Mini-Review Article

Parkinson’s Disease: A Current Perspectives on Parkinson’s Disease and Key Bioactive Natural Compounds as Future Potential Drug Candidates

Author(s): Nabeel Ali, Amna Syeda, Tenzin Topgyal, Naseem Gaur and Asimul Islam*

Volume 23, Issue 1, 2022

Published on: 23 June, 2021

Page: [2 - 20] Pages: 19

DOI: 10.2174/1389450122666210623115505

Price: $65

Abstract

Abstract: Parkinson’s disease (PD) is one of the most common types of neurological disorder prevailing worldwide and is rapidly increasing in the elderly population across the globe. The cause of PD is still unknown, but a number of genetic as well as environmental factors contributing to the pathogenesis of Parkinson’s disease have been identified. The hallmark of PD includes dopamine deficiency (neurotransmitter imbalance) due to the gradual loss of dopaminergic nerves in the substantia nigra in the midbrain. Studying the mutation of associated genes is particularly informative in understanding the fundamental molecular and pathogenic changes in PD. Intracellular accumulation of misfolded or degraded protein due to mutated genes leading to the manifestation of mitochondrial dysfunction, oxidative stress followed by multifaceted patho-physiologic symptoms. Other studies include the appearance of both motor and non-motor responses like resting tremor, muscle stiffness, slow movement and anxiety, anaemia, constipation, rapid eye movement sleep behaviour disorder. Many bioactive natural compounds have shown positive pharmacological results in treating a number of extensive disease models of PD. Despite the availability of end number of potent medicinal plants around the world, limited research has been done associated with various neurological disorders, including PD. The currently available dopamine-based drug treatments have several side-effects, further, not effective enough to combat PD completely. Therefore, various plant-based compounds with medicinal benefits have grabbed lots of attention of researchers to deal with various life-threatening neurodegenerative disorders like PD. On the basis of literature available till date, here, we have discussed and addressed the molecular basis, current scenario, and the best possible treatment of PD for the future with minimal or no side-effects using various key bioactive compounds from natural origin/medicinal plants.

Keywords: Parkinsonism, dopamine, natural products, emerging treatment, neurodegenerative disorder, α-synuclein.

Graphical Abstract

[1]
Bhattacharyya KB. Hallmarks of clinical aspects of Parkinson’s disease through centuriesInternational review of neurobiology. Elsevier 2017; pp. 1-23.
[2]
Gurgel RK. Relationship of hearing loss and dementia: A prospective, population-based study. Eur Acad Otol Neurotol 2014; 35(5): 775.
[http://dx.doi.org/10.1097/MAO.0000000000000313]
[3]
Triarhou LC. Dopamine and parkinson’s disease.Madame curie bioscience database. Landes bioscience. 2013. Internet
[4]
Giráldez-Pérez R, Antolín-Vallespín M, Muñoz M, Sánchez-Capelo A. Models of α-synuclein aggregation in Parkinson’s disease. Acta Neuropathol Commun 2014; 2(1): 176.
[http://dx.doi.org/10.1186/s40478-014-0176-9] [PMID: 25497491]
[5]
Kim SD, Allen NE, Canning CG, Fung VS. Postural instability in patients with Parkinson’s disease. Epidemiology, pathophysiology and management. CNS Drugs 2013; 27(2): 97-112.
[http://dx.doi.org/10.1007/s40263-012-0012-3] [PMID: 23076544]
[6]
Ziemssen T, Reichmann H. Non-motor dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 2007; 13(6): 323-32.
[http://dx.doi.org/10.1016/j.parkreldis.2006.12.014] [PMID: 17349813]
[7]
Montgomery EB Jr, Gale JT. Mechanisms of action of deep brain stimulation(DBS). Neurosci Biobehav Rev 2008; 32(3): 388-407.
[http://dx.doi.org/10.1016/j.neubiorev.2007.06.003] [PMID: 17706780]
[8]
Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. Translational principles of deep brain stimulation. Nat Rev Neurosci 2007; 8(8): 623-35.
[http://dx.doi.org/10.1038/nrn2196] [PMID: 17637800]
[9]
Zaaroor M, Sinai A, Goldsher D, Eran A, Nassar M, Schlesinger I. Magnetic resonance-guided focused ultrasound thalamotomy for tremor: A report of 30 Parkinson’s disease and essential tremor cases. J Neurosurg 2018; 128(1): 202-10.
[http://dx.doi.org/10.3171/2016.10.JNS16758] [PMID: 28298022]
[10]
Jung NY, Park CK, Kim M, Lee PH, Sohn YH, Chang JW. The efficacy and limits of magnetic resonance-guided focused ultrasound pallidotomy for Parkinson’s disease: A Phase I clinical trial. J Neurosurg 2018; 130(6): 1-9.
[PMID: 30095337]
[11]
Parmar M, Grealish S, Henchcliffe C. The future of stem cell therapies for Parkinson disease. Nat Rev Neurosci 2020; 21(2): 103-15.
[http://dx.doi.org/10.1038/s41583-019-0257-7] [PMID: 31907406]
[12]
Dias DA, Urban S, Roessner U. A historical overview of natural products in drug discovery. Metabolites 2012; 2(2): 303-36.
[http://dx.doi.org/10.3390/metabo2020303] [PMID: 24957513]
[13]
Thomford NE, Senthebane DA, Rowe A, et al. Natural products for drug discovery in the 21st century: Innovations for novel drug discovery. Int J Mol Sci 2018; 19(6): 1578.
[http://dx.doi.org/10.3390/ijms19061578] [PMID: 29799486]
[14]
Twelves D, Perkins KS, Counsell C. Systematic review of incidence studies of Parkinson’s disease. Mov Disord 2003; 18(1): 19-31.
[http://dx.doi.org/10.1002/mds.10305] [PMID: 12518297]
[15]
Savica R, Grossardt BR, Bower JH, Ahlskog JE, Rocca WA. Incidence and pathology of synucleinopathies and tauopathies related to parkinsonism. JAMA Neurol 2013; 70(7): 859-66.
[http://dx.doi.org/10.1001/jamaneurol.2013.114] [PMID: 23689920]
[16]
Baldereschi M, Di Carlo A, Rocca WA, et al. Parkinson’s disease and parkinsonism in a longitudinal study: Two-fold higher incidence in men. Neurology 2000; 55(9): 1358-63.
[http://dx.doi.org/10.1212/WNL.55.9.1358] [PMID: 11087781]
[17]
Gordon PH, Mehal JM, Holman RC, Rowland AS, Cheek JE. Parkinson’s disease among American Indians and Alaska natives: A nationwide prevalence study. Mov Disord 2012; 27(11): 1456-9.
[http://dx.doi.org/10.1002/mds.25153] [PMID: 22893192]
[18]
Abbas MM, Xu Z, Tan LCS. Epidemiology of Parkinson’s disease—east versus west. Mov Disord Clin Pract (Hoboken) 2017; 5(1): 14-28.
[http://dx.doi.org/10.1002/mdc3.12568] [PMID: 30363342]
[19]
Moretto A, Colosio C. The role of pesticide exposure in the genesis of Parkinson’s disease: Epidemiological studies and experimental data. Toxicology 2013; 307: 24-34.
[http://dx.doi.org/10.1016/j.tox.2012.11.021] [PMID: 23246862]
[20]
Ball N, Teo WP, Chandra S, Chapman J. Parkinson’s disease and the environment. Front Neurol 2019; 10: 218.
[http://dx.doi.org/10.3389/fneur.2019.00218] [PMID: 30941085]
[21]
Van Den Eeden SK, Tanner CM, Bernstein AL, et al. Incidence of Parkinson’s disease: Variation by age, gender, and race/ethnicity. Am J Epidemiol 2003; 157(11): 1015-22.
[http://dx.doi.org/10.1093/aje/kwg068] [PMID: 12777365]
[22]
Raza C, Anjum R, Shakeel NUA. Parkinson’s disease: Mechanisms, translational models and management strategies. Life Sci 2019; 226: 77-90.
[http://dx.doi.org/10.1016/j.lfs.2019.03.057] [PMID: 30980848]
[23]
Dauer W, Przedborski S. Parkinson’s disease: Mechanisms and models. Neuron 2003; 39(6): 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[24]
Alberico SL, Cassell MD, Narayanan NS. The vulnerable ventral tegmental area in Parkinson’s disease. Basal Ganglia 2015; 5(2-3): 51-5.
[http://dx.doi.org/10.1016/j.baga.2015.06.001] [PMID: 26251824]
[25]
Dickson DW, Fujishiro H, Orr C, et al. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 2009; 15(Suppl. 3): S1-5.
[http://dx.doi.org/10.1016/S1353-8020(09)70769-2] [PMID: 20082965]
[26]
Keo A, Mahfouz A, Ingrassia AMT, et al. Transcriptomic signatures of brain regional vulnerability to Parkinson’s disease. Commun Biol 2020; 3(1): 101.
[http://dx.doi.org/10.1038/s42003-020-0804-9] [PMID: 32139796]
[27]
Seo EH, Lee DY, Lee JM, et al. Whole-brain functional networks in cognitively normal, mild cognitive impairment, and Alzheimer’s disease. PLoS One 2013; 8(1)e53922
[http://dx.doi.org/10.1371/journal.pone.0053922] [PMID: 23335980]
[28]
Selkoe DJ. Cell biology of protein misfolding: The examples of Alzheimer’s and Parkinson’s diseases. Nat Cell Biol 2004; 6(11): 1054-61.
[http://dx.doi.org/10.1038/ncb1104-1054] [PMID: 15516999]
[29]
Hartl FU, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature 2011; 475(7356): 324-32.
[http://dx.doi.org/10.1038/nature10317] [PMID: 21776078]
[30]
Lehtonen Š, Sonninen TM, Wojciechowski S, Goldsteins G, Koistinaho J. Dysfunction of cellular proteostasis in Parkinsons disease. Front Neurosci 2019; 13: 457.
[http://dx.doi.org/10.3389/fnins.2019.00457] [PMID: 31133790]
[31]
Fuchs J, Tichopad A, Golub Y, et al. Genetic variability in the SNCA gene influences α-synuclein levels in the blood and brain. FASEB J 2008; 22(5): 1327-34.
[http://dx.doi.org/10.1096/fj.07-9348com] [PMID: 18162487]
[32]
Hoyer W, Cherny D, Subramaniam V, Jovin TM. Impact of the acidic C-terminal region comprising amino acids 109-140 on α-synuclein aggregation in vitro. Biochemistry 2004; 43(51): 16233-42.
[http://dx.doi.org/10.1021/bi048453u] [PMID: 15610017]
[33]
Vekrellis K, Xilouri M, Emmanouilidou E, Rideout HJ, Stefanis L. Pathological roles of α-synuclein in neurological disorders. Lancet Neurol 2011; 10(11): 1015-25.
[http://dx.doi.org/10.1016/S1474-4422(11)70213-7] [PMID: 22014436]
[34]
Soldner F, Stelzer Y, Shivalila CS, et al. Parkinson-associated risk variant in distal enhancer of α-synuclein modulates target gene expression. Nature 2016; 533(7601): 95-9.
[http://dx.doi.org/10.1038/nature17939] [PMID: 27096366]
[35]
Wales P, Pinho R, Lázaro DF, Outeiro TF. Limelight on alpha-synuclein: Pathological and mechanistic implications in neurodegeneration. J Parkinsons Dis 2013; 3(4): 415-59.
[http://dx.doi.org/10.3233/JPD-130216] [PMID: 24270242]
[36]
Burré J. The synaptic function of α-synuclein. J Parkinsons Dis 2015; 5(4): 699-713.
[http://dx.doi.org/10.3233/JPD-150642] [PMID: 26407041]
[37]
Robak LA, Jansen IE, van Rooij J, et al. Excessive burden of lysosomal storage disorder gene variants in Parkinson’s disease. Brain 2017; 140(12): 3191-203.
[http://dx.doi.org/10.1093/brain/awx285] [PMID: 29140481]
[38]
Balestrino R, Schapira AHV. Glucocerebrosidase and Parkinson disease: Molecular, clinical, and therapeutic implications. Neuroscientist 2018; 24(5): 540-59.
[http://dx.doi.org/10.1177/1073858417748875] [PMID: 29400127]
[39]
Han D, Zheng W, Wang X, Chen Z. Proteostasis of α-synuclein and its role in the pathogenesis of parkinson’s disease. Front Cell Neurosci 2020; 14: 45.
[http://dx.doi.org/10.3389/fncel.2020.00045] [PMID: 32210767]
[40]
Poewe W, Seppi K, Tanner CM, et al. Parkinson disease. Nat Rev Dis Primers 2017; 3(1): 17013.
[http://dx.doi.org/10.1038/nrdp.2017.13] [PMID: 28332488]
[41]
Nalls MA, Pankratz N, Lill CM, et al. Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 2014; 46(9): 989-93.
[http://dx.doi.org/10.1038/ng.3043] [PMID: 25064009]
[42]
Perrino G, et al. Quantitative characterization of α-synuclein aggregation in living cells through automated microfluidics feedback control. Cell reports 2019; 7(3): 916-27. e5
[http://dx.doi.org/10.1016/j.celrep.2019.03.081]
[43]
Kaushik S, Cuervo AM. Proteostasis and aging. Nat Med 2015; 21(12): 1406-15.
[http://dx.doi.org/10.1038/nm.4001] [PMID: 26646497]
[44]
Xilouri M, Brekk OR, Stefanis L. α-Synuclein and protein degradation systems: A reciprocal relationship. Mol Neurobiol 2013; 47(2): 537-51.
[http://dx.doi.org/10.1007/s12035-012-8341-2] [PMID: 22941029]
[45]
Goedert M, Clavaguera F, Tolnay M. The propagation of prion-like protein inclusions in neurodegenerative diseases. Trends Neurosci 2010; 33(7): 317-25.
[http://dx.doi.org/10.1016/j.tins.2010.04.003] [PMID: 20493564]
[46]
Rey NL, Petit GH, Bousset L, Melki R, Brundin P. Transfer of human α-synuclein from the olfactory bulb to interconnected brain regions in mice. Acta Neuropathol 2013; 126(4): 555-73.
[http://dx.doi.org/10.1007/s00401-013-1160-3] [PMID: 23925565]
[47]
El-Agnaf OM, Salem SA, Paleologou KE, et al. α-synuclein implicated in Parkinson’s disease is present in extracellular biological fluids, including human plasma. FASEB J 2003; 17(13): 1945-7.
[http://dx.doi.org/10.1096/fj.03-0098fje] [PMID: 14519670]
[48]
Brundin P, Melki R, Kopito R. Prion-like transmission of protein aggregates in neurodegenerative diseases. Nat Rev Mol Cell Biol 2010; 11(4): 301-7.
[http://dx.doi.org/10.1038/nrm2873] [PMID: 20308987]
[49]
Angot E, Steiner JA, Hansen C, Li JY, Brundin P. Are synucleinopathies prion-like disorders? Lancet Neurol 2010; 9(11): 1128-38.
[http://dx.doi.org/10.1016/S1474-4422(10)70213-1] [PMID: 20846907]
[50]
Tyson T, Steiner JA, Brundin P. Sorting out release, uptake and processing of alpha-synuclein during prion-like spread of pathology. J Neurochem 2016; 139(Suppl. 1): 275-89.
[http://dx.doi.org/10.1111/jnc.13449] [PMID: 26617280]
[51]
Mao X, Ou MT, Karuppagounder SS, et al. Pathological α-synuclein transmission initiated by binding lymphocyte-activation gene 3. Science 2016; 353(6307)aah3374
[http://dx.doi.org/10.1126/science.aah3374] [PMID: 27708076]
[52]
Berg D, Postuma RB, Adler CH, et al. MDS research criteria for prodromal Parkinson’s disease. Mov Disord 2015; 30(12): 1600-11.
[http://dx.doi.org/10.1002/mds.26431] [PMID: 26474317]
[53]
Mahlknecht P, Seppi K, Poewe W. The concept of prodromal Parkinson’s disease. J Parkinsons Dis 2015; 5(4): 681-97.
[http://dx.doi.org/10.3233/JPD-150685] [PMID: 26485429]
[54]
George S, Rey NL, Reichenbach N, Steiner JA, Brundin P. α-Synuclein: The long distance runner. Brain Pathol 2013; 23(3): 350-7.
[http://dx.doi.org/10.1111/bpa.12046] [PMID: 23587141]
[55]
Schapira A. Mitochondrial dysfunction in Parkinson’s disease. Nature publishing group 2007.
[56]
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016; 139(Suppl. 1): 216-31.
[http://dx.doi.org/10.1111/jnc.13731] [PMID: 27546335]
[57]
Zheng B, et al. PGC-1α, a potential therapeutic target for early intervention in Parkinson’s disease. Science translational medicine 2010; 2(52): 52ra73-3.
[58]
Devi L, Raghavendran V, Prabhu BM, Avadhani NG, Anandatheerthavarada HK. Mitochondrial import and accumulation of α-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brain. J Biol Chem 2008; 283(14): 9089-100.
[http://dx.doi.org/10.1074/jbc.M710012200] [PMID: 18245082]
[59]
Eschbach J, Björn von E, Kathrin M, et al. Mutual exacerbation of PGC-1α deregulation and α-synuclein oligomerization. Ann Neurol 2015; 77(1): 15.
[http://dx.doi.org/10.1002/ana.24294] [PMID: 25363075]
[60]
Ekstrand MI, Terzioglu M, Galter D, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci USA 2007; 104(4): 1325-30.
[http://dx.doi.org/10.1073/pnas.0605208103] [PMID: 17227870]
[61]
Sossi V, de la Fuente-Fernández R, Holden JE, Schulzer M, Ruth TJ, Stoessl J. Changes of dopamine turnover in the progression of Parkinson’s disease as measured by positron emission tomography: Their relation to disease-compensatory mechanisms. J Cereb Blood Flow Metab 2004; 24(8): 869-76.
[http://dx.doi.org/10.1097/01.WCB.0000126563.85360.75] [PMID: 15362717]
[62]
Sossi V, de la Fuente-Fernández R, Nandhagopal R, et al. Dopamine turnover increases in asymptomatic LRRK2 mutations carriers. Mov Disord 2010; 25(16): 2717-23.
[http://dx.doi.org/10.1002/mds.23356] [PMID: 20939082]
[63]
Ramalingam M, Kim S-J. Reactive oxygen/nitrogen species and their functional correlations in neurodegenerative diseases. J Neural Transm (Vienna) 2012; 119(8): 891-910.
[http://dx.doi.org/10.1007/s00702-011-0758-7] [PMID: 22212484]
[64]
Gaki GS, Papavassiliou AG. Oxidative stress-induced signaling pathways implicated in the pathogenesis of Parkinson’s disease. Neuromolecular Med 2014; 16(2): 217-30.
[http://dx.doi.org/10.1007/s12017-014-8294-x] [PMID: 24522549]
[65]
Verma M, Jianhui Zhu, Kent ZQW, Charleen TC. Chronic treatment with the complex I inhibitor MPP+ depletes endogenous PTEN-induced kinase 1 (PINK1) via upregulation of BCL-2-associated athanogene 6. J Biol Chem 2020; 295(23): 7865-76.
[66]
Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson’s disease. J Parkinsons Dis 2013; 3(4): 461-91.
[http://dx.doi.org/10.3233/JPD-130230] [PMID: 24252804]
[67]
Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 2003; 299(5604): 256-9.
[http://dx.doi.org/10.1126/science.1077209] [PMID: 12446870]
[68]
Di Nottia M, Masciullo M, Verrigni D, et al. DJ-1 modulates mitochondrial response to oxidative stress: Clues from a novel diagnosis of PARK7. Clin Genet 2017; 92(1): 18-25.
[http://dx.doi.org/10.1111/cge.12841] [PMID: 27460976]
[69]
Guzman JN, Sanchez-Padilla J, Wokosin D, et al. Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 2010; 468(7324): 696-700.
[http://dx.doi.org/10.1038/nature09536] [PMID: 21068725]
[70]
Bolam JP, Pissadaki EK. Living on the edge with too many mouths to feed: Why dopamine neurons die. Mov Disord 2012; 27(12): 1478-83.
[http://dx.doi.org/10.1002/mds.25135] [PMID: 23008164]
[71]
Pissadaki EK, Bolam JP. The energy cost of action potential propagation in dopamine neurons: Clues to susceptibility in Parkinson’s disease. Front Comput Neurosci 2013; 7: 13.
[http://dx.doi.org/10.3389/fncom.2013.00013] [PMID: 23515615]
[72]
Mosharov EV, Larsen KE, Kanter E, et al. Interplay between cytosolic dopamine, calcium, and α-synuclein causes selective death of substantia nigra neurons. Neuron 2009; 62(2): 218-29.
[http://dx.doi.org/10.1016/j.neuron.2009.01.033] [PMID: 19409267]
[73]
Surmeier DJ, Guzman JN, Sanchez-Padilla J, Schumacker PT. The role of calcium and mitochondrial oxidant stress in the loss of substantia nigra pars compacta dopaminergic neurons in Parkinson’s disease. Neuroscience 2011; 198: 221-31.
[http://dx.doi.org/10.1016/j.neuroscience.2011.08.045] [PMID: 21884755]
[74]
Surmeier DJ, Schumacker PT, Guzman JD, Ilijic E, Yang B, Zampese E. Calcium and Parkinson’s disease. Biochem Biophys Res Commun 2017; 483(4): 1013-9.
[http://dx.doi.org/10.1016/j.bbrc.2016.08.168] [PMID: 27590583]
[75]
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science 2016; 353(6301): 777-83.
[http://dx.doi.org/10.1126/science.aag2590] [PMID: 27540165]
[76]
Kouli A, Torsney KM, Kuan W-L. Parkinson’s disease: Etiology, neuropathology, and pathogenesis. Codon Publications 2018.
[http://dx.doi.org/10.15586/codonpublications.parkinsonsdisease.2018.ch1]
[77]
Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science 1997; 276(5321): 2045-7.
[http://dx.doi.org/10.1126/science.276.5321.2045] [PMID: 9197268]
[78]
Wilkinson KD, Lee KM, Deshpande S, Duerksen-Hughes P, Boss JM, Pohl J. The neuron-specific protein PGP 9.5 is a ubiquitin carboxyl-terminal hydrolase. Science 1989; 246(4930): 670-3.
[http://dx.doi.org/10.1126/science.2530630] [PMID: 2530630]
[79]
Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 1998; 392(6676): 605-8.
[http://dx.doi.org/10.1038/33416] [PMID: 9560156]
[80]
Le WD, Xu P, Jankovic J, et al. Mutations in NR4A2 associated with familial Parkinson disease. Nat Genet 2003; 33(1): 85-9.
[http://dx.doi.org/10.1038/ng1066] [PMID: 12496759]
[81]
Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 2004; 304(5674): 1158-60.
[http://dx.doi.org/10.1126/science.1096284] [PMID: 15087508]
[82]
Paisán-Ruíz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 2004; 44(4): 595-600.
[http://dx.doi.org/10.1016/j.neuron.2004.10.023] [PMID: 15541308]
[83]
Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 2004; 44(4): 601-7.
[http://dx.doi.org/10.1016/j.neuron.2004.11.005] [PMID: 15541309]
[84]
Goker-Alpan O, Schiffmann R, LaMarca ME, Nussbaum RL, McInerney-Leo A, Sidransky E. Parkinsonism among Gaucher disease carriers. J Med Genet 2004; 41(12): 937-40.
[http://dx.doi.org/10.1136/jmg.2004.024455] [PMID: 15591280]
[85]
Ramirez A, Heimbach A, Gründemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet 2006; 38(10): 1184-91.
[http://dx.doi.org/10.1038/ng1884] [PMID: 16964263]
[86]
Di Fonzo A, Dekker MC, Montagna P, et al. FBXO7 mutations cause autosomal recessive, early-onset parkinsonian-pyramidal syndrome. Neurology 2009; 72(3): 240-5.
[http://dx.doi.org/10.1212/01.wnl.0000338144.10967.2b] [PMID: 19038853]
[87]
Spillantini MG, Schmidt ML, Lee VM, Trojanowski JQ, Jakes R, Goedert M. α-synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[88]
Maguire-Zeiss KA. α-Synuclein: A therapeutic target for Parkinson’s disease? Pharmacol Res 2008; 58(5-6): 271-80.
[http://dx.doi.org/10.1016/j.phrs.2008.09.006] [PMID: 18840530]
[89]
Cuervo AM, Stefanis L, Fredenburg R, Lansbury PT, Sulzer D. Impaired degradation of mutant α-synuclein by chaperone-mediated autophagy. Science 2004; 305(5688): 1292-5.
[http://dx.doi.org/10.1126/science.1101738] [PMID: 15333840]
[90]
Esteves AR, Swerdlow RH, Cardoso SM. LRRK2, a puzzling protein: Insights into Parkinson’s disease pathogenesis. Exp Neurol 2014; 261: 206-16.
[http://dx.doi.org/10.1016/j.expneurol.2014.05.025] [PMID: 24907399]
[91]
Yue Z, Lachenmayer ML. Genetic LRRK2 models of Parkinson’s disease: Dissecting the pathogenic pathway and exploring clinical applications. Mov Disord 2011; 26(8): 1386-97.
[http://dx.doi.org/10.1002/mds.23737] [PMID: 21538530]
[92]
Bieri G, Brahic M, Bousset L, et al. LRRK2 modifies α-syn pathology and spread in mouse models and human neurons. Acta Neuropathol 2019; 137(6): 961-80.
[http://dx.doi.org/10.1007/s00401-019-01995-0] [PMID: 30927072]
[93]
Mazzulli JR, Zunke F, Isacson O, Studer L, Krainc D. α-Synuclein-induced lysosomal dysfunction occurs through disruptions in protein trafficking in human midbrain synucleinopathy models. Proc Natl Acad Sci USA 2016; 113(7): 1931-6.
[http://dx.doi.org/10.1073/pnas.1520335113] [PMID: 26839413]
[94]
Muntané G, Dalfó E, Martinez A, Ferrer I. Phosphorylation of tau and α-synuclein in synaptic-enriched fractions of the frontal cortex in Alzheimer’s disease, and in Parkinson’s disease and related α-synucleinopathies. Neuroscience 2008; 152(4): 913-23.
[http://dx.doi.org/10.1016/j.neuroscience.2008.01.030] [PMID: 18343584]
[95]
Pankratz N, Foroud T. Genetics of Parkinson disease. Genet Med 2007; 9(12): 801-11.
[http://dx.doi.org/10.1097/GIM.0b013e31815bf97c] [PMID: 18091429]
[96]
Grimaldo L, Sandoval A, Garza-López E, Felix R. Involvement of Parkin in the ubiquitin proteasome system-mediated degradation of N-type voltage-gated Ca2+ channels. PLoS One 2017; 12(9)e0185289
[http://dx.doi.org/10.1371/journal.pone.0185289] [PMID: 28957379]
[97]
Kovalchuke L, Mosharov EV, Levy OA, Greene LA. Stress-induced phospho-ubiquitin formation causes parkin degradation. Sci Rep 2019; 9(1): 11682.
[http://dx.doi.org/10.1038/s41598-019-47952-5] [PMID: 31406131]
[98]
Lee W-W, Jeon BS. Clinical spectrum of dopa-responsive dystonia and related disorders. Curr Neurol Neurosci Rep 2014; 14(7): 461.
[http://dx.doi.org/10.1007/s11910-014-0461-9] [PMID: 24844652]
[99]
Mitsumoto A, Nakagawa Y. DJ-1 is an indicator for endogenous reactive oxygen species elicited by endotoxin. Free Radic Res 2001; 35(6): 885-93.
[http://dx.doi.org/10.1080/10715760100301381] [PMID: 11811539]
[100]
Taira T, Saito Y, Niki T, Iguchi-Ariga SM, Takahashi K, Ariga H. DJ-1 has a role in antioxidative stress to prevent cell death. EMBO Rep 2004; 5(2): 213-8.
[http://dx.doi.org/10.1038/sj.embor.7400074] [PMID: 14749723]
[101]
Burchell VS, Nelson DE, Sanchez-Martinez A, et al. The Parkinson’s disease-linked proteins Fbxo7 and Parkin interact to mediate mitophagy. Nat Neurosci 2013; 16(9): 1257-65.
[http://dx.doi.org/10.1038/nn.3489] [PMID: 23933751]
[102]
Zhou ZD, Sathiyamoorthy S, Angeles DC, Tan EK. Linking F-box protein 7 and parkin to neuronal degeneration in Parkinson’s disease (PD). Mol Brain 2016; 9(1): 41.
[http://dx.doi.org/10.1186/s13041-016-0218-2] [PMID: 27090516]
[103]
Koller WC, Rueda MG. Mechanism of action of dopaminergic agents in Parkinson’s disease. Neurology 1998; 50(6)(Suppl. 6): S11-4.
[http://dx.doi.org/10.1212/WNL.50.6_Suppl_6.S11] [PMID: 9633680]
[104]
Mao Q, Qin WZ, Zhang A, Ye N. Recent advances in dopaminergic strategies for the treatment of Parkinson’s disease. Acta Pharmacol Sin 2020; 41(4): 471-82.
[http://dx.doi.org/10.1038/s41401-020-0365-y] [PMID: 32112042]
[105]
Montioli R, Voltattorni CB, Bertoldi M. Parkinson’s disease: Recent updates in the identification of human dopa decarboxylase inhibitors. Curr Drug Metab 2016; 17(5): 513-8.
[http://dx.doi.org/10.2174/138920021705160324170558] [PMID: 27025882]
[106]
Schapira AH. Dopamine agonists and neuroprotection in Parkinson’s disease. Eur J Neurol 2002; 9(Suppl. 3): 7-14.
[http://dx.doi.org/10.1046/j.1468-1331.9.s3.9.x] [PMID: 12464116]
[107]
Ghanta MK, Elango P. KS BL. Current therapeutic strategies and perspectives for neuroprotection in parkinson’s disease. Curr Pharm Des 2020.
[108]
Sharma N, et al. Ergot Alkaloids: A Review on Therapeutic Applications. European J Med Plants 2016; 1-17.
[http://dx.doi.org/10.9734/EJMP/2016/25975]
[109]
Dezsi L, Vecsei L. Monoamine oxidase B inhibitors in Parkinson's disease. CNS & neurological disorders-drug targets (formerly current drug targets-cns & neurological disorders) 2017; 16(4): 425-39.
[http://dx.doi.org/10.2174/1871527316666170124165222]
[110]
demarcaida JA. Effects of tyramine administration in Parkinson’s disease patients treated with selective MAO‐B inhibitor rasagiline. Mov Disord 2006; 21(10): 1716-21.
[111]
Akhtar MJ, Yar MS, Grover G, Nath R. Neurological and psychiatric management using COMT inhibitors: A review. Bioorg Chem 2020; 94103418
[http://dx.doi.org/10.1016/j.bioorg.2019.103418] [PMID: 31708229]
[112]
Moschovou K, Melagraki G, Mavromoustakos T, Zacharia LC, Afantitis A. Cheminformatics and virtual screening studies of COMT inhibitors as potential Parkinson’s disease therapeutics. Expert Opin Drug Discov 2020; 15(1): 53-62.
[http://dx.doi.org/10.1080/17460441.2020.1691165] [PMID: 31744341]
[113]
Veer S. Antiparkinson’s agents 2020.
[114]
Katzenschlager R. Anticholinergics for symptomatic management of Parkinson s disease. Cochrane database of systematic reviews 2002; 2002(3)
[http://dx.doi.org/10.1002/14651858.CD003735]
[115]
Wyngaarden JB, Seevers MH. The toxic effects of antihistaminic drugs. J Am Med Assoc 1951; 145(5): 277-82.
[http://dx.doi.org/10.1001/jama.1951.02920230001001] [PMID: 14794436]
[116]
Edmond MP, Mostafa NM, El-Shazly M, Singab ANB. Two clerodane diterpenes isolated from Polyalthia longifolia leaves: Comparative structural features, anti-histaminic and anti-Helicobacter pylori activities. Nat Prod Res 2020; 1-5.
[http://dx.doi.org/10.1080/14786419.2020.1753048] [PMID: 32363939]
[117]
Strohl WR. The role of natural products in a modern drug discovery program. Drug Discov Today 2000; 5(2): 39-41.
[http://dx.doi.org/10.1016/S1359-6446(99)01443-9] [PMID: 10652450]
[118]
Sarrafchi A, Bahmani M, Shirzad H, Rafieian-Kopaei M. Oxidative stress and Parkinson’s disease: New hopes in treatment with herbal antioxidants. Curr Pharm Des 2016; 22(2): 238-46.
[http://dx.doi.org/10.2174/1381612822666151112151653] [PMID: 26561062]
[119]
Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol 2013; 2(1): 20-7.
[http://dx.doi.org/10.5812/nephropathol.9093] [PMID: 24475422]
[120]
Mardani S, Nasri P, Tavakoli M. Contrast induced nephropathy; recent findings. J Nephropharmacol 2013; 2(2): 27-30.
[PMID: 28197441]
[121]
Hajian S. Renoprotective effects of green tea. J Nephropharmacol 2013; 2(2): 21-2.
[PMID: 28197439]
[122]
Rafieian-Kopaei M, Baradaran A, Rafieian M. Oxidative stress and the paradoxical effects of antioxidants. J Res Med Sci 2013; 18(7): 629.
[PMID: 24516501]
[123]
J, T. Paracetamol causes most liver failure in UK and US. BMJ 2006; 332: 882.
[124]
Lesko SM, Mitchell AA. An assessment of the safety of pediatric ibuprofen. A practitioner-based randomized clinical trial. JAMA 1995; 273(12): 929-33.
[http://dx.doi.org/10.1001/jama.1995.03520360043037] [PMID: 7884951]
[125]
Mann JFE, Goerig M, Brune K, Luft FC. Ibuprofen as an over-the-counter drug: Is there a risk for renal injury? Clin Nephrol 1993; 39(1): 1-6.
[PMID: 8428401]
[126]
Moghal NE, Hegde S, Eastham KM. Ibuprofen and acute renal failure in a toddler. Arch Dis Child 2004; 89(3): 276-7.
[http://dx.doi.org/10.1136/adc.2002.024141] [PMID: 14977711]
[127]
Hay EM, Paterson SM, Lewis M, Hosie G, Croft P. Pragmatic randomised controlled trial of local corticosteroid injection and naproxen for treatment of lateral epicondylitis of elbow in primary care. BMJ 1999; 319(7215): 964-8.
[http://dx.doi.org/10.1136/bmj.319.7215.964] [PMID: 10514160]
[128]
Wang YH, Samoylenko V, Tekwani BL, et al. Composition, standardization and chemical profiling of Banisteriopsis caapi, a plant for the treatment of neurodegenerative disorders relevant to Parkinson’s disease. J Ethnopharmacol 2010; 128(3): 662-71.
[http://dx.doi.org/10.1016/j.jep.2010.02.013] [PMID: 20219660]
[129]
Zhou T, Zu G, Zhang X, et al. Neuroprotective effects of ginsenoside Rg1 through the Wnt/beta-catenin signaling pathway in both in vivo and in vitro models of Parkinson's disease. 2016; 109: 480-9.
[130]
Sun XC, Ren X F, Chen L, Gao X Q, Xie J X, Chen W F. Glucocorticoid receptor is involved in the neuroprotective effect of ginsenoside Rg1 against inflammation-induced dopaminergic neuronal degeneration in substantia nigra. J Steroid Biochem Mol Biol 2016; 15(Pt A): 94-103.
[http://dx.doi.org/10.1016/j.jsbmb.2015.09.040]
[131]
Kim D, Jeon H, Ryu S, Koo S, Ha KT, Kim S. Proteomic analysis of the effect of korean red ginseng in the striatum of a Parkinson’s disease mouse model. PLoS One 2016; 11(10)e0164906
[http://dx.doi.org/10.1371/journal.pone.0164906] [PMID: 27788166]
[132]
Zhang X, Wang Y, Ma C, et al. Ginsenoside Rd and ginsenoside Re offer neuroprotection in a novel model of Parkinson’s disease. Am J Neurodegener Dis 2016; 5(1): 52-61.
[PMID: 27073742]
[133]
Mu X, He GR, Yuan X, Li XX, Du GH. Baicalein protects the brain against neuron impairments induced by MPTP in C57BL/6 mice. Pharmacol Biochem Behav 2011; 98(2): 286-91.
[http://dx.doi.org/10.1016/j.pbb.2011.01.011] [PMID: 21262257]
[134]
Yan J, Yang Z, Zhao N, Li Z, Cao X. Gastrodin protects dopaminergic neurons via insulin-like pathway in a Parkinson’s disease model. BMC Neurosci 2019; 20(1): 31.
[http://dx.doi.org/10.1186/s12868-019-0512-x] [PMID: 31208386]
[135]
Kim IS, Choi DK, Jung HJ. Neuroprotective effects of vanillyl alcohol in Gastrodia elata Blume through suppression of oxidative stress and anti-apoptotic activity in toxin-induced dopaminergic MN9D cells. Molecules 2011; 16(7): 5349-61.
[http://dx.doi.org/10.3390/molecules16075349] [PMID: 21705974]
[136]
Lofrumento DD, Nicolardi G, Cianciulli A, et al. Neuroprotective effects of resveratrol in an MPTP mouse model of Parkinson’s-like disease: Possible role of SOCS-1 in reducing pro-inflammatory responses. Innate Immun 2014; 20(3): 249-60.
[http://dx.doi.org/10.1177/1753425913488429] [PMID: 23764428]
[137]
Zhang FWY, Liu H, Lu YF, Wu Q, Liu J, Shi JS. Resveratrol produces neurotrophic effects on cultured dopaminergic neurons through prompting astroglial bdnf and gdnf release. Evid Based Complement Alternat Med 2012; 2.
[138]
Singh PK, Kotia V, Ghosh D, Mohite GM, Kumar A, Maji SK. Curcumin modulates α-synuclein aggregation and toxicity. ACS Chem Neurosci 2013; 4(3): 393-407.
[http://dx.doi.org/10.1021/cn3001203] [PMID: 23509976]
[139]
Angelopoulou E, Pyrgelis ES, Piperi C. Neuroprotective potential of chrysin in Parkinson’s disease: Molecular mechanisms and clinical implications. Neurochem Int 2020; 132104612
[http://dx.doi.org/10.1016/j.neuint.2019.104612] [PMID: 31785348]
[140]
Goes ATR, Jesse CR, Antunes MS, et al. Protective role of chrysin on 6-hydroxydopamine-induced neurodegeneration a mouse model of Parkinson’s disease: Involvement of neuroinflammation and neurotrophins. Chem Biol Interact 2018; 279: 111-20.
[http://dx.doi.org/10.1016/j.cbi.2017.10.019] [PMID: 29054324]
[141]
Fujikawa T, Kanada N, Shimada A, et al. Effect of sesamin in Acanthopanax senticosus HARMS on behavioral dysfunction in rotenone-induced parkinsonian rats. Biol Pharm Bull 2005; 28(1): 169-72.
[http://dx.doi.org/10.1248/bpb.28.169] [PMID: 15635186]
[142]
Liu SM, Li XZ, Huo Y, Lu F. Protective effect of extract of Acanthopanax senticosus Harms on dopaminergic neurons in Parkinson’s disease mice. Phytomedicine 2012; 19(7): 631-8.
[http://dx.doi.org/10.1016/j.phymed.2012.02.006] [PMID: 22402244]
[143]
Guan S, Jiang B, Bao YM, An LJ. Protocatechuic acid suppresses MPP+ -induced mitochondrial dysfunction and apoptotic cell death in PC12 cells. Food Chem Toxicol 2006; 44(10): 1659-66.
[http://dx.doi.org/10.1016/j.fct.2006.05.004] [PMID: 16806628]
[144]
Yang C, Mo Y, Xu E, et al. Astragaloside IV ameliorates motor deficits and dopaminergic neuron degeneration via inhibiting neuroinflammation and oxidative stress in a Parkinson’s disease mouse model. Int Immunopharmacol 2019; 75105651
[http://dx.doi.org/10.1016/j.intimp.2019.05.036] [PMID: 31401385]
[145]
Mo J, Zhang H, Yu LP, Sun PH, Jin GZ, Zhen X. L-stepholidine reduced L-DOPA-induced dyskinesia in 6-OHDA-lesioned rat model of Parkinson’s disease. Neurobiol Aging 2010; 31(6): 926-36.
[http://dx.doi.org/10.1016/j.neurobiolaging.2008.06.017] [PMID: 18707801]
[146]
Chen H, Jing FC, Li CL, Tu PF, Zheng QS, Wang ZH. Echinacoside prevents the striatal extracellular levels of monoamine neurotransmitters from diminution in 6-hydroxydopamine lesion rats. J Ethnopharmacol 2007; 114(3): 285-9.
[http://dx.doi.org/10.1016/j.jep.2007.07.035] [PMID: 17951018]
[147]
Geng X, Tian X, Tu P, Pu X. Neuroprotective effects of echinacoside in the mouse MPTP model of Parkinson’s disease. Eur J Pharmacol 2007; 564(1-3): 66-74.
[http://dx.doi.org/10.1016/j.ejphar.2007.01.084] [PMID: 17359968]
[148]
Zhao Q, Gao J, Li W, Cai D. Neurotrophic and neurorescue effects of Echinacoside in the subacute MPTP mouse model of Parkinson’s disease. Brain Res 2010; 1346: 224-36.
[http://dx.doi.org/10.1016/j.brainres.2010.05.018] [PMID: 20478277]
[149]
Li M, Zhou F, Xu T, Song H, Lu B. Acteoside protects against 6-OHDA-induced dopaminergic neuron damage via Nrf2-ARE signaling pathway. Food Chem Toxicol 2018; 119: 6-13.
[http://dx.doi.org/10.1016/j.fct.2018.06.018] [PMID: 29906474]
[150]
Molina-Jiménez MF, Sánchez-Reus MI, Andres D, Cascales M, Benedi J. Neuroprotective effect of fraxetin and myricetin against rotenone-induced apoptosis in neuroblastoma cells. Brain Res 2004; 1009(1-2): 9-16.
[http://dx.doi.org/10.1016/j.brainres.2004.02.065] [PMID: 15120578]
[151]
Kim MH, Min JS, Lee JY, et al. Oleuropein isolated from Fraxinus rhynchophylla inhibits glutamate-induced neuronal cell death by attenuating mitochondrial dysfunction. Nutr Neurosci 2018; 21(7): 520-8.
[http://dx.doi.org/10.1080/1028415X.2017.1317449] [PMID: 28448247]
[152]
Zhao DLSL, Zhai KG, Zou LB, Lin S, Shi JG. Esculin, an extract from Fraxinus sielboldiana blume, protects SH-SY5Y cells from MPP+-induced cytotoxicity. Acad J PLA Postgrad Med Sch 2008; 29: 112-4.
[153]
Zhao DL, Zou LB, Lin S, Shi JG, Zhu HB. Anti-apoptotic effect of esculin on dopamine-induced cytotoxicity in the human neuroblastoma SH-SY5Y cell line. Neuropharmacology 2007; 53(6): 724-32.
[http://dx.doi.org/10.1016/j.neuropharm.2007.07.017] [PMID: 17904593]
[154]
Zhao DLSD, Chi YT, Liu F, Zou LB, Zhu HB. Liriodendrin protects SH-SY5Y cells from dopamine-induced cytotoxicity. J Chin Pharm Sci 2007; 16: 294-9.
[155]
Lee B, Shim I, Lee H. Gypenosides attenuate lipopolysaccharide-induced neuroinflammation and memory impairment in rats. Evid Based Complement Alternat Med 2018; 20184183670
[http://dx.doi.org/10.1155/2018/4183670] [PMID: 30018656]
[156]
Fan H-HZ, Zhu LB, Li T, et al. Hyperoside inhibits lipopolysaccharide-induced inflammatory responses in microglial cells via p38 and NFκB pathways. Int Immunopharmacol 2017; 50: 14-21.
[http://dx.doi.org/10.1016/j.intimp.2017.06.004] [PMID: 28622577]
[157]
Cao BY, Yang YP, Luo WF, et al. Paeoniflorin, a potent natural compound, protects PC12 cells from MPP+ and acidic damage via autophagic pathway. J Ethnopharmacol 2010; 131(1): 122-9.
[http://dx.doi.org/10.1016/j.jep.2010.06.009] [PMID: 20558269]
[158]
Liu DZ, Zhu J, Jin DZ, et al. Behavioral recovery following sub-chronic paeoniflorin administration in the striatal 6-OHDA lesion rodent model of Parkinson’s disease. J Ethnopharmacol 2007; 112(2): 327-32.
[http://dx.doi.org/10.1016/j.jep.2007.03.022] [PMID: 17451897]
[159]
Liu HQ, Zhang WY, Luo XT, Ye Y, Zhu XZ. Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson’s disease by activation of adenosine A1 receptor. Br J Pharmacol 2006; 148(3): 314-25.
[http://dx.doi.org/10.1038/sj.bjp.0706732] [PMID: 16582933]
[160]
Zhao G, Zheng XW, Qin GW, Gai Y, Jiang ZH, Guo LH. in vitro dopaminergic neuroprotective and in vivo antiparkinsonian-like effects of Delta 3,2-hydroxybakuchiol isolated from Psoralea corylifolia (L.). Cell Mol Life Sci 2009; 66(9): 1617-29.
[http://dx.doi.org/10.1007/s00018-009-9030-9] [PMID: 19322517]
[161]
Meenakshi S, Umayaparvathi S, Saravanan R, Manivasagam T, Balasubramanian T. Neuroprotective effect of fucoidan from Turbinaria decurrens in MPTP intoxicated Parkinsonic mice. Int J Biol Macromol 2016; 86: 425-33.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.025] [PMID: 26828289]
[162]
Delamarre A, Meissner WG. Epidemiology, environmental risk factors and genetics of Parkinson’s disease. Presse Med 2017; 46(2 Pt 1): 175-81.
[http://dx.doi.org/10.1016/j.lpm.2017.01.001] [PMID: 28189372]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy