Abstract
Aims and Objective: We investigated the inhibitory effects of fractions from Lycopus lucidus Turcz. leaves on genomic DNA oxidation, Nitric Oxide (NO) production, and Matrix Metalloproteinase (MMP) activity.
Materials and Methods: Oxidative damage of genomic DNA was detected after Fenton reaction with H2O2 using DNA electrophoresis. Western blotting was performed to compare the expression levels of MMP-2 in phorbol 12-myristate 13-acetate (PMA)-induced HT-1080 cells. Lipopolysacchride (LPS)-induced NO production in RAW 264.7 cells was measured using Griess reagent.
Results: All fractions (n-Hexane, 85% aq. MeOH, n-BuOH, and water fractions) from the leaves of L. lucidus Turcz. significantly inhibited intracellular production of reactive oxygen species (ROS) (p<0.05). Particularly, 85% aq. MeOH and n-BuOH fractions showed higher ROS inhibitory activity than the other fractions. n-Hexane, 85% aq. MeOH, n-BuOH and water (0.05 mg/mL) fractions significantly inhibited oxidative DNA damage by 57.97%, 68.48%, 58.97%, and 68.39%, respectively (p <0.05). Treatment of RAW 264.7 cells with each fraction reduced LPS-induced NO production in a dose-dependent manner (p<0.05). n-Hexane and 85% aq. MeOH fractions notably reduced MMP-2 secretion levels in the culture supernatants from HT-1080 cells.
Conclusion: Overall, these results indicated that L. lucidus Turcz. leaves can be exploited as plant based sources of antioxidants in the pharmaceutical, cosmetic, nutraceutical, and food industries.
Keywords: Lycopus lucidus Turcz., DNA oxidation, antioxidant, matrix metalloproteinase, reactive oxygen species (ROS), nitric oxide (NO).
Graphical Abstract
[http://dx.doi.org/10.1007/s11418-020-01398-6] [PMID: 32219646]
[http://dx.doi.org/10.1016/j.phymed.2018.07.008] [PMID: 30668424]
[http://dx.doi.org/10.1016/j.taap.2005.04.011] [PMID: 15936049]
[http://dx.doi.org/10.1080/21691401.2019.1640230] [PMID: 31307239]
[http://dx.doi.org/10.1016/j.foodchem.2015.03.033] [PMID: 25863615]
[http://dx.doi.org/10.1016/j.foodchem.2010.12.027] [PMID: 25213932]
[http://dx.doi.org/10.1016/j.bbrc.2019.10.092] [PMID: 31629465]
[http://dx.doi.org/10.1016/j.foodchem.2009.10.022]
[http://dx.doi.org/10.1016/j.tiv.2008.07.013] [PMID: 18715546]
[http://dx.doi.org/10.3390/s18103249] [PMID: 30262739]
[http://dx.doi.org/10.1097/00004647-200101000-00002] [PMID: 11149664]
[http://dx.doi.org/10.1038/nrm2256] [PMID: 17848967]
[http://dx.doi.org/10.1016/j.intimp.2014.05.026] [PMID: 24905636]
[http://dx.doi.org/10.1016/j.tox.2015.10.008] [PMID: 26514923]
[http://dx.doi.org/10.1016/j.cellbi.2005.01.007] [PMID: 15893483]
[http://dx.doi.org/10.1155/2018/4274361] [PMID: 30425746]
[http://dx.doi.org/10.1016/S0891-5849(98)00315-3] [PMID: 10381194]
[http://dx.doi.org/10.5012/bkcs.2010.31.10.2873]
[http://dx.doi.org/10.1002/1097-0215(20001201)88:5<766::AIDIJC13>3.0.CO;2-Y] [PMID: 11072246]
[http://dx.doi.org/10.1016/j.foodchem.2018.06.152] [PMID: 30100447]
[http://dx.doi.org/10.1016/j.fct.2020.111404] [PMID: 32413456]
[http://dx.doi.org/10.1016/j.jep.2011.08.072] [PMID: 21924341]
[http://dx.doi.org/10.1016/j.csbj.2019.12.013] [PMID: 31993111]
[http://dx.doi.org/10.15171/ipp.2019.08]
[http://dx.doi.org/10.1016/j.niox.2018.03.003] [PMID: 29522907]
[http://dx.doi.org/10.1074/jbc.REV119.006136] [PMID: 31409645]
[http://dx.doi.org/10.1016/j.jff.2018.05.001]
[http://dx.doi.org/10.1016/j.bcp.2020.114121] [PMID: 32592722]
[http://dx.doi.org/10.1021/jf3052863] [PMID: 23527961]