Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Weighted Gene Co-expression Network Analysis Identifies Five Hub Genes Associated with Metastasis in Synovial Sarcoma

Author(s): Hongzeng Wu, Benzheng Zhang, Jiazheng Zhao, Yi Zhao, Xiaowei Ma and Helin Feng*

Volume 25, Issue 10, 2022

Published on: 09 August, 2021

Page: [1767 - 1777] Pages: 11

DOI: 10.2174/1386207324666210628112429

Abstract

Background: Synovial Sarcoma (SS) refers to a malignant Soft Tissue Sarcoma (STS) which often comes about to children and adults and has a poor prognosis in elderly patients. Patients with local lesions can be treated with extensive surgical resection combined with adjuvant or radiotherapy, whereas about half of the cases have recurrent diseases and metastatic lesions, and five-year survival ratio is assessed within the range of 27% - 55% only.

Methods: We downloaded a set of expression profile data (GSE40021) related to SS metastasis based on the Gene Expression Omnibus (GEO) database, and selected distinctly represented genes (DEGs) related to tumor metastasis. WGCNA was used to emphasize the DEGs related to tumor metastasis, and obtain co-expression modules. Then, the module most related to SS metastasis was screened out. The genes of enriched in this module were analyzed by Gene Ontology (GO) functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway improvement analysis. Cytoscape software was used for constructing protein-protein interaction (PPI) networks, and screening hub genes were made in virtue of Oncomine analysis.

Result: We selected 514 DEGs, consisting of 210 up-regulated genes and 304 down-regulated genes. Through WGCAN, we got seven co-expression modules and the module most related to SS metastasis was turquoise module, which contained 66 genes. Finally, we screened out five hub genes (HJURP, NCAPG, TPX2, CENPA, NDC80) through CytoHubba and Oncomine analysis.

Conclusion: In this study, we screened out five hub genes to help clinical diagnosis and serve as the latent purpose of SS treatment.

Keywords: Synovial sarcoma, hub genes, GEO, GO, KEGG, WGCNA.

[1]
Fricke, A.; Ullrich, P.V.; Heinz, J.; Pfeifer, D.; Scholber, J.; Herget, G.W.; Hauschild, O.; Bronsert, P.; Stark, G.B.; Bannasch, H.; Eisenhardt, S.U.; Braig, D. Identification of a blood-borne miRNA signature of synovial sarcoma. Mol. Cancer, 2015, 14, 151.
[http://dx.doi.org/10.1186/s12943-015-0424-z] [PMID: 26250552]
[2]
Spillane, A.J.; A’Hern, R.; Judson, I.R.; Fisher, C.; Thomas, J.M. Synovial sarcoma: A clinicopathologic, staging, and prognostic assessment. J. Clin. Oncol., 2000, 18(22), 3794-3803.
[http://dx.doi.org/10.1200/JCO.2000.18.22.3794] [PMID: 11078492]
[3]
de Necochea-Campion, R.; Zuckerman, L.M.; Mirshahidi, H.R.; Khosrowpour, S.; Chen, C.S.; Mirshahidi, S. Metastatic biomarkers in synovial sarcoma. Biomark. Res., 2017, 5, 4.
[http://dx.doi.org/10.1186/s40364-017-0083-x] [PMID: 28191313]
[4]
Amankwah, E.K.; Conley, A.P.; Reed, D.R. Epidemiology and therapies for metastatic sarcoma. Clin. Epidemiol., 2013, 5, 147-162.
[PMID: 23700373]
[5]
Scheer, M.; Dantonello, T.; Hallmen, E.; Vokuhl, C.; Leuschner, I.; Sparber-Sauer, M.; Kazanowska, B.; Niggli, F.; Ladenstein, R.; Bielack, S.S.; Klingebiel, T.; Koscielniak, E. Primary metastatic synovial sarcoma: Experience of the cws study group. Pediatr. Blood Cancer, 2016, 63(7), 1198-1206.
[http://dx.doi.org/10.1002/pbc.25973] [PMID: 27003095]
[6]
Garcia, C.B.; Shaffer, C.M.; Eid, J.E. Genome-wide recruitment to Polycomb-modified chromatin and activity regulation of the synovial sarcoma oncogene SYT-SSX2. BMC Genomics, 2012, 13, 189.
[http://dx.doi.org/10.1186/1471-2164-13-189] [PMID: 22594313]
[7]
Ladanyi, M.; Antonescu, C.R.; Leung, D.H.; Woodruff, J.M.; Kawai, A.; Healey, J.H.; Brennan, M.F.; Bridge, J.A.; Neff, J.R.; Barr, F.G.; Goldsmith, J.D.; Brooks, J.S.J.; Goldblum, J.R.; Ali, S.Z.; Shipley, J.; Cooper, C.S.; Fisher, C.; Skytting, B.; Larsson, O. Impact of SYT-SSX fusion type on the clinical behavior of synovial sarcoma: A multi-institutional retrospective study of 243 patients. Cancer Res., 2002, 62(1), 135-140.
[PMID: 11782370]
[8]
Zhou, Q.; Su, X.; Jing, G.; Ning, K. Meta-QC-Chain: Comprehensive and fast quality control method for metagenomic data. Genomics Proteomics Bioinformatics, 2014, 12(1), 52-56.
[http://dx.doi.org/10.1016/j.gpb.2014.01.002] [PMID: 24508279]
[9]
Tian, H.; Guan, D.; Li, J. Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA). Medicine (Baltimore), 2018, 97(24), e10781.
[http://dx.doi.org/10.1097/MD.0000000000010781] [PMID: 29901575]
[10]
Pei, G.; Chen, L.; Zhang, W. WGCNA application to proteomic and metabolomic data analysis. Methods Enzymol., 2017, 585, 135-158.
[http://dx.doi.org/10.1016/bs.mie.2016.09.016] [PMID: 28109426]
[11]
Horvath, S.; Dong, J. Geometric interpretation of gene coexpression network analysis. PLOS Comput. Biol., 2008, 4(8), e1000117.
[http://dx.doi.org/10.1371/journal.pcbi.1000117] [PMID: 18704157]
[12]
Tang, J.; Yang, Q.; Cui, Q.; Zhang, D.; Kong, D.; Liao, X.; Ren, J.; Gong, Y.; Wu, G. Weighted gene correlation network analysis identifies RSAD2, HERC5, and CCL8 as prognostic candidates for breast cancer. J. Cell. Physiol., 2020, 235(1), 394-407.
[http://dx.doi.org/10.1002/jcp.28980] [PMID: 31225658]
[13]
Wan, Q.; Tang, J.; Han, Y.; Wang, D. Co-expression modules construction by WGCNA and identify potential prognostic markers of uveal melanoma. Exp. Eye Res., 2018, 166, 13-20.
[http://dx.doi.org/10.1016/j.exer.2017.10.007] [PMID: 29031853]
[14]
Liu, X.; Hu, A.X.; Zhao, J.L.; Chen, F.L. Identification of key gene modules in human osteosarcoma by co-expression analysis weighted gene co-expression network analysis (WGCNA). J. Cell. Biochem., 2017, 118(11), 3953-3959.
[http://dx.doi.org/10.1002/jcb.26050] [PMID: 28398605]
[15]
Zhu, Z.; Jin, Z.; Deng, Y.; Wei, L.; Yuan, X.; Zhang, M.; Sun, D. Co-expression network analysis identifies four hub genes associated with prognosis in soft tissue sarcoma. Front. Genet., 2019, 10, 37.
[http://dx.doi.org/10.3389/fgene.2019.00037] [PMID: 30778371]
[16]
Liu, J.; Nie, S.; Gao, M.; Jiang, Y.; Wan, Y.; Ma, X.; Zhou, S.; Cheng, W. Identification of EPHX2 and RMI2 as two novel key genes in cervical squamous cell carcinoma by an integrated bioinformatic analysis. J. Cell. Physiol., 2019, 234(11), 21260-21273.
[http://dx.doi.org/10.1002/jcp.28731] [PMID: 31041817]
[17]
Qin, S.; Kim, J.; Arafat, D.; Gibson, G. Effect of normalization on statistical and biological interpretation of gene expression profiles. Front. Genet., 2013, 3, 160.
[PMID: 23755061]
[18]
Foroughi, K.; Amini, M.; Atashi, A.; Mahmoodzadeh, H.; Hamann, U.; Manoochehri, M. Tissue-specific down-regulation of the long non-coding rnas pcat18 and linc01133 in gastric cancer development. Int. J. Mol. Sci., 2018, 19(12), E3881.
[http://dx.doi.org/10.3390/ijms19123881] [PMID: 30518158]
[19]
Ritchie, M.E.; Phipson, B.; Wu, D.; Hu, Y.; Law, C.W.; Shi, W.; Smyth, G.K. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res., 2015, 43(7), e47.
[http://dx.doi.org/10.1093/nar/gkv007] [PMID: 25605792]
[20]
Langfelder, P.; Horvath, S. WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics, 2008, 9, 559.
[http://dx.doi.org/10.1186/1471-2105-9-559] [PMID: 19114008]
[21]
Chen, M.; Yan, J.; Han, Q.; Luo, J.; Zhang, Q. Identification of hub-methylated differentially expressed genes in patients with gestational diabetes mellitus by multi-omic WGCNA basing epigenome-wide and transcriptome-wide profiling. J. Cell. Biochem., 2020, 121, 3173-3184.
[PMID: 31886571]
[22]
Zhang, X.; Feng, H.; Li, Z.; Li, D.; Liu, S.; Huang, H.; Li, M. Application of weighted gene co-expression network analysis to identify key modules and hub genes in oral squamous cell carcinoma tumorigenesis. OncoTargets Ther., 2018, 11, 6001-6021.
[http://dx.doi.org/10.2147/OTT.S171791] [PMID: 30275705]
[23]
Walter, W.; Sánchez-Cabo, F.; Ricote, M. GOplot: An R package for visually combining expression data with functional analysis. Bioinformatics, 2015, 31(17), 2912-2914.
[http://dx.doi.org/10.1093/bioinformatics/btv300] [PMID: 25964631]
[24]
Yu, G.; Wang, L-G.; Han, Y.; He, Q-Y. clusterProfiler: An R package for comparing biological themes among gene clusters. OMICS, 2012, 16(5), 284-287.
[http://dx.doi.org/10.1089/omi.2011.0118] [PMID: 22455463]
[25]
Shannon, P.; Markiel, A.; Ozier, O.; Baliga, N.S.; Wang, J.T.; Ramage, D.; Amin, N.; Schwikowski, B.; Ideker, T. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res., 2003, 13(11), 2498-2504.
[http://dx.doi.org/10.1101/gr.1239303] [PMID: 14597658]
[26]
Zhou, Z.; Cheng, Y.; Jiang, Y.; Liu, S.; Zhang, M.; Liu, J.; Zhao, Q. Ten hub genes associated with progression and prognosis of pancreatic carcinoma identified by co-expression analysis. Int. J. Biol. Sci., 2018, 14(2), 124-136.
[http://dx.doi.org/10.7150/ijbs.22619] [PMID: 29483831]
[27]
Xing, Z.; Wei, L.; Jiang, X.; Conroy, J.; Glenn, S.; Bshara, W.; Yu, T.; Pao, A.; Tanaka, S.; Kawai, A.; Choi, C.; Wang, J.; Liu, S.; Morrison, C.; Yu, Y.E. Analysis of mutations in primary and metastatic synovial sarcoma. Oncotarget, 2018, 9(96), 36878-36888.
[http://dx.doi.org/10.18632/oncotarget.26416] [PMID: 30627328]
[28]
Song, Y.; Liu, X.; Wang, F.; Wang, X.; Cheng, G.; Peng, C. Identification of metastasis-associated biomarkers in synovial sarcoma using bioinformatics analysis. Front. Genet., 2020, 11, 530892.
[http://dx.doi.org/10.3389/fgene.2020.530892] [PMID: 33061942]
[29]
Peterman, E.; Gibieža, P.; Schafer, J.; Skeberdis, V.A.; Kaupinis, A.; Valius, M.; Heiligenstein, X.; Hurbain, I.; Raposo, G.; Prekeris, R. The post-abscission midbody is an intracellular signaling organelle that regulates cell proliferation. Nat. Commun., 2019, 10(1), 3181.
[http://dx.doi.org/10.1038/s41467-019-10871-0] [PMID: 31320617]
[30]
Antanavičiūtė, I.; Gibieža, P.; Prekeris, R.; Skeberdis, V.A. Midbody: From the regulator of cytokinesis to postmitotic signaling organelle. Medicina (Kaunas), 2018, 54(4), E53.
[http://dx.doi.org/10.3390/medicina54040053] [PMID: 30344284]
[31]
Goodson, H.V.; Jonasson, E.M. Microtubules and microtubule-associated proteins. Cold Spring Harb. Perspect. Biol., 2018, 10(6), a022608.
[http://dx.doi.org/10.1101/cshperspect.a022608] [PMID: 29858272]
[32]
Zhang, L.; Yu, D.; Hu, M.; Xiong, S.; Lang, A.; Ellis, L.M.; Pollock, R.E. Wild-type p53 suppresses angiogenesis in human leiomyosarcoma and synovial sarcoma by transcriptional suppression of vascular endothelial growth factor expression. Cancer Res., 2000, 60(13), 3655-3661.
[PMID: 10910082]
[33]
Thoenen, E.; Curl, A.; Iwakuma, T. TP53 in bone and soft tissue sarcomas. Pharmacol. Ther., 2019, 202, 149-164.
[http://dx.doi.org/10.1016/j.pharmthera.2019.06.010] [PMID: 31276706]
[34]
D’Arcy, P.; Maruwge, W.; Ryan, B.A.; Brodin, B. The oncoprotein SS18-SSX1 promotes p53 ubiquitination and degradation by enhancing HDM2 stability. Mol. Cancer Res., 2008, 6(1), 127-138.
[http://dx.doi.org/10.1158/1541-7786.MCR-07-0176] [PMID: 18234968]
[35]
Pan, D.; Walstein, K.; Take, A.; Bier, D.; Kaiser, N.; Musacchio, A. Mechanism of centromere recruitment of the CENP-A chaperone HJURP and its implications for centromere licensing. Nat. Commun., 2019, 10(1), 4046.
[http://dx.doi.org/10.1038/s41467-019-12019-6] [PMID: 31492860]
[36]
Filipescu, D.; Naughtin, M.; Podsypanina, K.; Lejour, V.; Wilson, L.; Gurard-Levin, Z.A.; Orsi, G.A.; Simeonova, I.; Toufektchan, E.; Attardi, L.D.; Toledo, F.; Almouzni, G. Essential role for centromeric factors following p53 loss and oncogenic transformation. Genes Dev., 2017, 31(5), 463-480.
[http://dx.doi.org/10.1101/gad.290924.116] [PMID: 28356341]
[37]
Montes de Oca, R.; Gurard-Levin, Z.A.; Berger, F.; Rehman, H.; Martel, E.; Corpet, A.; de Koning, L.; Vassias, I.; Wilson, L.O.W.; Meseure, D.; Reyal, F.; Savignoni, A.; Asselain, B.; Sastre-Garau, X.; Almouzni, G. The histone chaperone HJURP is a new independent prognostic marker for luminal A breast carcinoma. Mol. Oncol., 2015, 9(3), 657-674.
[http://dx.doi.org/10.1016/j.molonc.2014.11.002] [PMID: 25497280]
[38]
Gu, X-M.; Fu, J.; Feng, X-J.; Huang, X.; Wang, S-M.; Chen, X-F.; Zhu, M-H.; Zhang, S-H. Expression and prognostic relevance of centromere protein A in primary osteosarcoma. Pathol. Res. Pract., 2014, 210(4), 228-233.
[http://dx.doi.org/10.1016/j.prp.2013.12.007] [PMID: 24440098]
[39]
Arai, T.; Okato, A.; Yamada, Y.; Sugawara, S.; Kurozumi, A.; Kojima, S.; Yamazaki, K.; Naya, Y.; Ichikawa, T.; Seki, N. Regulation of NCAPG by miR-99a-3p (passenger strand) inhibits cancer cell aggressiveness and is involved in CRPC. Cancer Med., 2018, 7(5), 1988-2002.
[http://dx.doi.org/10.1002/cam4.1455] [PMID: 29608247]
[40]
Liu, W.; Liang, B.; Liu, H.; Huang, Y.; Yin, X.; Zhou, F.; Yu, X.; Feng, Q.; Li, E.; Zou, Z.; Wu, L. Overexpression of non SMC condensin I complex subunit G serves as a promising prognostic marker and therapeutic target for hepatocellular carcinoma. Int. J. Mol. Med., 2017, 40(3), 731-738.
[http://dx.doi.org/10.3892/ijmm.2017.3079] [PMID: 28737823]
[41]
Liu, K.; Li, Y.; Yu, B.; Wang, F.; Mi, T.; Zhao, Y. Silencing non-SMC chromosome-associated polypeptide G inhibits proliferation and induces apoptosis in hepatocellular carcinoma cells. Can. J. Physiol. Pharmacol., 2018, 96(12), 1246-1254.
[http://dx.doi.org/10.1139/cjpp-2018-0195] [PMID: 30089216]
[42]
Ji, Z.; Gao, H.; Yu, H. CELL DIVISION CYCLE. Kinetochore attachment sensed by competitive Mps1 and microtubule binding to Ndc80C. Science, 2015, 348(6240), 1260-1264.
[http://dx.doi.org/10.1126/science.aaa4029] [PMID: 26068854]
[43]
Hiruma, Y.; Sacristan, C.; Pachis, S.T.; Adamopoulos, A.; Kuijt, T.; Ubbink, M.; von Castelmur, E.; Perrakis, A.; Kops, G.J.P.L. CELL DIVISION CYCLE. Competition between MPS1 and microtubules at kinetochores regulates spindle checkpoint signaling. Science, 2015, 348(6240), 1264-1267.
[http://dx.doi.org/10.1126/science.aaa4055] [PMID: 26068855]
[44]
Xu, B.; Wu, D.P.; Xie, R.T.; Liu, L.G.; Yan, X.B. Elevated NDC80 expression is associated with poor prognosis in osteosarcoma patients. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(9), 2045-2053.
[PMID: 28537682]
[45]
Neumayer, G.; Belzil, C.; Gruss, O.J.; Nguyen, M.D. TPX2: Of spindle assembly, DNA damage response, and cancer. Cell. Mol. Life Sci., 2014, 71(16), 3027-3047.
[http://dx.doi.org/10.1007/s00018-014-1582-7] [PMID: 24556998]
[46]
Shan, W.; Akinfenwa, P.Y.; Savannah, K.B.; Kolomeyevskaya, N.; Laucirica, R.; Thomas, D.G.; Odunsi, K.; Creighton, C.J.; Lev, D.C.; Anderson, M.L. A small-molecule inhibitor targeting the mitotic spindle checkpoint impairs the growth of uterine leiomyosarcoma. Clin. Cancer Res., 2012, 18(12), 3352-3365.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-3058] [PMID: 22535157]

© 2025 Bentham Science Publishers | Privacy Policy