Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

General Research Article

Integration of Network Pharmacology and Molecular Docking Technology Reveals the Mechanism of the Therapeutic Effect of Xixin Decoction on Alzheimer's Disease

Author(s): Zhuo Zhang*, Jianglin Xu, Suya Ma, Nan Lin, Minzhe Hou, Mingqing Wei, Ting Li and Jing Shi*

Volume 25, Issue 10, 2022

Published on: 06 June, 2022

Page: [1785 - 1804] Pages: 20

DOI: 10.2174/1386207325666220523151119

Price: $65

Abstract

Background: So far, only a few researchers have systematically analyzed the constituents of the traditional Chinese medicine prescription Xixin Decoction (XXD) and its potential mechanism of action in treating Alzheimer’s disease (AD). This study aimed to explore the potential mechanism of XXD in the treatment of AD using network pharmacology and molecular docking.

Methods: The compounds of XXD were searched within the Traditional Chinese Medicine System Pharmacology Database (TCMSP) and the Traditional Chinese Medicine Integrated Database (TCMID) databases. Overlapping AD-related targets obtained from the two databases and the predicted targets of XXD obtained from SwissTargetPrediction platform were imported into the STRING database to build PPI networks including hub targets; Cytoscape software was used to construct the herb-compound-target network while its plug-in CytoNCA was used to screen the main active compounds of XXD. Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses explored the core biological mechanism and pathways via the Metascape platform. In addition, we used AutoDock Vina and PyMOL software to investigate the molecular docking of main compounds to hub targets.

Results: We determined 114 active compounds, 973 drug targets, and 973 disease targets. However, intersection analysis screened out 208 shared targets.Protein-protein interaction (PPI) network identified 9 hub targets. The hub targets were found to be majorly enriched in several biological processes (positive regulation of kinase activity, positive regulation of cell death, regulation of MAPK cascade, trans-synaptic signaling, synaptic signaling, etc.) and the relevant pathways of Alzheimer's disease, including neuroactive ligand-receptor interaction, dopaminergic synapse, serotonergic synapse, and the MAPK signaling pathway, etc. The pathway-target-compound network of XXD for treating AD was then constructed. 8 hub targets exhibited good binding activity with 9 main active compounds of XXD in molecular docking.

Conclusion: In this study, we found multi-compound-multi-target-multi-pathway regulation to reveal the mechanism of XXD for treating AD based on network pharmacology and molecular docking. XXD may play a therapeutic role through regulating the Alzheimer's disease pathway, its downstream PI3K/Akt signaling pathway or the MAPK signaling pathway, thereby treating AD. This provides new insights for further experiments on the pharmacological effects of XXD.

Keywords: Xixin decoction, Alzheimer’s disease, network pharmacology, molecular docking, traditional chinese medicine, MAPK signaling pathway.

« Previous
Graphical Abstract

[1]
Alzheimer Disease International. World Alzheimer report 2015; , 2015. Available from: https://www.worldalzheimerreport2015.org/
[2]
Haines, J.L. Alzheimer disease: Perspectives from epidemiology and genetics. J. Law Med. Ethics, 2018, 46(3), 694-698.
[http://dx.doi.org/10.1177/1073110518804230] [PMID: 30336113]
[3]
Masters, C.L.; Bateman, R.; Blennow, K.; Rowe, C.C.; Sperling, R.A.; Cummings, J.L. Alzheimer’s disease. Nat. Rev. Dis. Primers, 2015, 1(1), 15056.
[http://dx.doi.org/10.1038/nrdp.2015.56] [PMID: 27188934]
[4]
Gray, S.M.; Meijer, R.I.; Barrett, E.J. Insulin regulates brain function, but how does it get there? Diabetes, 2014, 63(12), 3992-3997.
[http://dx.doi.org/10.2337/db14-0340] [PMID: 25414013]
[5]
Tian, J.Z.; Shi, J. Consensus of traditional Chinese medicine specialists on Alzheimer′s disease. Chin. J. Integr. Med., 2018, 38(05), 523-529.
[6]
Diwu, Y.; Tian, J.; Shi, J. Effect of Xixin decoction on phosphorylation toxicity at specific sites of tau protein in brains of rats with sporadic Alzheimer disease. J. Tradit. Chin. Med., 2013, 33(6), 787-793.
[http://dx.doi.org/10.1016/S0254-6272(14)60013-3] [PMID: 24660612]
[7]
Diwu, Y.; Tian, J.; Shi, J. Effect of xixin decoction on O-linked N-acetylglucosamine glycosylation of tau proteins in rat brain with sporadic Alzheimer disease. J. Tradit. Chin. Med., 2013, 33(3), 367-372.
[http://dx.doi.org/10.1016/S0254-6272(13)60180-6] [PMID: 24024334]
[8]
Yanbin, G.; Yongchang, D.; Xuecheng, T.; Zan, G.; Ke, Y.; Jiaming, Z.; Ting, L.; Yiran, S. Effect of xixin decoction on expressions of functional protein related to synapse and receptors in APP/PS1 double transgenic mice. Chin. J. Integr. Med., 2018, 38, 699-706.
[9]
Yiran, S.; Yongchang, D.; Jian, Z.; Fang, W.; Jiaming, Z.; Ting, L. Effects of xixin decoction on mitochondrial function of hippocampal neurons induced by Aβ1-42. Liaoning J. Tradit. Chin. Med., 2018, 45, 1281-1284.
[10]
Chen, Z.Y.; Du, T.M.; Chen, S.C. (Effects of ginsenoside Rg1 on learning and memory function and morphology of hippocampal neurons of rats with electrical hippocampal injuries). Nan Fang Yi Ke Da Xue Xue Bao, 2011, 31(6), 1039-1042.
[PMID: 21690064]
[11]
Zhang, G.; Liu, A.; Zhou, Y.; San, X.; Jin, T.; Jin, Y. Panax ginseng ginsenoside-Rg2 protects memory impairment via anti-apoptosis in a rat model with vascular dementia. J. Ethnopharmacol., 2008, 115(3), 441-448.
[http://dx.doi.org/10.1016/j.jep.2007.10.026] [PMID: 18083315]
[12]
Tang, Y.; Lei, C.X.; Duan, K. Effects of total alkaloids from Pinellia ternateon learning and memory in aging mice induced by D-galactose. Zhongguo Shiyan Fangjixue Zazhi, 2012, 20, 224-227.
[13]
Songqi, J. Protective effects of Tangerine peel composition F-1 on β-amyloid induced memory and learning impairment in Alzheimer’s disease model mice. Int. J. Tradit. Chin. Med., 2006, 3, 177-178.
[14]
Zhang, T.; Wang, G.J.; Bai, S.G. Effect of aconite on antioxidant system in aged rats. Zhongguo Laonianxue Zazhi, 2001, 2, 135-136.
[15]
Yan, A.R.; Zhang, H. Pharmacological study on aconit. Zhongguo Yaowu Yu Linchuang, 2008, 8, 746.
[16]
Gong, C.X.; Liu, F.; Grundke-Iqbal, I.; Iqbal, K. Impaired brain glucose metabolism leads to Alzheimer neurofibrillary degeneration through a decrease in tau O-GlcNAcylation. J. Alzheimers Dis., 2006, 9(1), 1-12.
[http://dx.doi.org/10.3233/JAD-2006-9101] [PMID: 16627930]
[17]
Wang, D.X. Therapeutic effect of Xixin decoction on 36 cases of Alzheimer’s disease. China’s Naturopathy, 2016, 24, 46-47.
[18]
Ru, J.; Li, P.; Wang, J.; Zhou, W.; Li, B.; Huang, C.; Li, P.; Guo, Z.; Tao, W.; Yang, Y.; Xu, X.; Li, Y.; Wang, Y.; Yang, L. TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminform., 2014, 6(13), 13-18.
[http://dx.doi.org/10.1186/1758-2946-6-13] [PMID: 24735618]
[19]
Xue, R.; Fang, Z.; Zhang, M.; Yi, Z.; Wen, C.; Shi, T. TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res., 2013, 41(D1), D1089-D1095.
[http://dx.doi.org/10.1093/nar/gks1100] [PMID: 23203875]
[20]
Huang, C.; Yang, Y.; Chen, X.; Wang, C.; Li, Y.; Zheng, C.; Wang, Y. Large-scale cross-species chemogenomic platform proposes a new drug discovery strategy of veterinary drug from herbal medicines. PLoS One, 2017, 12(9), e0184880.
[http://dx.doi.org/10.1371/journal.pone.0184880] [PMID: 28915268]
[21]
Daina, A.; Michielin, O.; Zoete, V. SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Res., 2019, 47(W1), W357-W364.
[http://dx.doi.org/10.1093/nar/gkz382] [PMID: 31106366]
[22]
Kim, S.; Chen, J.; Cheng, T.; Gindulyte, A.; He, J.; He, S.; Li, Q.; Shoemaker, B.A.; Thiessen, P.A.; Yu, B.; Zaslavsky, L.; Zhang, J.; Bolton, E.E. PubChem 2019 update: Improved access to chemical data. Nucleic Acids Res., 2019, 47(D1), D1102-D1109.
[http://dx.doi.org/10.1093/nar/gky1033] [PMID: 30371825]
[23]
Bateman, A.; Martin, M-J.; Orchard, S.; Magrane, M.; Agivetova, R.; Ahmad, S.; Alpi, E.; Bowler-Barnett, E.H.; Britto, R.; Bursteinas, B.; Bye-A-Jee, H.; Coetzee, R.; Cukura, A.; Da Silva, A.; Denny, P.; Dogan, T.; Ebenezer, T.G.; Fan, J.; Castro, L.G.; Garmiri, P.; Georghiou, G.; Gonzales, L.; Hatton-Ellis, E.; Hussein, A.; Ignatchenko, A.; Insana, G.; Ishtiaq, R.; Jokinen, P.; Joshi, V.; Jyothi, D.; Lock, A.; Lopez, R.; Luciani, A.; Luo, J.; Lussi, Y.; MacDougall, A.; Madeira, F.; Mahmoudy, M.; Menchi, M.; Mishra, A.; Moulang, K.; Nightingale, A.; Oliveira, C.S.; Pundir, S.; Qi, G.; Raj, S.; Rice, D.; Lopez, M.R.; Saidi, R.; Sampson, J.; Sawford, T.; Speretta, E.; Turner, E.; Tyagi, N.; Vasudev, P.; Volynkin, V.; Warner, K.; Watkins, X.; Zaru, R.; Zellner, H.; Bridge, A.; Poux, S.; Redaschi, N.; Aimo, L.; Argoud-Puy, G.; Auchincloss, A.; Axelsen, K.; Bansal, P.; Baratin, D.; Blatter, M-C.; Bolleman, J.; Boutet, E.; Breuza, L.; Casals-Casas, C.; de Castro, E.; Echioukh, K.C.; Coudert, E.; Cuche, B.; Doche, M.; Dornevil, D.; Estreicher, A.; Famiglietti, M.L.; Feuermann, M.; Gasteiger, E.; Gehant, S.; Gerritsen, V.; Gos, A.; Gruaz-Gumowski, N.; Hinz, U.; Hulo, C.; Hyka-Nouspikel, N.; Jungo, F.; Keller, G.; Kerhornou, A.; Lara, V.; Le Mercier, P.; Lieberherr, D.; Lombardot, T.; Martin, X.; Masson, P.; Morgat, A.; Neto, T.B.; Paesano, S.; Pedruzzi, I.; Pilbout, S.; Pourcel, L.; Pozzato, M.; Pruess, M.; Rivoire, C.; Sigrist, C.; Sonesson, K.; Stutz, A.; Sundaram, S.; Tognolli, M.; Verbregue, L.; Wu, C.H.; Arighi, C.N.; Arminski, L.; Chen, C.; Chen, Y.; Garavelli, J.S.; Huang, H.; Laiho, K.; McGarvey, P.; Natale, D.A.; Ross, K.; Vinayaka, C.R.; Wang, Q.; Wang, Y.; Yeh, L-S.; Zhang, J.; Ruch, P.; Teodoro, D. UniProt: The universal protein knowledgebase in 2021. Nucleic Acids Res., 2021, 49(D1), D480-D489.
[http://dx.doi.org/10.1093/nar/gkaa1100] [PMID: 33237286]
[24]
Piñero, J.; Ramírez-Anguita, J.M.; Saüch-Pitarch, J.; Ronzano, F.; Centeno, E.; Sanz, F.; Furlong, L.I. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res., 2020, 48(D1), D845-D855.
[http://dx.doi.org/10.1093/nar/gkz1021] [PMID: 31680165]
[25]
Safran, M.; Dalah, I.; Alexander, J.; Rosen, N.; Iny Stein, T.; Shmoish, M.; Nativ, N.; Bahir, I.; Doniger, T.; Krug, H.; Sirota-Madi, A.; Olender, T.; Golan, Y.; Stelzer, G.; Harel, A.; Lancet, D. GeneCards Version 3: The human gene integrator. Database, 2010, 2010, baq020.
[http://dx.doi.org/10.1093/database/baq020] [PMID: 20689021]
[26]
Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.; Jensen, L.J.; Mering, C.V. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res., 2019, 47(D1), D607-D613.
[http://dx.doi.org/10.1093/nar/gky1131] [PMID: 30476243]
[27]
Zhou, Y.; Zhou, B.; Pache, L.; Chang, M.; Khodabakhshi, A.H.; Tanaseichuk, O.; Benner, C.; Chanda, S.K. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat. Commun., 2019, 10(1), 1523.
[http://dx.doi.org/10.1038/s41467-019-09234-6] [PMID: 30944313]
[28]
Chen, L.; Zhang, Y.H.; Wang, S.; Zhang, Y.; Huang, T.; Cai, Y.D. Prediction and analysis of essential genes using the enrichments of gene ontology and KEGG pathways. PLoS One, 2017, 12(9), e0184129.
[http://dx.doi.org/10.1371/journal.pone.0184129] [PMID: 28873455]
[29]
Missiuro, P.V.; Liu, K.; Zou, L.; Ross, B.C.; Zhao, G.; Liu, J.S.; Ge, H. Information flow analysis of interactome networks. PLOS Comput. Biol., 2009, 5(4), e1000350.
[http://dx.doi.org/10.1371/journal.pcbi.1000350] [PMID: 19503817]
[30]
Raman, K.; Damaraju, N.; Joshi, G.K. The organisational structure of protein networks: Revisiting the centrality-lethality hypothesis. Syst. Synth. Biol., 2014, 8(1), 73-81.
[http://dx.doi.org/10.1007/s11693-013-9123-5] [PMID: 24592293]
[31]
Burley, S.K.; Berman, H.M.; Bhikadiya, C.; Bi, C.; Chen, L.; Di Costanzo, L.; Christie, C.; Dalenberg, K.; Duarte, J.M.; Dutta, S.; Feng, Z.; Ghosh, S.; Goodsell, D.S.; Green, R.K.; Guranovic, V.; Guzenko, D.; Hudson, B.P.; Kalro, T.; Liang, Y.; Lowe, R.; Namkoong, H.; Peisach, E.; Periskova, I.; Prlic, A.; Randle, C.; Rose, A.; Rose, P.; Sala, R.; Sekharan, M.; Shao, C.; Tan, L.; Tao, Y.P.; Valasatava, Y.; Voigt, M.; Westbrook, J.; Woo, J.; Yang, H.; Young, J.; Zhuravleva, M.; Zardecki, C. RCSB protein data bank: Biological macromolecular structures enabling research and education in fundamental biology, biomedicine, biotechnology and energy. Nucleic Acids Res., 2019, 47(D1), D464-D474.
[http://dx.doi.org/10.1093/nar/gky1004] [PMID: 30357411]
[32]
Trott, O.; Olson, A.J. AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[http://dx.doi.org/10.1002/jcc.21334] [PMID: 19499576]
[33]
Kuo, C.T.; Chang, C.; Lee, W.S. Folic acid inhibits COLO-205 colon cancer cell proliferation through activating the FRα/c-SRC/ERK1/2/NFκB/TP53 pathway: In vitro and in vivo studies. Sci. Rep., 2015, 5(1), 11187.
[http://dx.doi.org/10.1038/srep11187] [PMID: 26056802]
[34]
Zheng, J.; Li, Q.; He, L.; Weng, H.; Su, D.; Liu, X.; Ling, W.; Wang, D. Protocatechuic acid inhibits vulnerable atherosclerotic lesion progression in older Apoe-/- mice. J. Nutr., 2020, 150(5), 1167-1177.
[http://dx.doi.org/10.1093/jn/nxaa017] [PMID: 32047914]
[35]
Jeon, Y.J.; Jung, S.N.; Yun, J.; Lee, C.W.; Choi, J.; Lee, Y.J.; Han, D.C.; Kwon, B.M. Ginkgetin inhibits the growth of DU-145 prostate cancer cells through inhibition of signal transducer and activator of transcription 3 activity. Cancer Sci., 2015, 106(4), 413-420.
[http://dx.doi.org/10.1111/cas.12608] [PMID: 25611086]
[36]
Hsueh, Y.S.; Yen, C.C.; Shih, N.Y.; Chiang, N.J.; Li, C.F.; Chen, L.T. Autophagy is involved in endogenous and NVP-AUY922-induced KIT degradation in gastrointestinal stromal tumors. Autophagy, 2013, 9(2), 220-233.
[http://dx.doi.org/10.4161/auto.22802] [PMID: 23196876]
[37]
Hsueh, Y.S.; Chang, H.H.; Chiang, N.J.; Yen, C.C.; Li, C.F.; Chen, L.T. MTOR inhibition enhances NVP-AUY922-induced autophagy-mediated KIT degradation and cytotoxicity in imatinib-resistant gastrointestinal stromal tumors. Oncotarget, 2014, 5(22), 11723-11736.
[http://dx.doi.org/10.18632/oncotarget.2607] [PMID: 25375091]
[38]
Vasan, N.; Razavi, P.; Johnson, J.L.; Shao, H.; Shah, H.; Antoine, A.; Ladewig, E.; Gorelick, A.; Lin, T.Y.; Toska, E.; Xu, G.; Kazmi, A.; Chang, M.T.; Taylor, B.S.; Dickler, M.N.; Jhaveri, K.; Chandarlapaty, S.; Rabadan, R.; Reznik, E.; Smith, M.L.; Sebra, R.; Schimmoller, F.; Wilson, T.R.; Friedman, L.S.; Cantley, L.C.; Scaltriti, M.; Baselga, J. Double PIK3CA mutations in cis increase oncogenicity and sensitivity to PI3Kα inhibitors. Science, 2019, 366(6466), 714-723.
[http://dx.doi.org/10.1126/science.aaw9032] [PMID: 31699932]
[39]
Nixon, M.J.; Formisano, L.; Mayer, I.A.; Estrada, M.V.; González-Ericsson, P.I.; Isakoff, S.J.; Forero-Torres, A.; Won, H.; Sanders, M.E.; Solit, D.B.; Berger, M.F.; Cantley, L.C.; Winer, E.P.; Arteaga, C.L.; Balko, J.M. PIK3CA and MAP3K1 alterations imply luminal A status and are associated with clinical benefit from pan-PI3K inhibitor buparlisib and letrozole in ER+ metastatic breast cancer. NPJ Breast Cancer, 2019, 5(1), 31.
[http://dx.doi.org/10.1038/s41523-019-0126-6] [PMID: 31552290]
[40]
Jin, H.; Park, M.H.; Kim, S.M. 3,3′-Diindolylmethane potentiates paclitaxel-induced antitumor effects on gastric cancer cells through the Akt/FOXM1 signaling cascade. Oncol. Rep., 2015, 33(4), 2031-2036.
[http://dx.doi.org/10.3892/or.2015.3758] [PMID: 25633416]
[41]
Lopez-Vazquez, A.; Garcia-Banuelos, J.J.; Gonzalez-Garibay, A.S.; Urzua-Lozano, P.E.; Del Toro-Arreola, S.; Bueno-Topete, M.R.; Sanchez-Enriquez, S.; Munoz-Valle, J.F.; Jave-Suarez, L.F.; Armendariz-Borunda, J.; Bastidas-Ramirez, B.E. IRS-1 pY612 and Akt-1/PKB pT308 phosphorylation and antiinflammatory effect of diindolylmethane in adipocytes cocultured with macrophages. Med. Chem., 2017, 13(8), 727-733.
[http://dx.doi.org/10.2174/1573406413666170922095011] [PMID: 28934926]
[42]
Gao, N.; Cheng, S.; Budhraja, A.; Liu, E.H.; Chen, J.; Chen, D.; Yang, Z.; Luo, J.; Shi, X.; Zhang, Z. 3,3′-Diindolylmethane exhibits antileukemic activity in vitro and in vivo through a Akt-dependent process. PLoS One, 2012, 7(2), e31783.
[http://dx.doi.org/10.1371/journal.pone.0031783] [PMID: 22363731]
[43]
Lee, S.; Lee, H.S.; Baek, M.; Lee, D.Y.; Bang, Y.J.; Cho, H.N.; Lee, Y.S.; Ha, J.H.; Kim, H.Y.; Jeoung, D.I. MAPK signaling is involved in camptothecin-induced cell death. Mol. Cells, 2002, 14(3), 348-354.
[PMID: 12521296]
[44]
Miltyk, W.; Karna, E.; Palka, J.A. Prolidase-independent mechanism of camptothecin-induced inhibition of collagen biosynthesis in cultured human skin fibroblasts. J. Biochem., 2007, 141(2), 287-292.
[http://dx.doi.org/10.1093/jb/mvm022] [PMID: 17169973]
[45]
Grommes, C.; Oxnard, G.R.; Kris, M.G.; Miller, V.A.; Pao, W.; Holodny, A.I.; Clarke, J.L.; Lassman, A.B. “Pulsatile” high-dose weekly erlotinib for CNS metastases from EGFR mutant non-small cell lung cancer. Neuro-oncol., 2011, 13(12), 1364-1369.
[http://dx.doi.org/10.1093/neuonc/nor121] [PMID: 21865399]
[46]
Orcutt, K.P.; Parsons, A.D.; Sibenaller, Z.A.; Scarbrough, P.M.; Zhu, Y.; Sobhakumari, A.; Wilke, W.W.; Kalen, A.L.; Goswami, P.; Miller, F.J., Jr; Spitz, D.R.; Simons, A.L. Erlotinib-mediated inhibition of EGFR signaling induces metabolic oxidative stress through NOX4. Cancer Res., 2011, 71(11), 3932-3940.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-3425] [PMID: 21482679]
[47]
Chen, J.P.; Smith, M.; Kolinsky, K.; Adames, V.; Mehta, N.; Desai, B.; Rashed, M.; Wheeldon, E.; Linn, M.; Higgins, B. Anti-tumor activity of EGFR/TK inhibitor erlotinib (Tarceva™, OSI-774) alone and in combination with CPT-11 (irinotecan) in human colorectal cancer xenograft models. Cancer Chemother. Pharmacol., 2007, 59(5), 651-659.
[48]
Li, S.; Zhang, B. Traditional Chinese medicine network pharmacology: Theory, methodology and application. Chin. J. Nat. Med., 2013, 11(2), 110-120.
[http://dx.doi.org/10.1016/S1875-5364(13)60037-0] [PMID: 23787177]
[49]
Xu, M.; Dong, Y.; Wan, S.; Yan, T.; Cao, J.; Wu, L.; Bi, K.; Jia, Y. Schisantherin B ameliorates Aβ1-42-induced cognitive decline via restoration of GLT-1 in a mouse model of Alzheimer’s disease. Physiol. Behav., 2016, 167, 265-273.
[http://dx.doi.org/10.1016/j.physbeh.2016.09.018] [PMID: 27660034]
[50]
Li, Y.; Zhao, J.; Hölscher, C. Therapeutic potential of baicalein in Alzheimer’s disease and Parkinson’s disease. CNS Drugs, 2017, 31(8), 639-652.
[http://dx.doi.org/10.1007/s40263-017-0451-y] [PMID: 28634902]
[51]
Saini, P.; Lakshmayya, L.; Bisht, V.S. Anti-Alzheimer activity of isolated karanjin from Pongamia pinnata (L.) pierre and embelin from Embelia ribes Burm.f. Ayu, 2017, 38(1-2), 76-81.
[PMID: 29861598]
[52]
Akhtar, A.; Sah, S.P. Insulin signaling pathway and related molecules: Role in neurodegeneration and Alzheimer’s disease. Neurochem. Int., 2020, 135, 104707.
[http://dx.doi.org/10.1016/j.neuint.2020.104707] [PMID: 32092326]
[53]
Wang, H.; Zhao, S.; Yue, Q. Study of the effect of daicong solution on gene expression of M1,M3 receptor in aged rat dementia model. Acta Academae Medicinae Weifang, 2007, 29, 392-393.
[54]
Zhuang, X.; Gross, C.; Santarelli, L.; Compan, V.; Trillat, A.C.; Hen, R. Altered emotional states in knockout mice lacking 5-HT1A or 5-HT1B receptors. Neuropsychopharmacology, 1999, 21(2)(Suppl.), 52S-60S.
[http://dx.doi.org/10.1016/S0893-133X(99)00047-0] [PMID: 10432489]
[55]
Zhen, P.L.; Yong, Y.Z.; Ying, Z.C.; Chong, C.; Hua, L.S. Influence of long- term usage of diazepam on neuroactive ligand- receptor interaction signaling pathway. J. China Pharm. Univ., 2011, 42(5), 443-446.
[56]
Doraiswamy, P.M. Non-cholinergic strategies for treating and preventing Alzheimer’s disease. CNS Drugs, 2002, 16(12), 811-824.
[http://dx.doi.org/10.2165/00023210-200216120-00003] [PMID: 12421115]
[57]
Ballard, C.; Aarsland, D.; Francis, P.; Corbett, A. Neuropsychiatric symptoms in patients with dementias associated with cortical Lewy bodies: Pathophysiology, clinical features, and pharmacological management. Drugs Aging, 2013, 30(8), 603-611.
[http://dx.doi.org/10.1007/s40266-013-0092-x] [PMID: 23681401]
[58]
Olney, J.W.; Wozniak, D.F.; Farber, N.B. Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch. Neurol., 1997, 54(10), 1234-1240.
[http://dx.doi.org/10.1001/archneur.1997.00550220042012] [PMID: 9341569]
[59]
Emilien, G.; Beyreuther, K.; Masters, C.L.; Maloteaux, J.M. Prospects for pharmacological intervention in Alzheimer disease. Arch. Neurol., 2000, 57(4), 454-459.
[http://dx.doi.org/10.1001/archneur.57.4.454] [PMID: 10768617]
[60]
Salomon-Zimri, S.; Koren, A.; Angel, A.; Ben-Zur, T.; Offen, D.; Michaelson, D.M. The role of MAPK’s signaling in mediating ApoE4-driven pathology in vivo. Curr. Alzheimer Res., 2019, 16(4), 281-292.
[http://dx.doi.org/10.2174/1567205016666190228120254] [PMID: 30819082]
[61]
Zhou, Q.; Wang, M.; Du, Y.; Zhang, W.; Bai, M.; Zhang, Z.; Li, Z.; Miao, J. Inhibition of c-Jun N-terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. Ann. Neurol., 2015, 77(4), 637-654.
[http://dx.doi.org/10.1002/ana.24361] [PMID: 25611954]
[62]
Feld, M.; Krawczyk, M.C.; Sol Fustiñana, M.; Blake, M.G.; Baratti, C.M.; Romano, A.; Boccia, M.M. Decrease of ERK/MAPK overactivation in prefrontal cortex reverses early memory deficit in a mouse model of Alzheimer’s disease. J. Alzheimers Dis., 2014, 40(1), 69-82.
[http://dx.doi.org/10.3233/JAD-131076] [PMID: 24334722]
[63]
Ji, Y.; Han, J.; Lee, N.; Yoon, J.H.; Youn, K.; Ha, H.J.; Yoon, E.; Kim, D.H.; Jun, M. Neuroprotective effects of Baicalein, Wogonin, and Oroxylin A on amyloid beta-induced toxicity via NF-κB/MAPK pathway modulation. Molecules, 2020, 25(21), 5087.
[http://dx.doi.org/10.3390/molecules25215087] [PMID: 33147823]
[64]
Pei, L.; Shang, Y.; Jin, H.; Wang, S.; Wei, N.; Yan, H.; Wu, Y.; Yao, C.; Wang, X.; Zhu, L.Q.; Lu, Y. DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J. Neurosci., 2014, 34(19), 6546-6556.
[http://dx.doi.org/10.1523/JNEUROSCI.5119-13.2014] [PMID: 24806680]
[65]
Ahmad, F.; Singh, K.; Das, D.; Gowaikar, R.; Shaw, E.; Ramachandran, A.; Rupanagudi, K.V.; Kommaddi, R.P.; Bennett, D.A.; Ravindranath, V. Reactive oxygen species-mediated loss of synaptic akt1 signaling leads to deficient activity-dependent protein translation early in Alzheimer’s disease. Antioxid. Redox Signal., 2017, 27(16), 1269-1280.
[http://dx.doi.org/10.1089/ars.2016.6860] [PMID: 28264587]
[66]
Curtis, D.; Bandyopadhyay, S. Mini-review: Role of the PI3K/Akt pathway and tyrosine phosphatases in Alzheimer’s disease susceptibility. Ann. Hum. Genet., 2021, 85(1), 1-6.
[http://dx.doi.org/10.1111/ahg.12410] [PMID: 33258115]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy