.; Zhao, W.Y.; Liu, Q.; Zhao, G.; Zhang, Z.Z. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol. Cancer, 2019, 18(1), 115-126.
[http://dx.doi.org/10.1186/s12943-019-1032-0]
[5]
Cao, Y.; Xiong, J.B.; Zhang, G.Y.; Liu, Y.; Jie, Z.G.; Li, Z.R. Long noncoding rna uca1 regulates prl-3 expression by sponging microrna-495 to promote the progression of gastric cancer. Mol. Ther. Nucleic Acids, 2020, 19, 853-864.
[http://dx.doi.org/10.1016/j.omtn.2019.10.020]
[6]
Yang, X.Z.; Cheng, T.T.; He, Q.J.; Lei, Z.Y.; Chi, J.; Tang, Z.; Liao, Q.X.; Zhang, H.; Zeng, L.S.; Cui, S.Z. LINC01133 as ceRNA inhibits gastric cancer progression by sponging miR-106a-3p to regulate APC expression and the Wnt/β-catenin pathway. Mol. Cancer, 2018, 17(1), 126-140.
[http://dx.doi.org/10.1186/s12943-018-0874-1]
[7]
Iyer, M.K.; Niknafs, Y.S.; Malik, R.; Singhal, U.; Sahu, A.; Hosono, Y.; Barrette, T.R.; Prensner, J.R.; Evans, J.R.; Zhao, S.; Poliakov, A.; Cao, X.; Dhanasekaran, S.M.; Wu, Y-M.; Robinson, D.R.; Beer, D.G.; Feng, F.Y.; Iyer, H.K.; Chinnaiyan, A.M. The landscape of long noncoding RNAs in the human transcriptome. Nat. Genet., 2015, 47(3), 199-208.
[http://dx.doi.org/10.1038/ng.3192]
[8]
Xiao, N.; Hu, Y.; Juan, L. Comprehensive analysis of differentially expressed lncrnas in gastric cancer. Front. Cell Dev. Biol., 2020, 8, 557-567.
[http://dx.doi.org/10.3389/fcell.2020.00557]
[9]
Zhao, J.; Wu, J.; Qin, Y.; Zhang, W.; Huang, G.; Qin, L. LncRNA PVT1 induces aggressive vasculogenic mimicry formation through activating the STAT3/Slug axis and epithelial-to-mesenchymal transition in gastric cancer. Cell Oncol. (Dordr.), 2020, 43(5), 863-876.
[http://dx.doi.org/10.1007/s13402-020-00532-6]
[10]
Zhao, J.; Du, P.; Cui, P.; Qin, Y.; Hu, C.; Wu, J.; Zhou, Z.; Zhang, W.; Qin, L.; Huang, G. LncRNA PVT1 promotes angiogenesis via activating the STAT3/VEGFA axis in gastric cancer. Oncogene, 2018, 37(30), 4094-4109.
[http://dx.doi.org/10.1038/s41388-018-0250-z]
[11]
Li, Y.; Song, S.; Pizzi, M.P.; Han, G.; Scott, A.W.; Jin, J.; Xu, Y.; Wang, Y.; Huo, L.; Ma, L.; Vellano, C.; Luo, X.; MacLeod, R.; Wang, L.; Wang, Z.; Ajani, J.A. LncRNA PVT1 is a poor prognosticator and can be targeted by pvt1 antisense oligos in gastric adenocarcinoma. Cancers (Basel), 2020, 12(10), 2995-3004.
[http://dx.doi.org/10.3390/cancers12102995]
[12]
Song, H.; Sun, W.; Ye, G.; Ding, X.; Liu, Z.; Zhang, S.; Xia, T.; Xiao, B.; Xi, Y.; Guo, J. Long non-coding RNA expression profile in human gastric cancer and its clinical significances. J. Transl. Med., 2013, 11, 225-234.
[http://dx.doi.org/10.1186/1479-5876-11-225]
[13]
Shuai, Y.; Ma, Z.; Liu, W.; Yu, T.; Yan, C.; Jiang, H.; Tian, S.; Xu, T.; Shu, Y. TEAD4 modulated LncRNA MNX1-AS1 contributes to gastric cancer progression partly through suppressing BTG2 and activating BCL2. Mol. Cancer, 2020, 19(1), 6-25.
[http://dx.doi.org/10.1186/s12943-019-1104-1]
[14]
Zhang, E.; He, X.; Zhang, C.; Su, J.; Lu, X.; Si, X.; Chen, J.; Yin, D.; Han, L.; De, W. A novel long noncoding RNA HOXC-AS3 mediates tumorigenesis of gastric cancer by binding to YBX1. Genome Biol., 2018, 19(1), 154-168.
[http://dx.doi.org/10.1186/s13059-018-1523-0]
[15]
Liu, X.H.; Sun, M.; Nie, F.Q.; Ge, Y.B.; Zhang, E.B.; Yin, D.D.; Kong, R.; Xia, R.; Lu, K.H.; Li, J.H.; De, W.; Wang, K.M.; Wang, Z.X. Lnc RNA HOTAIR functions as a competing endogenous RNA to regulate HER2 expression by sponging miR-331-3p in gastric cancer. Mol. Cancer, 2014, 13, 92-117.
[http://dx.doi.org/10.1186/1476-4598-13-92]
[16]
Zhang, G.; Li, S.; Lu, J.; Ge, Y.; Wang, Q.; Ma, G.; Zhao, Q.; Wu, D.; Gong, W.; Du, M.; Chu, H.; Wang, M.; Zhang, A.; Zhang, Z. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol. Cancer, 2018, 17(1), 87-97.
[http://dx.doi.org/10.1186/s12943-018-0829-6]
[17]
Zhuo, W.; Liu, Y.; Li, S.; Guo, D.; Sun, Q.; Jin, J.; Rao, X.; Li, M.; Sun, M.; Jiang, M.; Xu, Y.; Teng, L.; Jin, Y.; Si, J.; Liu, W.; Kang, Y.; Zhou, T. Long noncoding rna gman, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of ephrin a1 by competitively binding gman-as. Gastroenterology, 2019, 156(3), 676-691.e11.
[http://dx.doi.org/10.1053/j.gastro.2018.10.054]
[18]
Tian, Y.; Ma, R.; Sun, Y.; Liu, H.; Zhang, H.; Sun, Y.; Liu, L.; Li, Y.; Song, L.; Gao, P. SP1-activated long noncoding RNA lncRNA GCMA functions as a competing endogenous RNA to promote tumor metastasis by sponging miR-124 and miR-34a in gastric cancer. Oncogene, 2020, 39(25), 4854-4868.
[http://dx.doi.org/10.1038/s41388-020-1330-4]
[19]
Xuan, Y.; Wang, Y. Long non-coding RNA SNHG3 promotes progression of gastric cancer by regulating neighboring MED18 gene methylation. Cell Death Dis., 2019, 10(10), 694-705.
[http://dx.doi.org/10.1038/s41419-019-1940-3]
[20]
Chen, J.F.; Wu, P.; Xia, R.; Yang, J.; Huo, X.Y.; Gu, D.Y.; Tang, C.J.; De, W.; Yang, F. STAT3-induced lncRNA HAGLROS overexpression contributes to the malignant progression of gastric cancer cells via mTOR signal-mediated inhibition of autophagy. Mol. Cancer, 2018, 17(1), 6-21.
[http://dx.doi.org/10.1186/s12943-017-0756-y]
[21]
Wu, H.; Liu, B.; Chen, Z.; Li, G.; Zhang, Z. MSC-induced lncRNA HCP5 drove fatty acid oxidation through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of gastric cancer. Cell Death Dis., 2020, 11(4), 233-249.
[http://dx.doi.org/10.1038/s41419-020-2426-z]
[22]
Xiao, Y.; Pan, J.; Geng, Q.; Wang, G. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability. FEBS Open Bio, 2019, 9(7), 1212-1222.
[http://dx.doi.org/10.1002/2211-5463.12649]
[23]
H.; YingCong, Y.; Sunwu, Y.; Keqin, L.; Xiaochun, T.; Senrui, C.; Ende, C.; XiZhou, L.; Yanfan, C. Long noncoding RNA MALAT1 regulates autophagy associated chemoresistance via miR-23b-3p sequestration in gastric cancer. Mol. Cancer, 2017, 16(1), 174-185.
[http://dx.doi.org/10.1186/s12943-017-0743-3]
[24]
He, W.; Liang, B.; Wang, C.; Li, S.; Zhao, Y.; Huang, Q.; Liu, Z.; Yao, Z.; Wu, Q.; Liao, W.; Zhang, S.; Liu, Y.; Xiang, Y.; Liu, J.; Shi, M. MSC-regulated lncRNA MACC1-AS1 promotes stemness and chemoresistance through fatty acid oxidation in gastric cancer. Oncogene, 2019, 38(23), 4637-4654.
[http://dx.doi.org/10.1038/s41388-019-0747-0]
[25]
Wang, K.C.; Yang, Y.W.; Liu, B.; Sanyal, A.; Corces-Zimmerman, R.; Chen, Y.; Lajoie, B.R.; Protacio, A.; Flynn, R.A.; Gupta, R.A.; Wysocka, J.; Lei, M.; Dekker, J.; Helms, J.A.; Chang, H.Y. A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression. Nature, 2011, 472(7341), 120-124.
[http://dx.doi.org/10.1038/nature09819]
[26]
Tsai, M.C.; Manor, O.; Wan, Y.; Mosammaparast, N.; Wang, J.K.; Lan, F.; Shi, Y.; Segal, E.; Chang, H.Y. Long noncoding RNA as modular scaffold of histone modification complexes. Science, 2010, 329(5992), 689-693.
[http://dx.doi.org/10.1126/science.1192002]
[27]
Qi, F.; Liu, X.; Wu, H.; Yu, X.; Wei, C.; Huang, X.; Ji, G.; Nie, F.; Wang, K. Long noncoding AGAP2-AS1 is activated by SP1 and promotes cell proliferation and invasion in gastric cancer. J. Hematol. Oncol., 2017, 10(1), 48-61.
[http://dx.doi.org/10.1186/s13045-017-0420-4]
[28]
Sun, T.T.; He, J.; Liang, Q.; Ren, L.L.; Yan, T.T.; Yu, T.C.; Tang, J.Y.; Bao, Y.J.; Hu, Y.; Lin, Y.; Sun, D.; Chen, Y.X.; Hong, J.; Chen, H.; Zou, W.; Fang, J.Y. LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of wdr5 and kat2a complexes to specify the histone modification pattern. Cancer Discov., 2016, 6(7), 784-801.
[http://dx.doi.org/10.1158/2159-8290.CD-15-0921]
[29]
Ørom, U.A.; Derrien, T.; Beringer, M.; Gumireddy, K.; Gardini, A.; Bussotti, G.; Lai, F.; Zytnicki, M.; Notredame, C.; Huang, Q.; Guigo, R.; Shiekhattar, R. Long noncoding RNAs with enhancer-like function in human cells. Cell, 2010, 143(1), 46-58.
[http://dx.doi.org/10.1016/j.cell.2010.09.001]
[30]
Cesana, M.; Cacchiarelli, D.; Legnini, I.; Santini, T.; Sthandier, O.; Chinappi, M.; Tramontano, A.; Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell, 2011, 147(2), 358-369.
[http://dx.doi.org/10.1016/j.cell.2011.09.028]
[31]
Liu, H.T.; Ma, R.R.; Lv, B.B.; Zhang, H.; Shi, D.B.; Guo, X.Y.; Zhang, G.H.; Gao, P. LncRNA-HNF1A-AS1 functions as a competing endogenous RNA to activate PI3K/AKT signalling pathway by sponging miR-30b-3p in gastric cancer. Br. J. Cancer, 2020, 122(12), 1825-1836.
[http://dx.doi.org/10.1038/s41416-020-0836-4]
[32]
Han, T.; Jing, X.; Bao, J.; Zhao, L.; Zhang, A.; Miao, R.; Guo, H.; Zhou, B.; Zhang, S.; Sun, J.; Shi, J.H. pylori infection alters repair of DNA double-strand breaks via SNHG17. J. Clin. Invest., 2020, 130(7), 3901-3918.
[http://dx.doi.org/10.1172/JCI125581]
[33]
Hu, J.; Qian, Y.; Peng, L.; Ma, L.; Qiu, T.; Liu, Y.; Li, X.; Chen, X. Long noncoding rna egfr-as1 promotes cell proliferation by increasing egfr mrna stability in gastric cancer. Cell. Physiol. Biochem., 2018, 49(1), 322-334.
[http://dx.doi.org/10.1159/000492883]
[34]
Li, Q.; Zhang, N.; Jia, Z.; Le, X.; Dai, B.; Wei, D.; Huang, S.; Tan, D.; Xie, K. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression. Cancer Res., 2009, 69(8), 3501-3509.
[http://dx.doi.org/10.1158/0008-5472.CAN-08-3045]
[35]
Xu, M.D.; Wang, Y.; Weng, W.; Wei, P.; Qi, P.; Zhang, Q.; Tan, C.; Ni, S.J.; Dong, L.; Yang, Y.; Lin, W.; Xu, Q.; Huang, D.; Huang, Z.; Ma, Y.; Zhang, W.; Sheng, W.; Du, X. A positive feedback loop of lncrna-pvt1 and foxm1 facilitates gastric cancer growth and invasion. Clin. Cancer Res., 2017, 23(8), 2071-2080.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-0742]
[36]
Meng, N.; Chen, M.; Chen, D.; Chen, X.H.; Wang, J.Z.; Zhu, S.; He, Y.T.; Zhang, X.L.; Lu, R.X.; Yan, G.R. Small protein hidden in lncrna loc90024 promotes “cancerous” rna splicing and tumorigenesis. Adv. Sci. (Weinh.), 2020, 7(10)1903233
[http://dx.doi.org/10.1002/advs.201903233]
[37]
Hanahan, D.; Weinberg, R.A. Hallmarks of cancer: The next generation. Cell, 2011, 144(5), 646-674.
[http://dx.doi.org/10.1016/j.cell.2011.02.013]
[38]
Wang, Z.Q.; Cai, Q.; Hu, L.; He, C.Y.; Li, J.F.; Quan, Z.W.; Liu, B.Y.; Li, C.; Zhu, Z.G. Long noncoding RNA UCA1 induced by SP1 promotes cell proliferation via recruiting EZH2 and activating AKT pathway in gastric cancer. Cell Death Dis., 2017, 8(6)e2839
[http://dx.doi.org/10.1038/cddis.2017.143]
[39]
Lin, Z.; Zhou, Z.; Guo, H.; He, Y.; Pang, X.; Zhang, X.; Liu, Y.; Ao, X.; Li, P.; Wang, J. Long noncoding RNA gastric cancer-related lncRNA1 mediates gastric malignancy through miRNA-885-3p and cyclin-dependent kinase 4. Cell Death Dis., 2018, 9(6), 607-624.
[http://dx.doi.org/10.1038/s41419-018-0643-5]
[40]
Liu, Y.; Zhao, J.; Zhang, W.; Gan, J.; Hu, C.; Huang, G.; Zhang, Y. lncRNA GAS5 enhances G1 cell cycle arrest via binding to YBX1 to regulate p21 expression in stomach cancer. Sci. Rep., 2015, 5, 10159.
[http://dx.doi.org/10.1038/srep10159]
[41]
Liu, H.T.; Liu, S.; Liu, L.; Ma, R.R.; Gao, P. EGR1-mediated transcription of lncrna-hnf1a-as1 promotes cell-cycle progression in gastric cancer. Cancer Res., 2018, 78(20), 5877-5890.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-1011]
[42]
Zhang, G.; Xu, Y.; Wang, S.; Gong, Z.; Zou, C.; Zhang, H.; Ma, G.; Zhang, W.; Jiang, P. LncRNA SNHG17 promotes gastric cancer progression by epigenetically silencing of p15 and p57. J. Cell. Physiol., 2019, 234(4), 5163-5174.
[http://dx.doi.org/10.1002/jcp.27320]
[43]
Zhang, E.; He, X.; Yin, D.; Han, L.; Qiu, M.; Xu, T.; Xia, R.; Xu, L.; Yin, R.; De, W. Increased expression of long noncoding RNA TUG1 predicts a poor prognosis of gastric cancer and regulates cell proliferation by epigenetically silencing of p57. Cell Death Dis., 2016, 7e2109
[http://dx.doi.org/10.1038/cddis.2015.356]
[44]
Zhang, G.; Xu, Y.; Zou, C.; Tang, Y.; Lu, J.; Gong, Z.; Ma, G.; Zhang, W.; Jiang, P. Long noncoding RNA ARHGAP27P1 inhibits gastric cancer cell proliferation and cell cycle progression through epigenetically regulating p15 and p16. Aging (Albany NY), 2019, 11(20), 9090-9110.
[http://dx.doi.org/10.18632/aging.102377]
[45]
Zhang, Y.; Yuan, Z.; Jiang, Y.; Shen, R.; Gu, M.; Xu, W.; Gu, X. Inhibition of splicing factor 3b subunit 1 (sf3b1) reduced cell proliferation, induced apoptosis and resulted in cell cycle arrest by regulating homeobox a10 (hoxa10) splicing in ags and mkn28 human gastric cancer cells. Med. Sci. Monit., 2020, 26e919460
[http://dx.doi.org/10.12659/MSM.919460]
[46]
Guo, J.Q.; Li, S.J.; Guo, G.X. Long noncoding rna afap1-as1 promotes cell proliferation and apoptosis of gastric cancer cells via pten/p-akt pathway. Dig. Dis. Sci., 2017, 62(8), 2004-2010.
[http://dx.doi.org/10.1007/s10620-017-4584-0]
[47]
Singh, R.; Letai, A.; Sarosiek, K. Regulation of apoptosis in health and disease: The balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol., 2019, 20(3), 175-193.
[http://dx.doi.org/10.1038/s41580-018-0089-8]
[48]
Xu, G.; Zhang, Y.; Li, N.; Zhang, J.B.; Xu, R. LncRNA CCHE1 in the proliferation and apoptosis of gastric cancer cells. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(9), 2631-2637.
[49]
Liu, P.; Zhang, M.; Niu, Q.; Zhang, F.; Yang, Y.; Jiang, X. Knockdown of long non-coding RNA ANRIL inhibits tumorigenesis in human gastric cancer cells via microRNA-99a-mediated down-regulation of BMI1. Braz. J. Med. Biol. Res., 2018, 51(10)e6839
[http://dx.doi.org/10.1590/1414-431x20186839]
[50]
Lin, S.; Wang, H.; Yang, W.; Wang, A.; Geng, C. Silencing of long non-coding rna colon cancer-associated transcript 2 inhibits the growth and metastasis of gastric cancer through blocking mtor signaling. OncoTargets Ther., 2020, 13, 337-349.
[http://dx.doi.org/10.2147/OTT.S220302]
[51]
Liu, Q.; Xiao, Y.; Cai, P.; Li, J.; Li, D. Long noncoding RNA DINO (damage induced noncoding) represses the development of gastric cancer by modulating p21 and Bcl-2 Associated X Protein (Bax) expression. J. Cell. Biochem., 2019, 120(7), 11190-11195.
[http://dx.doi.org/10.1002/jcb.28394]
[52]
Pavlova, N.N.; Thompson, C.B. The emerging hallmarks of cancer metabolism. Cell Metab., 2016, 23(1), 27-47.
[http://dx.doi.org/10.1016/j.cmet.2015.12.006]
[53]
DeBerardinis, R.J.; Lum, J.J.; Hatzivassiliou, G.; Thompson, C.B. The biology of cancer: Metabolic reprogramming fuels cell growth and proliferation. Cell Metab., 2008, 7(1), 11-20.
[http://dx.doi.org/10.1016/j.cmet.2007.10.002]
[54]
Wu, Z.Z.; Chen, L.S.; Zhou, R.; Bin, J.P.; Liao, Y.L.; Liao, W.J. Metastasis-associated in colon cancer-1 in gastric cancer: Beyond metastasis. World J. Gastroenterol., 2016, 22(29), 6629-6637.
[http://dx.doi.org/10.3748/wjg.v22.i29.6629]
[55]
Sun, K.; Hu, P.; Xu, F. LINC00152/miR-139-5p regulates gastric cancer cell aerobic glycolysis by targeting PRKAA1. Biomed. Pharmacother., 2018, 97, 1296-1302.
[http://dx.doi.org/10.1016/j.biopha.2017.11.015]
[56]
Liu, L.; Zhao, X.; Zou, H.; Bai, R.; Yang, K.; Tian, Z. Hypoxia promotes gastric cancer malignancy partly through the hif-1α dependent transcriptional activation of the long non-coding rna gaplinc. Front. Physiol., 2016, 7, 420-430.
[http://dx.doi.org/10.3389/fphys.2016.00420]
[57]
Zhu, L.; Jia, R.; Zhang, J.; Li, X.; Qin, C.; Zhao, Q. Quantitative proteomics analysis revealed the potential role of lncrna ftx in promoting gastric cancer progression. Proteomics Clin. Appl., 2020, 14(1)e1900053
[http://dx.doi.org/10.1002/prca.201900053]
[58]
Yu, X.; Zheng, H.; Chan, M.T.; Wu, W.K. HULC: An oncogenic long non-coding RNA in human cancer. J. Cell. Mol. Med., 2017, 21(2), 410-417.
[http://dx.doi.org/10.1111/jcmm.12956]
[59]
Foroughi, K.; Amini, M.; Atashi, A.; Mahmoodzadeh, H.; Hamann, U.; Manoochehri, M. Tissue-specific down-regulation of the long non-coding rnas pcat18 and linc01133 in gastric cancer development. Int. J. Mol. Sci., 2018, 19(12), 3881-3894.
[http://dx.doi.org/10.3390/ijms19123881]
[60]
Mo, X.; Wu, Y.; Chen, L.; Zhai, M.; Gao, Z.; Hu, K.; Guo, J. Global expression profiling of metabolic pathway-related lncRNAs in human gastric cancer and the identification of RP11-555H23.1 as a new diagnostic biomarker. J. Clin. Lab. Anal., 2019, 33(2)e22692
[http://dx.doi.org/10.1002/jcla.22692]
[61]
Mo, X.; Li, T.; Xie, Y.; Zhu, L.; Xiao, B.; Liao, Q.; Guo, J. Identification and functional annotation of metabolism-associated lncRNAs and their related protein-coding genes in gastric cancer. Mol. Genet. Genomic Med., 2018, 6(5), 728-738.
[http://dx.doi.org/10.1002/mgg3.427]
[62]
Sokolova, O.; Naumann, M. Crosstalk between dna damage and inflammation in the multiple steps of gastric carcinogenesis. Curr. Top. Microbiol. Immunol., 2019, 421, 107-137.
[http://dx.doi.org/10.1007/978-3-030-15138-6_5]
[63]
O’Reilly, L.A.; Putoczki, T.L.; Mielke, L.A.; Low, J.T.; Lin, A.; Preaudet, A.; Herold, M.J.; Yaprianto, K.; Tai, L.; Kueh, A.; Pacini, G.; Ferrero, R.L.; Gugasyan, R.; Hu, Y.; Christie, M.; Wilcox, S.; Grumont, R.; Griffin, M.D.W.; O’Connor, L.; Smyth, G.K.; Ernst, M.; Waring, P.; Gerondakis, S.; Strasser, A. Loss of nf-κb1 causes gastric cancer with aberrant inflammation and expression of immune checkpoint regulators in a stat-1-dependent manner. Immunity, 2018, 48(3), 570-583.e8.
[http://dx.doi.org/10.1016/j.immuni.2018.03.003]
[64]
Ma, H.Y.; Liu, X.Z.; Liang, C.M. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J. Gastroenterol., 2016, 22(29), 6619-6628.
[http://dx.doi.org/10.3748/wjg.v22.i29.6619]
[65]
Taniguchi, K.; Karin, M. IL-6 and related cytokines as the critical lynchpins between inflammation and cancer. Semin. Immunol., 2014, 26(1), 54-74.
[http://dx.doi.org/10.1016/j.smim.2014.01.001]
[66]
Li, T.; Guo, H.; Zhao, X.; Jin, J.; Zhang, L.; Li, H.; Lu, Y.; Nie, Y.; Wu, K.; Shi, Y.; Fan, D. Gastric cancer cell proliferation and survival is enabled by a cyclophilin b/stat3/mir-520d-5p signaling feedback loop. Cancer Res., 2017, 77(5), 1227-1240.
[http://dx.doi.org/10.1158/0008-5472.CAN-16-0357]
[67]
Shen, W.; Yuan, Y.; Zhao, M.; Li, J.; Xu, J.; Lou, G.; Zheng, J.; Bu, S.; Guo, J.; Xi, Y. Novel long non-coding RNA GACAT3 promotes gastric cancer cell proliferation through the IL-6/STAT3 signaling pathway. Tumour Biol., 2016, 37(11), 14895-14902.
[http://dx.doi.org/10.1007/s13277-016-5372-8]
[68]
Zhang, Y.; Yan, J.; Li, C.; Wang, X.; Dong, Y.; Shen, X.; Zhang, X. LncRNA H19 induced by helicobacter pylori infection promotes gastric cancer cell growth via enhancing NF-κB-induced inflammation. J. Inflamm. (Lond.), 2019, 16, 23-30.
[http://dx.doi.org/10.1186/s12950-019-0226-y]
[69]
Zhang, Z.; Fan, B.; Liu, F.; Song, N.; Peng, Y.; Ma, W.; Ma, R.; Dong, T.; Liu, S. HOX transcript antisense RNA is elevated in gastric carcinogenesis and regulated by the NF-κB pathway. J. Cell. Biochem., 2019, 120(6), 10548-10555.
[http://dx.doi.org/10.1002/jcb.28340]
[70]
Shevach, E.M. Foxp3+ t regulatory cells: Still many unanswered questions-a perspective after 20 years of study. Front. Immunol., 2018, 9, 1048-1056.
[http://dx.doi.org/10.3389/fimmu.2018.01048]
[71]
Xiong, G.; Yang, L.; Chen, Y.; Fan, Z. Linc-POU3F3 promotes cell proliferation in gastric cancer via increasing T-reg distribution. Am. J. Transl. Res., 2015, 7(11), 2262-2269.
[72]
Jiang, X.; Wang, J.; Deng, X.; Xiong, F.; Ge, J.; Xiang, B.; Wu, X.; Ma, J.; Zhou, M.; Li, X.; Li, Y.; Li, G.; Xiong, W.; Guo, C.; Zeng, Z. Role of the tumor microenvironment in PD-L1/PD-1-mediated tumor immune escape. Mol. Cancer, 2019, 18(1), 10-26.
[http://dx.doi.org/10.1186/s12943-018-0928-4]
[73]
Huang, D.; Chen, J.; Yang, L.; Ouyang, Q.; Li, J.; Lao, L.; Zhao, J.; Liu, J.; Lu, Y.; Xing, Y.; Chen, F.; Su, F.; Yao, H.; Liu, Q.; Su, S.; Song, E. NKILA lncRNA promotes tumor immune evasion by sensitizing T cells to activation-induced cell death. Nat. Immunol., 2018, 19(10), 1112-1125.
[http://dx.doi.org/10.1038/s41590-018-0207-y]
[74]
Zhou, J.; Huang, H.; Tong, S.; Huo, R. Overexpression of long non-coding RNA cancer susceptibility 2 inhibits cell invasion and angiogenesis in gastric cancer. Mol. Med. Rep., 2017, 16(4), 5235-5240.
[http://dx.doi.org/10.3892/mmr.2017.7233]
[75]
Yan, J.; Huang, W.; Huang, X.; Xiang, W.; Ye, C.; Liu, J. A negative feedback loop between long noncoding RNA NBAT1 and Sox9 inhibits the malignant progression of gastric cancer cells. Biosci. Rep., 2018, 38(6)BSR20180882
[http://dx.doi.org/10.1042/BSR20180882]
[76]
Zhang, J.X.; Chen, Z.H.; Chen, D.L.; Tian, X.P.; Wang, C.Y.; Zhou, Z.W.; Gao, Y.; Xu, Y.; Chen, C.; Zheng, Z.S.; Weng, H.W.; Ye, S.; Kuang, M.; Xie, D.; Peng, S. LINC01410-miR-532-NCF2-NF-kB feedback loop promotes gastric cancer angiogenesis and metastasis. Oncogene, 2018, 37(20), 2660-2675.
[http://dx.doi.org/10.1038/s41388-018-0162-y]
[77]
Li, Y.; Wu, Z.; Yuan, J.; Sun, L.; Lin, L.; Huang, N.; Bin, J.; Liao, Y.; Liao, W. Long non-coding RNA MALAT1 promotes gastric cancer tumorigenicity and metastasis by regulating vasculogenic mimicry and angiogenesis. Cancer Lett., 2017, 395, 31-44.
[http://dx.doi.org/10.1016/j.canlet.2017.02.035]
[78]
Mittal, V. Epithelial mesenchymal transition in tumor metastasis. Annu. Rev. Pathol., 2018, 13, 395-412.
[http://dx.doi.org/10.1146/annurev-pathol-020117-043854]
[79]
Aiello, N.M.; Kang, Y. Context-dependent EMT programs in cancer metastasis. J. Exp. Med., 2019, 216(5), 1016-1026.
[http://dx.doi.org/10.1084/jem.20181827]
[80]
Dong, Y.; Wang, Z.G.; Chi, T.S. Long noncoding RNA Lnc01614 promotes the occurrence and development of gastric cancer by activating EMT pathway. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(5), 1307-1314.
[81]
Chen, Q.F.; Hu, C.F.; Sun, K.; Lang, Y.P. LncRNA NR027113 promotes malignant progression of gastric carcinoma via EMT signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(11), 4746-4755.
[82]
Zhang, W.; Zhai, Y.; Wang, W.; Cao, M.; Ma, C. Enhanced expression of lncRNA TP73-AS1 predicts unfavorable prognosis for gastric cancer and promotes cell migration and invasion by induction of EMT. Gene, 2018, 678, 377-383.
[http://dx.doi.org/10.1016/j.gene.2018.08.055]
[83]
Fang, H.; Liu, H.M.; Wu, W.H.; Liu, H.; Pan, Y.; Li, W.J. Upregulation of long noncoding RNA CCAT1-L promotes epithelial-mesenchymal transition in gastric adenocarcinoma. OncoTargets Ther., 2018, 11, 5647-5655.
[http://dx.doi.org/10.2147/OTT.S170553]
[84]
Zhou, C.; Zhao, J.; Liu, J.; Wei, S.; Xia, Y.; Xia, W.; Bi, Y.; Yan, Z.; Huang, H. LncRNA SNHG16 promotes epithelial- mesenchymal transition via down-regulation of DKK3 in gastric cancer. Cancer Biomark., 2019, 26(4), 393-401.
[http://dx.doi.org/10.3233/CBM-190497]
[85]
Liang, Y.; Zhang, C.D.; Zhang, C.; Dai, D.Q. DLX6-AS1/miR-204-5p/OCT1 positive feedback loop promotes tumor progression and epithelial-mesenchymal transition in gastric cancer. Gastric Cancer, 2020, 23(2), 212-227.
[http://dx.doi.org/10.1007/s10120-019-01002-1]
[86]
Saito, T.; Kurashige, J.; Nambara, S.; Komatsu, H.; Hirata, H.; Ueda, M.; Sakimura, S.; Uchi, R.; Takano, Y.; Shinden, Y.; Iguchi, T.; Eguchi, H.; Ehata, S.; Murakami, K.; Sugimachi, K.; Mimori, K. A long non-coding rna activated by transforming growth factor-β is an independent prognostic marker of gastric cancer. Ann. Surg. Oncol., 2015, 22(Suppl. 3), S915-S922.
[http://dx.doi.org/10.1245/s10434-015-4554-8]
[87]
Wu, Q.; Xiang, S.; Ma, J.; Hui, P.; Wang, T.; Meng, W.; Shi, M.; Wang, Y. Long non-coding RNA CASC15 regulates gastric cancer cell proliferation, migration and epithelial mesenchymal transition by targeting CDKN1A and ZEB1. Mol. Oncol., 2018, 12(6), 799-813.
[http://dx.doi.org/10.1002/1878-0261.12187]
[88]
Li, Y.; Wen, X.; Wang, L.; Sun, X.; Ma, H.; Fu, Z.; Li, L. LncRNA ZEB1-AS1 predicts unfavorable prognosis in gastric cancer. Surg. Oncol., 2017, 26(4), 527-534.
[http://dx.doi.org/10.1016/j.suronc.2017.09.008]
[89]
Li, D.; Wang, J.; Zhang, M.; Hu, X.; She, J.; Qiu, X.; Zhang, X.; Xu, L.; Liu, Y.; Qin, S. LncRNA MAGI2-AS3 is regulated by brd4 and promotes gastric cancer progression via maintaining zeb1 overexpression by sponging mir-141/200a. Mol. Ther. Nucleic Acids, 2020, 19, 109-123.
[http://dx.doi.org/10.1016/j.omtn.2019.11.003]
[90]
Cano, A.; Pérez-Moreno, M.A.; Rodrigo, I.; Locascio, A.; Blanco, M.J.; del Barrio, M.G.; Portillo, F.; Nieto, M.A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat. Cell Biol., 2000, 2(2), 76-83.
[http://dx.doi.org/10.1038/35000025]
[91]
Zhang, Y.; Yuan, Y.; Zhang, Y.; Cheng, L.; Zhou, X.; Chen, K. SNHG7 accelerates cell migration and invasion through regulating miR-34a-Snail-EMT axis in gastric cancer. Cell Cycle, 2020, 19(1), 142-152.
[http://dx.doi.org/10.1080/15384101.2019.1699753]
[92]
Zuo, Z.K.; Gong, Y.; Chen, X.H.; Ye, F.; Yin, Z.M.; Gong, Q.N.; Huang, J.S. TGFβ1-induced lncrna uca1 upregulation promotes gastric cancer invasion and migration. DNA Cell Biol., 2017, 36(2), 159-167.
[http://dx.doi.org/10.1089/dna.2016.3553]
[93]
Xu, G.; Meng, L.; Yuan, D.; Li, K.; Zhang, Y.; Dang, C.; Zhu, K. MEG3/miR-21 axis affects cell mobility by suppressing epithelial-mesenchymal transition in gastric cancer. Oncol. Rep., 2018, 40(1), 39-48.
[http://dx.doi.org/10.3892/or.2018.6424]
[94]
Eppert, K.; Takenaka, K.; Lechman, E.R.; Waldron, L.; Nilsson, B.; van Galen, P.; Metzeler, K.H.; Poeppl, A.; Ling, V.; Beyene, J.; Canty, A.J.; Danska, J.S.; Bohlander, S.K.; Buske, C.; Minden, M.D.; Golub, T.R.; Jurisica, I.; Ebert, B.L.; Dick, J.E. Stem cell gene expression programs influence clinical outcome in human leukemia. Nat. Med., 2011, 17(9), 1086-1093.
[http://dx.doi.org/10.1038/nm.2415]
[95]
Kreso, A.; Dick, J.E. Evolution of the cancer stem cell model. Cell Stem Cell, 2014, 14(3), 275-291.
[http://dx.doi.org/10.1016/j.stem.2014.02.006]
[96]
Song, H.; Xu, Y.; Shi, L.; Xu, T.; Fan, R.; Cao, M.; Xu, W.; Song, J. LncRNA THOR increases the stemness of gastric cancer cells via enhancing SOX9 mRNA stability. Biomed. Pharmacother., 2018, 108, 338-346.
[http://dx.doi.org/10.1016/j.biopha.2018.09.057]
[97]
Li, H.J.; Reinhardt, F.; Herschman, H.R.; Weinberg, R.A. Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov., 2012, 2(9), 840-855.
[http://dx.doi.org/10.1158/2159-8290.CD-12-0101]
[98]
Das, M. Neoadjuvant chemotherapy: Survival benefit in gastric cancer. Lancet Oncol., 2017, 18(6)e307
[http://dx.doi.org/10.1016/S1470-2045(17)30321-2]
[99]
Cheong, J.H.; Yang, H.K.; Kim, H.; Kim, W.H.; Kim, Y.W.; Kook, M.C.; Park, Y.K.; Kim, H.H.; Lee, H.S.; Lee, K.H.; Gu, M.J.; Kim, H.Y.; Lee, J.; Choi, S.H.; Hong, S.; Kim, J.W.; Choi, Y.Y.; Hyung, W.J.; Jang, E.; Kim, H.; Huh, Y.M.; Noh, S.H. Predictive test for chemotherapy response in resectable gastric cancer: A multi-cohort, retrospective analysis. Lancet Oncol., 2018, 19(5), 629-638.
[http://dx.doi.org/10.1016/S1470-2045(18)30108-6]
[100]
Zhou, Z.; Lin, Z.; He, Y.; Pang, X.; Wang, Y.; Ponnusamy, M.; Ao, X.; Shan, P.; Tariq, M.A.; Li, P.; Wang, J. The long noncoding rna d63785 regulates chemotherapy sensitivity in human gastric cancer by targeting mir-422a. Mol. Ther. Nucleic Acids, 2018, 12, 405-419.
[http://dx.doi.org/10.1016/j.omtn.2018.05.024]
[101]
Zhang, Y.; Li, Q.; Yu, S.; Zhu, C.; Zhang, Z.; Cao, H.; Xu, J. Long non-coding RNA FAM84B-AS promotes resistance of gastric cancer to platinum drugs through inhibition of FAM84B expression. Biochem. Biophys. Res. Commun., 2019, 509(3), 753-762.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.177]
[102]
Zhang, J.; Zhao, B.; Chen, X.; Wang, Z.; Xu, H.; Huang, B. Silence of long noncoding rna neat1 inhibits malignant biological behaviors and chemotherapy resistance in gastric cancer. Pathol. Oncol. Res., 2018, 24(1), 109-113.
[http://dx.doi.org/10.1007/s12253-017-0233-3]
[103]
Cheng, C.; Qin, Y.; Zhi, Q.; Wang, J.; Qin, C. 2018.
[104]
Zhang, Y.; Song, X.; Wang, X.; Hu, J.; Jiang, L. Silencing of lncrna hulc enhances chemotherapy induced apoptosis in human gastric cancer. J. Med. Biochem., 2016, 35(2), 137-143.
[http://dx.doi.org/10.1515/jomb-2015-0016]
[105]
Xin, L.; Zhou, Q.; Yuan, Y.W.; Zhou, L.Q.; Liu, L.; Li, S.H.; Liu, C. METase/lncRNA HULC/FoxM1 reduced cisplatin resistance in gastric cancer by suppressing autophagy. J. Cancer Res. Clin. Oncol., 2019, 145(10), 2507-2517.
[http://dx.doi.org/10.1007/s00432-019-03015-w]
[106]
Xi, Z.; Si, J.; Nan, J. LncRNA MALAT1 potentiates autophagy-associated cisplatin resistance by regulating the microRNA-30b/autophagy-related gene 5 axis in gastric cancer. Int. J. Oncol., 2019, 54(1), 239-248.
[107]
Wang, L.; Chunyan, Q.; Zhou, Y.; He, Q.; Ma, Y.; Ga, Y.; Wang, X. BCAR4 increase cisplatin resistance and predicted poor survival in gastric cancer patients. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(18), 4064-4070.
[108]
Hang, Q.; Sun, R.; Jiang, C.; Li, Y. Notch 1 promotes cisplatin-resistant gastric cancer formation by upregulating lncRNA AK022798 expression. Anticancer Drugs, 2015, 26(6), 632-640.
[http://dx.doi.org/10.1097/CAD.0000000000000227]
[109]
Wang, J.; Lv, B.; Su, Y.; Wang, X.; Bu, J.; Yao, L. Exosome-mediated transfer of lncrna hottip promotes cisplatin resistance in gastric cancer cells by regulating hmga1/mir-218 axis. OncoTargets Ther., 2019, 12, 11325-11338.
[http://dx.doi.org/10.2147/OTT.S231846]
[110]
Guo, Y.; Yue, P.; Wang, Y.; Chen, G.; Li, Y. PCAT-1 contributes to cisplatin resistance in gastric cancer through miR-128/ZEB1 axis. Biomed. Pharmacother., 2019, 118109255
[http://dx.doi.org/10.1016/j.biopha.2019.109255]
[111]
Li, H.; Ma, X.; Yang, D.; Suo, Z.; Dai, R.; Liu, C. PCAT-1 contributes to cisplatin resistance in gastric cancer through epigenetically silencing PTEN via recruiting EZH2. J. Cell. Biochem., 2020, 121(2), 1353-1361.
[http://dx.doi.org/10.1002/jcb.29370]
[112]
Ye, Y.; Yang, S.; Han, Y.; Sun, J.; Xv, L.; Wu, L.; Ming, L. HOXD-AS1 confers cisplatin resistance in gastric cancer through epigenetically silencing PDCD4 via recruiting EZH2. Open Biol., 2019, 9(9), 190068-190077.
[http://dx.doi.org/10.1098/rsob.190068]
[113]
Wang, Z.; Wang, Q.; Xu, G.; Meng, N.; Huang, X.; Jiang, Z.; Chen, C.; Zhang, Y.; Chen, J.; Li, A.; Li, N.; Zou, X.; Zhou, J.; Ding, Q.; Wang, S. The long noncoding RNA CRAL reverses cisplatin resistance via the miR-505/CYLD/AKT axis in human gastric cancer cells. RNA Biol., 2020, 17(11), 1576-1589.
[http://dx.doi.org/10.1080/15476286.2019.1709296]
[114]
Li, Y.; Lv, S.; Ning, H.; Li, K.; Zhou, X.; Xv, H.; Wen, H. Down-regulation of CASC2 contributes to cisplatin resistance in gastric cancer by sponging miR-19a. Biomed. Pharmacother., 2018, 108, 1775-1782.
[http://dx.doi.org/10.1016/j.biopha.2018.09.181]
[115]
Wu, X.; Zheng, Y.; Han, B.; Dong, X. Long noncoding RNA BLACAT1 modulates ABCB1 to promote oxaliplatin resistance of gastric cancer via sponging miR-361. Biomed. Pharmacother., 2018, 99, 832-838.
[http://dx.doi.org/10.1016/j.biopha.2018.01.130]
[116]
Zhang, N.; Wang, A.Y.; Wang, X.K.; Sun, X.M.; Xue, H.Z. GAS5 is downregulated in gastric cancer cells by promoter hypermethylation and regulates adriamycin sensitivity. Eur. Rev. Med. Pharmacol. Sci., 2016, 20(15), 3199-3205.
[117]
Szakács, G.; Paterson, J.K.; Ludwig, J.A.; Booth-Genthe, C.; Gottesman, M.M. Targeting multidrug resistance in cancer. Nat. Rev. Drug Discov., 2006, 5(3), 219-234.
[http://dx.doi.org/10.1038/nrd1984]
[118]
Wang, Y.; Zhang, D.; Wu, K.; Zhao, Q.; Nie, Y.; Fan, D. Long noncoding RNA MRUL promotes ABCB1 expression in multidrug-resistant gastric cancer cell sublines. Mol. Cell. Biol., 2014, 34(17), 3182-3193.
[http://dx.doi.org/10.1128/MCB.01580-13]
[119]
Wang, S.; Liu, F.; Deng, J.; Cai, X.; Han, J.; Liu, Q. Long noncoding rna ror regulates proliferation, invasion, and stemness of gastric cancer stem cell. Cell. Reprogram., 2016, 18(5), 319-326.
[http://dx.doi.org/10.1089/cell.2016.0001]
[120]
Wang, S.; Chen, W.; Yu, H.; Song, Z.; Li, Q.; Shen, X.; Wu, Y.; Zhu, L.; Ma, Q.; Xing, D. lncRNA ror promotes gastric cancer drug resistance. Cancer Contr., 2020, 27(1)1073274820904694
[http://dx.doi.org/10.1177/1073274820904694]
[121]
Xu, Y.D.; Shang, J.; Li, M.; Zhang, Y.Y. LncRNA DANCR accelerates the development of multidrug resistance of gastric cancer. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(7), 2794-2802.
[122]
Lan, W.G.; Xu, D.H.; Xu, C.; Ding, C.L.; Ning, F.L.; Zhou, Y.L.; Ma, L.B.; Liu, C.M.; Han, X. Silencing of long non-coding RNA ANRIL inhibits the development of multidrug resistance in gastric cancer cells. Oncol. Rep., 2016, 36(1), 263-270.
[http://dx.doi.org/10.3892/or.2016.4771]
[123]
Ding, J.; Li, D.; Gong, M.; Wang, J.; Huang, X.; Wu, T.; Wang, C. Expression and clinical significance of the long non-coding RNA PVT1 in human gastric cancer. OncoTargets Ther., 2014, 7, 1625-1630.
[http://dx.doi.org/10.2147/OTT.S68854]
[124]
Du, P.; Hu, C.; Qin, Y.; Zhao, J.; Patel, R.; Fu, Y.; Zhu, M.; Zhang, W.; Huang, G. LncRNA PVT1 mediates antiapoptosis and 5-fluorouracil resistance via increasing bcl2 expression in gastric cancer. J. Oncol., 2019, 20199325407
[http://dx.doi.org/10.1155/2019/9325407]
[125]
Zhang, X.W.; Bu, P.; Liu, L.; Zhang, X.Z.; Li, J. Overexpression of long non-coding RNA PVT1 in gastric cancer cells promotes the development of multidrug resistance. Biochem. Biophys. Res. Commun., 2015, 462(3), 227-232.
[http://dx.doi.org/10.1016/j.bbrc.2015.04.121]
[126]
Shang, C.; Guo, Y.; Zhang, J.; Huang, B. Silence of long noncoding RNA UCA1 inhibits malignant proliferation and chemotherapy resistance to adriamycin in gastric cancer. Cancer Chemother. Pharmacol., 2016, 77(5), 1061-1067.
[http://dx.doi.org/10.1007/s00280-016-3029-3]
[127]
Fang, Q.; Chen, X.; Zhi, X. Long non-coding rna (lncrna) urothelial carcinoma associated 1 (uca1) increases multi-drug resistance of gastric cancer via downregulating mir-27b. Med. Sci. Monit., 2016, 22, 3506-3513.
[http://dx.doi.org/10.12659/MSM.900688]
[128]
Kaise, M.; Ohkura, Y.; Iizuka, T.; Kimura, R.; Nomura, K.; Kuribayashi, Y.; Yamada, A.; Yamashita, S.; Furuhata, T.; Kikuchi, D.; Ogawa, O.; Matsui, A.; Mitani, T.; Hoteya, S. Endocytoscopy is a promising modality with high diagnostic accuracy for gastric cancer. Endoscopy, 2015, 47(1), 19-25.
[129]
Cabili, M.N.; Trapnell, C.; Goff, L.; Koziol, M.; Tazon-Vega, B.; Regev, A.; Rinn, J.L. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev., 2011, 25(18), 1915-1927.
[http://dx.doi.org/10.1101/gad.17446611]
[130]
Ravasi, T.; Suzuki, H.; Pang, K.C.; Katayama, S.; Furuno, M.; Okunishi, R.; Fukuda, S.; Ru, K.; Frith, M.C.; Gongora, M.M.; Grimmond, S.M.; Hume, D.A.; Hayashizaki, Y.; Mattick, J.S. Experimental validation of the regulated expression of large numbers of non-coding RNAs from the mouse genome. Genome Res., 2006, 16(1), 11-19.
[http://dx.doi.org/10.1101/gr.4200206]
[131]
Cai, C.; Zhang, H.; Zhu, Y.; Zheng, P.; Xu, Y.; Sun, J.; Zhang, M.; Lan, T.; Gu, B.; Li, S.; Ma, P. Serum exosomal long noncoding rna pcsk2-2:1 as a potential novel diagnostic biomarker for gastric cancer. OncoTargets Ther., 2019, 12, 10035-10041.
[http://dx.doi.org/10.2147/OTT.S229033]
[132]
Guo, X.; Lv, X.; Ru, Y.; Zhou, F.; Wang, N.; Xi, H.; Zhang, K.; Li, J.; Chang, R.; Xie, T.; Wang, X.; Li, B.; Chen, Y.; Yang, Y.; Chen, L.; Chen, L. Circulating exosomal gastric cancer-associated long noncoding rna1 as a biomarker for early detection and monitoring progression of gastric cancer: A multiphase study. JAMA Surg., 2020, 155(7), 572-579.
[http://dx.doi.org/10.1001/jamasurg.2020.1133]
[133]
Lin, L.Y.; Yang, L.; Zeng, Q.; Wang, L.; Chen, M.L.; Zhao, Z.H.; Ye, G.D.; Luo, Q.C.; Lv, P.Y.; Guo, Q.W.; Li, B.A.; Cai, J.C.; Cai, W.Y. Tumor-originated exosomal lncUEGC1 as a circulating biomarker for early-stage gastric cancer. Mol. Cancer, 2018, 17(1), 84-89.
[http://dx.doi.org/10.1186/s12943-018-0834-9]
[134]
Zhou, X.; Yin, C.; Dang, Y.; Ye, F.; Zhang, G. Identification of the long non-coding RNA H19 in plasma as a novel biomarker for diagnosis of gastric cancer. Sci. Rep., 2015, 5, 11516-11525.
[http://dx.doi.org/10.1038/srep11516]
[135]
Zhao, R.; Zhang, Y.; Zhang, X.; Yang, Y.; Zheng, X.; Li, X.; Liu, Y.; Zhang, Y. Exosomal long noncoding RNA HOTTIP as potential novel diagnostic and prognostic biomarker test for gastric cancer. Mol. Cancer, 2018, 17(1), 68-72.
[http://dx.doi.org/10.1186/s12943-018-0817-x]
[136]
Yang, Z.; Sun, Y.; Liu, R.; Shi, Y.; Ding, S. Plasma long noncoding RNAs PANDAR, FOXD2-AS1, and SMARCC2 as potential novel diagnostic biomarkers for gastric cancer. Cancer Manag. Res., 2019, 11, 6175-6184.
[http://dx.doi.org/10.2147/CMAR.S201935]
[137]
Liu, W.; Li, Y.; Zhang, Y.; Shen, X.; Su, Z.; Chen, L.; Cai, W.; Wang, F.; Ju, S. Circulatinglong non-coding RNA FEZF1-AS1 and AFAP1-AS1 serve as potential diagnostic biomarkers for gastric cancer. Pathol. Res. Pract., 2020, 216(1)152757
[http://dx.doi.org/10.1016/j.prp.2019.152757]
[138]
Zhang, K.; Shi, H.; Xi, H.; Wu, X.; Cui, J.; Gao, Y.; Liang, W.; Hu, C.; Liu, Y.; Li, J.; Wang, N.; Wei, B.; Chen, L. Genome-wide lncrna microarray profiling identifies novel circulating lncrnas for detection of gastric cancer. Theranostics, 2017, 7(1), 213-227.
[http://dx.doi.org/10.7150/thno.16044]
[139]
Okugawa, Y.; Toiyama, Y.; Hur, K.; Toden, S.; Saigusa, S.; Tanaka, K.; Inoue, Y.; Mohri, Y.; Kusunoki, M.; Boland, C.R.; Goel, A. Metastasis-associated long non-coding RNA drives gastric cancer development and promotes peritoneal metastasis. Carcinogenesis, 2014, 35(12), 2731-2739.
[http://dx.doi.org/10.1093/carcin/bgu200]
[140]
Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; Yeh, K.H.; Yoshikawa, T.; Oh, S.C.; Bai, L.Y.; Tamura, T.; Lee, K.W.; Hamamoto, Y.; Kim, J.G.; Chin, K.; Oh, D.Y.; Minashi, K.; Cho, J.Y.; Tsuda, M.; Chen, L.T. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet, 2017, 390(10111), 2461-2471.
[http://dx.doi.org/10.1016/S0140-6736(17)31827-5]
[141]
Fuchs, C.S.; Doi, T.; Jang, R.W.; Muro, K.; Satoh, T.; Machado, M.; Sun, W.; Jalal, S.I.; Shah, M.A.; Metges, J.P.; Garrido, M.; Golan, T.; Mandala, M.; Wainberg, Z.A.; Catenacci, D.V.; Ohtsu, A.; Shitara, K.; Geva, R.; Bleeker, J.; Ko, A.H.; Ku, G.; Philip, P.; Enzinger, P.C.; Bang, Y.J.; Levitan, D.; Wang, J.; Rosales, M.; Dalal, R.P.; Yoon, H.H. Safety and efficacy of pembrolizumab monotherapy in patients with previously treated advanced gastric and gastroesophageal junction cancer: Phase 2 clinical keynote-059 trial. JAMA Oncol., 2018, 4(5)e180013
[http://dx.doi.org/10.1001/jamaoncol.2018.0013]
[142]
Hannon, G.J.; Rossi, J.J. Unlocking the potential of the human genome with RNA interference. Nature, 2004, 431(7006), 371-378.
[http://dx.doi.org/10.1038/nature02870]
[143]
Davis, M.E.; Zuckerman, J.E.; Choi, C.H.; Seligson, D.; Tolcher, A.; Alabi, C.A.; Yen, Y.; Heidel, J.D.; Ribas, A. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature, 2010, 464(7291), 1067-1070.
[http://dx.doi.org/10.1038/nature08956]
[144]
Adams, D.; Gonzalez-Duarte, A.; O’Riordan, W.D.; Yang, C.C.; Ueda, M.; Kristen, A.V.; Tournev, I.; Schmidt, H.H.; Coelho, T.; Berk, J.L.; Lin, K.P.; Vita, G.; Attarian, S.; Planté-Bordeneuve, V.; Mezei, M.M.; Campistol, J.M.; Buades, J.; Brannagan, T.H., III; Kim, B.J.; Oh, J.; Parman, Y.; Sekijima, Y.; Hawkins, P.N.; Solomon, S.D.; Polydefkis, M.; Dyck, P.J.; Gandhi, P.J.; Goyal, S.; Chen, J.; Strahs, A.L.; Nochur, S.V.; Sweetser, M.T.; Garg, P.P.; Vaishnaw, A.K.; Gollob, J.A.; Suhr, O.B. Patisiran, an rnai therapeutic, for hereditary transthyretin amyloidosis. N. Engl. J. Med., 2018, 379(1), 11-21.
[http://dx.doi.org/10.1056/NEJMoa1716153]
[145]
Wang, L.L.; Zhang, L.; Cui, X.F. viaDownregulation of long noncoding RNA LINC01419 inhibits cell migration, invasion, and tumor growth and promotes autophagy inactivation of the PI3K/Akt1/mTOR pathway in gastric cancer. Ther. Adv. Med. Oncol., 2019, 11, 1-16.
[http://dx.doi.org/10.1177/1758835919874651]
[146]
Crooke, S.T.; Wang, S.; Vickers, T.A.; Shen, W.; Liang, X.H. Cellular uptake and trafficking of antisense oligonucleotides. Nat. Biotechnol., 2017, 35(3), 230-237.
[http://dx.doi.org/10.1038/nbt.3779]
[147]
Iwamoto, N.; Butler, D.C.D.; Svrzikapa, N.; Mohapatra, S.; Zlatev, I.; Sah, D.W.Y. Meena; Standley, S.M.; Lu, G.; Apponi, L.H.; Frank-Kamenetsky, M.; Zhang, J.J.; Vargeese, C.; Verdine, G.L. Control of phosphorothioate stereochemistry substantially increases the efficacy of antisense oligonucleotides. Nat. Biotechnol., 2017, 35(9), 845-851.
[http://dx.doi.org/10.1038/nbt.3948]
[148]
Mercuri, E.; Darras, B.T.; Chiriboga, C.A.; Day, J.W.; Campbell, C.; Connolly, A.M.; Iannaccone, S.T.; Kirschner, J.; Kuntz, N.L.; Saito, K.; Shieh, P.B.; Tulinius, M.; Mazzone, E.S.; Montes, J.; Bishop, K.M.; Yang, Q.; Foster, R.; Gheuens, S.; Bennett, C.F.; Farwell, W.; Schneider, E.; De Vivo, D.C.; Finkel, R.S. Nusinersen versus sham control in later-onset spinal muscular atrophy. N. Engl. J. Med., 2018, 378(7), 625-635.
[http://dx.doi.org/10.1056/NEJMoa1710504]
[149]
Bennett, C.F.; Baker, B.F.; Pham, N.; Swayze, E.; Geary, R.S. Pharmacology of antisense drugs. Annu. Rev. Pharmacol. Toxicol., 2017, 57, 81-105.
[http://dx.doi.org/10.1146/annurev-pharmtox-010716-104846]
[150]
Huan, L.; Guo, T.; Wu, Y.; Xu, L.; Huang, S.; Xu, Y.; Liang, L.; He, X. Hypoxia induced LUCAT1/PTBP1 axis modulates cancer cell viability and chemotherapy response. Mol. Cancer, 2020, 19(1), 11-27.
[http://dx.doi.org/10.1186/s12943-019-1122-z]
[151]
Diao, P.; Ge, H.; Song, Y.; Wu, Y.; Li, J.; Li, Z.; Yang, J.; Wang, Y.; Cheng, J. Overexpression of ZEB2-AS1 promotes epithelial-to-mesenchymal transition and metastasis by stabilizing ZEB2 mRNA in head neck squamous cell carcinoma. J. Cell. Mol. Med., 2019, 23(6), 4269-4280.
[http://dx.doi.org/10.1111/jcmm.14318]
[152]
Amodio, N.; Stamato, M.A.; Juli, G.; Morelli, E.; Fulciniti, M.; Manzoni, M.; Taiana, E.; Agnelli, L.; Cantafio, M.E.G.; Romeo, E.; Raimondi, L.; Caracciolo, D.; Zuccalà, V.; Rossi, M.; Neri, A.; Munshi, N.C.; Tagliaferri, P.; Tassone, P. Drugging the lncRNA MALAT1 via LNA gapmeR ASO inhibits gene expression of proteasome subunits and triggers anti-multiple myeloma activity. Leukemia, 2018, 32(9), 1948-1957.
[http://dx.doi.org/10.1038/s41375-018-0067-3]
[153]
Gordon, M.A.; Babbs, B.; Cochrane, D.R.; Bitler, B.G.; Richer, J.K. The long non-coding RNA MALAT1 promotes ovarian cancer progression by regulating RBFOX2-mediated alternative splicing. Mol. Carcinog., 2019, 58(2), 196-205.
[http://dx.doi.org/10.1002/mc.22919]
[154]
Liu, J.; Zhang, X.; Chen, K.; Cheng, Y.; Liu, S.; Xia, M.; Chen, Y.; Zhu, H.; Li, Z.; Cao, X. CCR7 chemokine receptor-inducible lnc-dpf3 restrains dendritic cell migration by inhibiting hif-1α-mediated glycolysis. Immunity, 2019, 50(3), 600-615.e15.
[http://dx.doi.org/10.1016/j.immuni.2019.01.021]
[155]
Meng, Q.; Wang, K.; Brunetti, T.; Xia, Y.; Jiao, C.; Dai, R.; Fitzgerald, D.; Thomas, A.; Jay, L.; Eckart, H.; Grennan, K.; Imamura-Kawasawa, Y.; Li, M.; Sestan, N.; White, K.P.; Chen, C.; Liu, C. The DGCR5 long noncoding RNA may regulate expression of several schizophrenia-related genes. Sci. Transl. Med., 2018, 10(472), 6912-6922.
[http://dx.doi.org/10.1126/scitranslmed.aat6912]
[156]
Mali, P.; Yang, L.; Esvelt, K.M.; Aach, J.; Guell, M.; DiCarlo, J.E.; Norville, J.E.; Church, G.M. RNA-guided human genome engineering via Cas9. Science, 2013, 339(6121), 823-826.
[http://dx.doi.org/10.1126/science.1232033]
[157]
Liu, S.J.; Horlbeck, M.A.; Cho, S.W.; Birk, H.S.; Malatesta, M.; He, D.; Attenello, F.J.; Villalta, J.E.; Cho, M.Y.; Chen, Y.; Mandegar, M.A.; Olvera, M.P.; Gilbert, L.A.; Conklin, B.R.; Chang, H.Y.; Weissman, J.S.; Lim, D.A. CRISPRi-based genome-scale identification of functional long noncoding RNA loci in human cells. Science, 2017, 355(6320), 7111-7126.
[http://dx.doi.org/10.1126/science.aah7111]
[158]
Liu, J.; Ben, Q.; Lu, E.; He, X.; Yang, X.; Ma, J.; Zhang, W.; Wang, Z.; Liu, T.; Zhang, J.; Wang, H. Long noncoding RNA PANDAR blocks CDKN1A gene transcription by competitive interaction with p53 protein in gastric cancer. Cell Death Dis., 2018, 9(2), 168-180.
[http://dx.doi.org/10.1038/s41419-017-0246-6]
[159]
Yang, H.; Wang, H.; Shivalila, C.S.; Cheng, A.W.; Shi, L.; Jaenisch, R. One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell, 2013, 154(6), 1370-1379.
[http://dx.doi.org/10.1016/j.cell.2013.08.022]
[160]
Sun, Q.; Li, J.; Li, F.; Li, H.; Bei, S.; Zhang, X.; Feng, L. LncRNA LOXL1-AS1 facilitates the tumorigenesis and stemness of gastric carcinoma via regulation of miR-708-5p/USF1 pathway. Cell Prolif., 2019, 52(6)e12687
[http://dx.doi.org/10.1111/cpr.12687]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy