Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Cannabinoids and Myocardial Ischemia: Novel insights, Updated Mechanisms, and Implications for Myocardial Infarction

Author(s): Karim Seif El Dahan, Dima Machtoub, Gaelle Massoud, Suzanne A. Nasser, Bassam Hamam, Firas Kobeissy, Fouad A. Zouein and Ali H. Eid*

Volume 29, Issue 11, 2022

Published on: 08 June, 2021

Page: [1990 - 2010] Pages: 21

DOI: 10.2174/0929867328666210608144818

Price: $65

Abstract

Cannabis is the most widely trafficked and abused illicit drug due to its calming psychoactive properties. It has been increasingly recognized as having potential health benefits and relatively less adverse health effects as compared to other illicit drugs; however, growing evidence clearly indicates that cannabis is associated with considerable adverse cardiovascular events. Recent studies have linked cannabis use to myocardial infarction (MI); yet, very little is known about the underlying mechanisms. A MI is a cardiovascular disease characterized by a mismatch in the oxygen supply and demand of the heart, resulting in ischemia and subsequent necrosis of the myocardium. Since cannabis is increasingly being considered a risk factor for MI, there is a growing need for better appreciating its potential health benefits and consequences. Here, we discuss the cellular mechanisms of cannabis that lead to an increased risk of MI. We provide a thorough and critical analysis of cannabinoids’ actions, which include modulation of adipocyte biology, regional fat distribution, and atherosclerosis, as well as precipitation of hemodynamic stressors relevant in the setting of a MI. By critically dissecting the modulation of signaling pathways in multiple cell types, this paper highlights the mechanisms through which cannabis may trigger life-threatening cardiovascular events. This then provides a framework for future pharmacological studies which can identify targets or develop drugs that modulate cannabis’ effects on the cardiovascular system as well as other organ systems. Cannabis’ impact on the autonomic outflow, vascular smooth muscle cells, myocardium, cortisol levels and other hemodynamic changes are also mechanistically reviewed.

Keywords: Cannabis, myocardial infarction, endocannabinoid system, atherosclerosis, tetrahydrocannabinol, cardiovascular disease.

« Previous
[1]
Mensah, G.A.; Roth, G.A.; Fuster, V. The global burden of cardiovascular diseases and risk factors: 2020 and beyond. J. Am. Coll. Cardiol., 2019, 74(20), 2529-2532.
[http://dx.doi.org/10.1016/j.jacc.2019.10.009] [PMID: 31727292]
[2]
Karunathilake, S.P.; Ganegoda, G.U. Secondary prevention of cardiovascular diseases and application of technology for early diagnosis. BioMed Res. Int., 2018, 2018, 5767864.
[http://dx.doi.org/10.1155/2018/5767864] [PMID: 29854766]
[3]
Maaliki, D.; Shaito, A.A.; Pintus, G.; El-Yazbi, A.; Eid, A.H. Flavonoids in hypertension: A brief review of the underlying mechanisms. Curr. Opin. Pharmacol., 2019, 45, 57-65.
[http://dx.doi.org/10.1016/j.coph.2019.04.014] [PMID: 31102958]
[4]
Badran, A.; Nasser, S.A.; Mesmar, J.; El-Yazbi, A.F.; Bitto, A.; Fardoun, M.M.; Baydoun, E.; Eid, A.H. Reactive oxygen species: modulators of phenotypic switch of vascular smooth muscle cells. Int. J. Mol. Sci., 2020, 21(22), E8764.
[http://dx.doi.org/10.3390/ijms21228764] [PMID: 33233489]
[5]
Wehbe, N.; Nasser, S.A.; Al-Dhaheri, Y.; Iratni, R.; Bitto, A.; El-Yazbi, A.F.; Badran, A.; Kobeissy, F.; Baydoun, E.; Eid, A.H. EPAC in vascular smooth muscle cells. Int. J. Mol. Sci., 2020, 21(14), E5160.
[http://dx.doi.org/10.3390/ijms21145160] [PMID: 32708284]
[6]
Saleh Al-Shehabi, T.; Iratni, R.; Eid, A.H. Anti-atherosclerotic plants which modulate the phenotype of vascular smooth muscle cells. Phytomedicine, 2016, 23(11), 1068-1081.
[http://dx.doi.org/10.1016/j.phymed.2015.10.016] [PMID: 26776961]
[7]
Thom, T.; Haase, N.; Rosamond, W.; Howard, V.J.; Rumsfeld, J.; Manolio, T.; Zheng, Z.J.; Flegal, K.; O’Donnell, C.; Kittner, S.; Lloyd-Jones, D.; Goff, D.C., Jr; Hong, Y.; Adams, R.; Friday, G.; Furie, K.; Gorelick, P.; Kissela, B.; Marler, J.; Meigs, J.; Roger, V.; Sidney, S.; Sorlie, P.; Steinberger, J.; Wasserthiel-Smoller, S.; Wilson, M.; Wolf, P. Heart disease and stroke statistics-2006 update: A report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation, 2006, 113(6), e85-e151.
[PMID: 16407573]
[8]
Ye, S. Encyclopedia of Behavioral Medicine; Gellman, M.D.; Turner, J.R., Eds.; Springer: New York, NY, 2013, pp. 27-29.
[http://dx.doi.org/10.1007/978-1-4419-1005-9]
[9]
Saleh, M.; Ambrose, J.A. Understanding myocardial infarction. F1000 Res., 2018, 7, 7.
[http://dx.doi.org/10.12688/f1000research.15096.1] [PMID: 30228871]
[10]
Mechanic, O.J.; Gavin, M.; Grossman S. A. Acute Myocardial Infarction. StatPearls [Internet], 2020. Available at: https://www.ncbi.nlm.nih.gov/books/NBK459269/
[11]
Ali, A.H.; Younis, N.; Abdallah, R.; Shaer, F.; Dakroub, A.; Ayoub, M.; Iratni, R.; Yassine, H.M.; Zibara, K.; Orekhov, A.; El-Yazbi, A.F.; Eid, A. Lipid-lowering therapies for atherosclerosis: statins, fibrates, ezetimibe and PCSK9 monoclonal antibodies. Curr. Med. Chem., 2021.
[http://dx.doi.org/10.2174/0929867328666210222092628] [PMID: 33655822]
[12]
Wehbe, Z.; Nasser, S.A.; El-Yazbi, A.; Nasreddine, S.; Eid, A.H. Estrogen and bisphenol a in hypertension. Curr. Hypertens. Rep., 2020, 22(3), 23.
[http://dx.doi.org/10.1007/s11906-020-1022-z] [PMID: 32114652]
[13]
Eid, A.H.; El-Yazbi, A.F.; Zouein, F.; Arredouani, A.; Ouhtit, A.; Rahman, M.M.; Zayed, H.; Pintus, G.; Abou-Saleh, H. Inositol 1,4,5-trisphosphate receptors in hypertension. Front. Physiol., 2018, 9, 1018.
[http://dx.doi.org/10.3389/fphys.2018.01018] [PMID: 30093868]
[14]
Anwar, M.A.; Saleh, A.I.; Al Olabi, R.; Al Shehabi, T.S.; Eid, A.H. Glucocorticoid-induced fetal origins of adult hypertension: Association with epigenetic events. Vascul. Pharmacol., 2016, 82, 41-50.
[http://dx.doi.org/10.1016/j.vph.2016.02.002] [PMID: 26903240]
[15]
Volkow, N.D.; Baler, R.D.; Compton, W.M.; Weiss, S.R. Adverse health effects of marijuana use. N. Engl. J. Med., 2014, 370(23), 2219-2227.
[http://dx.doi.org/10.1056/NEJMra1402309] [PMID: 24897085]
[16]
Bridgeman, M.B.; Abazia, D.T. Medicinal cannabis: history, pharmacology, and implications for the acute care setting. P&T, 2017, 42(3), 180-188.
[PMID: 28250701]
[17]
Burstein, S. Cannabidiol (CBD) and its analogs: A review of their effects on inflammation. Bioorg. Med. Chem., 2015, 23(7), 1377-1385.
[http://dx.doi.org/10.1016/j.bmc.2015.01.059] [PMID: 25703248]
[18]
Howlett, A.C. Cannabinoid receptor signaling. Handb. Exp. Pharmacol., 2005, (168), 53-79.
[http://dx.doi.org/10.1007/3-540-26573-2_2] [PMID: 16596771]
[19]
Singh, A.; Saluja, S.; Kumar, A.; Agrawal, S.; Thind, M.; Nanda, S.; Shirani, J. Cardiovascular complications of marijuana and related substances: a review. Cardiol. Ther., 2018, 7(1), 45-59.
[http://dx.doi.org/10.1007/s40119-017-0102-x] [PMID: 29218644]
[20]
Subramaniam, V.N.; Menezes, A.R.; DeSchutter, A.; Lavie, C.J. The cardiovascular effects of marijuana: are the potential adverse effects worth the high? Mo. Med., 2019, 116(2), 146-153.
[PMID: 31040502]
[21]
Lee, J.; Sharma, N.; Kazi, F.; Youssef, I.; Myers, A.; Marmur, J.D.; Salifu, M.O.; McFarlane, S.I. Cannabis and myocardial infarction: risk factors and pathogenetic insights. Scifed J. Cardiol., 2017, 1(1), 1000004.
[PMID: 30294730]
[22]
Desai, R.; Patel, U.; Sharma, S.; Amin, P.; Bhuva, R.; Patel, M.S.; Sharma, N.; Shah, M.; Patel, S.; Savani, S.; Batra, N.; Kumar, G. Recreational marijuana use and acute myocardial infarction: insights from nationwide inpatient sample in the United States. Cureus, 2017, 9(11), e1816.
[http://dx.doi.org/10.7759/cureus.1816] [PMID: 29312837]
[23]
Landa, E.; Vigandt, E.; Andreev, A.; Malyshev, Y.; Sahni, S. Cannabis-induced acute coronary syndrome: A coincidence or not? Cureus, 2019, 11(9), e5696.
[http://dx.doi.org/10.7759/cureus.5696] [PMID: 31720164]
[24]
Mittleman, M.A.; Lewis, R.A.; Maclure, M.; Sherwood, J.B.; Muller, J.E. Triggering myocardial infarction by marijuana. Circulation, 2001, 103(23), 2805-2809.
[http://dx.doi.org/10.1161/01.CIR.103.23.2805] [PMID: 11401936]
[25]
Mukamal, K.J.; Maclure, M.; Muller, J.E.; Mittleman, M.A. An exploratory prospective study of marijuana use and mortality following acute myocardial infarction. Am. Heart J., 2008, 155(3), 465-470.
[http://dx.doi.org/10.1016/j.ahj.2007.10.049] [PMID: 18294478]
[26]
Pagotto, U.; Marsicano, G.; Cota, D.; Lutz, B.; Pasquali, R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev., 2006, 27(1), 73-100.
[http://dx.doi.org/10.1210/er.2005-0009] [PMID: 16306385]
[27]
Black, S.C. Cannabinoid receptor antagonists and obesity. Curr. Opin. Investig. Drugs, 2004, 5(4), 389-394.
[PMID: 15134279]
[28]
Rodondi, N.; Pletcher, M.J.; Liu, K.; Hulley, S.B.; Sidney, S. Marijuana use, diet, body mass index, and cardiovascular risk factors (from the CARDIA study). Am. J. Cardiol., 2006, 98(4), 478-484.
[http://dx.doi.org/10.1016/j.amjcard.2006.03.024] [PMID: 16893701]
[29]
Smit, E.; Crespo, C.J. Dietary intake and nutritional status of US adult marijuana users: Results from the Third National Health and Nutrition Examination Survey. Public Health Nutr., 2001, 4(3), 781-786.
[http://dx.doi.org/10.1079/PHN2000114] [PMID: 11415485]
[30]
Degenhardt, L.; Hall, W.; Lynskey, M. The relationship between cannabis use and other substance use in the general population. Drug Alcohol Depend., 2001, 64(3), 319-327.
[http://dx.doi.org/10.1016/S0376-8716(01)00130-2] [PMID: 11672946]
[31]
Zwillich, C.W.; Doekel, R.; Hammill, S.; Weil, J.V. The effects of smoked marijuana on metabolism and respiratory control. Am. Rev. Respir. Dis., 1978, 118(5), 885-891.
[PMID: 367234]
[32]
Clark, T.M.; Jones, J.M.; Hall, A.G.; Tabner, S.A.; Kmiec, R.L. Theoretical explanation for reduced body mass index and obesity rates in cannabis users. Cannabis Cannabinoid Res., 2018, 3(1), 259-271.
[http://dx.doi.org/10.1089/can.2018.0045] [PMID: 30671538]
[33]
Quarta, C.; Bellocchio, L.; Mancini, G.; Mazza, R.; Cervino, C.; Braulke, L.J.; Fekete, C.; Latorre, R.; Nanni, C.; Bucci, M.; Clemens, L.E.; Heldmaier, G.; Watanabe, M.; Leste-Lassere, T.; Maitre, M.; Tedesco, L.; Fanelli, F.; Reuss, S.; Klaus, S.; Srivastava, R.K.; Monory, K.; Valerio, A.; Grandis, A.; De Giorgio, R.; Pasquali, R.; Nisoli, E.; Cota, D.; Lutz, B.; Marsicano, G.; Pagotto, U. CB(1) signaling in forebrain and sympathetic neurons is a key determinant of endocannabinoid actions on energy balance. Cell Metab., 2010, 11(4), 273-285.
[http://dx.doi.org/10.1016/j.cmet.2010.02.015] [PMID: 20374960]
[34]
Muniyappa, R.; Sable, S.; Ouwerkerk, R.; Mari, A.; Gharib, A.M.; Walter, M.; Courville, A.; Hall, G.; Chen, K.Y.; Volkow, N.D.; Kunos, G.; Huestis, M.A.; Skarulis, M.C. Metabolic effects of chronic cannabis smoking. Diabetes Care, 2013, 36(8), 2415-2422.
[http://dx.doi.org/10.2337/dc12-2303] [PMID: 23530011]
[35]
Jin, L.Z.; Rangan, A.; Mehlsen, J.; Andersen, L.B.; Larsen, S.C.; Heitmann, B.L. Association between use of cannabis in adolescence and weight change into midlife. PLoS One, 2017, 12(1), e0168897.
[http://dx.doi.org/10.1371/annotation/774b483b-cba3-46ce-a922-09d7f05487b0]
[36]
Mazier, W.; Saucisse, N.; Gatta-Cherifi, B.; Cota, D. The endocannabinoid system: pivotal orchestrator of obesity and metabolic disease. Trends Endocrinol. Metab., 2015, 26(10), 524-537.
[http://dx.doi.org/10.1016/j.tem.2015.07.007] [PMID: 26412154]
[37]
Tedesco, L.; Valerio, A.; Dossena, M.; Cardile, A.; Ragni, M.; Pagano, C.; Pagotto, U.; Carruba, M.O.; Vettor, R.; Nisoli, E. Cannabinoid receptor stimulation impairs mitochondrial biogenesis in mouse white adipose tissue, muscle, and liver: The role of eNOS, p38 MAPK, and AMPK pathways. Diabetes, 2010, 59(11), 2826-2836.
[http://dx.doi.org/10.2337/db09-1881] [PMID: 20739683]
[38]
Iannotti, F.A.; Silvestri, C.; Mazzarella, E.; Martella, A.; Calvigioni, D.; Piscitelli, F.; Ambrosino, P.; Petrosino, S.; Czifra, G.; Bíró, T.; Harkany, T.; Taglialatela, M.; Di Marzo, V. The endocannabinoid 2-AG controls skeletal muscle cell differentiation via CB1 receptor-dependent inhibition of Kv7 channels. Proc. Natl. Acad. Sci. USA, 2014, 111(24), E2472-E2481.
[http://dx.doi.org/10.1073/pnas.1406728111] [PMID: 24927567]
[39]
Maccarrone, M.; Bab, I.; Bíró, T.; Cabral, G.A.; Dey, S.K.; Di Marzo, V.; Konje, J.C.; Kunos, G.; Mechoulam, R.; Pacher, P.; Sharkey, K.A.; Zimmer, A. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci., 2015, 36(5), 277-296.
[http://dx.doi.org/10.1016/j.tips.2015.02.008] [PMID: 25796370]
[40]
Gray, D.S.; Bauer, M. The relationship between body fat mass and fat-free mass. J. Am. Coll. Nutr., 1991, 10(1), 63-68.
[http://dx.doi.org/10.1080/07315724.1991.10718128] [PMID: 2010581]
[41]
Meier, M.H.; Pardini, D.; Beardslee, J.; Matthews, K.A. Associations between cannabis use and cardiometabolic risk factors: a longitudinal study of men. Psychosom. Med., 2019, 81(3), 281-288.
[http://dx.doi.org/10.1097/PSY.0000000000000665] [PMID: 30589665]
[42]
Lazarte, J.; Hegele, R.A. Cannabis effects on lipoproteins. Curr. Opin. Lipidol., 2019, 30(2), 140-146.
[http://dx.doi.org/10.1097/MOL.0000000000000575] [PMID: 30649023]
[43]
Teixeira, D.; Pestana, D.; Faria, A.; Calhau, C.; Azevedo, I.; Monteiro, R. Modulation of adipocyte biology by δ(9)-tetrahydrocannabinol. Obesity (Silver Spring), 2010, 18(11), 2077-2085.
[http://dx.doi.org/10.1038/oby.2010.100] [PMID: 20467421]
[44]
Fardoun, M.M.; Issa, K.; Maaliki, D.; Nasser, S.A.; Baydoun, E.; Eid, A.H. Estrogen increases expression of vascular alpha 2C adrenoceptor through the cAMP/Epac/JNK/AP-1 pathway and potentiates cold-induced vasoconstriction. Vascul. Pharmacol., 2020, 131, 106690.
[http://dx.doi.org/10.1016/j.vph.2020.106690] [PMID: 32407896]
[45]
Fardoun, M.; Dehaini, H.; Shaito, A.; Mesmar, J.; El-Yazbi, A.; Badran, A.; Beydoun, E.; Eid, A.H. The hypertensive potential of estrogen: An untold story. Vascul. Pharmacol., 2020, 124, 106600.
[http://dx.doi.org/10.1016/j.vph.2019.106600] [PMID: 31629918]
[46]
Dehaini, H.; Fardoun, M.; Abou-Saleh, H.; El-Yazbi, A.; Eid, A.A.; Eid, A.H. Estrogen in vascular smooth muscle cells: A friend or a foe? Vascul. Pharmacol., 2018, 111, 15-21.
[http://dx.doi.org/10.1016/j.vph.2018.09.001] [PMID: 30227233]
[47]
Eid, A.H.; Maiti, K.; Mitra, S.; Chotani, M.A.; Flavahan, S.; Bailey, S.R.; Thompson-Torgerson, C.S.; Flavahan, N.A. Estrogen increases smooth muscle expression of alpha2C-adrenoceptors and cold-induced constriction of cutaneous arteries. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(3), H1955-H1961.
[http://dx.doi.org/10.1152/ajpheart.00306.2007] [PMID: 17644575]
[48]
Anwar, M.A.; Samaha, A.A.; Baydoun, S.; Iratni, R.; Eid, A.H. Rhus coriaria L. (Sumac) evokes endothelium-dependent vasorelaxation of rat aorta: Involvement of the cAMP and cGMP pathways. Front. Pharmacol., 2018, 9, 688.
[http://dx.doi.org/10.3389/fphar.2018.00688] [PMID: 30002626]
[49]
Eid, A.H. cAMP induces adhesion of microvascular smooth muscle cells to fibronectin via an Epac-mediated but PKA-independent mechanism. Cell. Physiol. Biochem., 2012, 30(1), 247-258.
[http://dx.doi.org/10.1159/000339061] [PMID: 22759971]
[50]
Chotani, M.A.; Mitra, S.; Eid, A.H.; Han, S.A.; Flavahan, N.A. Distinct cAMP signaling pathways differentially regulate alpha2C-adrenoceptor expression: Role in serum induction in human arteriolar smooth muscle cells. Am. J. Physiol. Heart Circ. Physiol., 2005, 288(1), H69-H76.
[http://dx.doi.org/10.1152/ajpheart.01223.2003] [PMID: 15345481]
[51]
Yeaman, S.J. Hormone-sensitive lipase-new roles for an old enzyme. Biochem. J., 2004, 379(Pt 1), 11-22.
[http://dx.doi.org/10.1042/bj20031811] [PMID: 14725507]
[52]
Ahmadian, M.; Duncan, R.E.; Jaworski, K.; Sarkadi-Nagy, E.; Sul, H.S. Triacylglycerol metabolism in adipose tissue. Future Lipidol., 2007, 2(2), 229-237.
[http://dx.doi.org/10.2217/17460875.2.2.229] [PMID: 19194515]
[53]
Wu, H.M.; Yang, Y.M.; Kim, S.G. Rimonabant, a cannabinoid receptor type 1 inverse agonist, inhibits hepatocyte lipogenesis by activating liver kinase B1 and AMP-activated protein kinase axis downstream of Gα i/o inhibition. Mol. Pharmacol., 2011, 80(5), 859-869.
[http://dx.doi.org/10.1124/mol.111.072769] [PMID: 21803969]
[54]
Jeon, S.M. Regulation and function of AMPK in physiology and diseases. Exp. Mol. Med., 2016, 48(7), e245.
[http://dx.doi.org/10.1038/emm.2016.81] [PMID: 27416781]
[55]
Hardie, D.G.; Pan, D.A. Regulation of fatty acid synthesis and oxidation by the AMP-activated protein kinase. Biochem. Soc. Trans., 2002, 30(Pt 6), 1064-1070.
[http://dx.doi.org/10.1042/bst0301064] [PMID: 12440973]
[56]
Jang, J.; Jung, Y.; Seo, S.J.; Kim, S.M.; Shim, Y.J.; Cho, S.H.; Chung, S.I.; Yoon, Y. Berberine activates AMPK to suppress proteolytic processing, nuclear translocation and target DNA binding of SREBP-1c in 3T3-L1 adipocytes. Mol. Med. Rep., 2017, 15(6), 4139-4147.
[http://dx.doi.org/10.3892/mmr.2017.6513] [PMID: 28487951]
[57]
O’Sullivan, S.E. An update on PPAR activation by cannabinoids. Br. J. Pharmacol., 2016, 173(12), 1899-1910.
[http://dx.doi.org/10.1111/bph.13497] [PMID: 27077495]
[58]
Bouaboula, M.; Hilairet, S.; Marchand, J.; Fajas, L.; Le Fur, G.; Casellas, P. Anandamide induced PPARgamma transcriptional activation and 3T3-L1 preadipocyte differentiation. Eur. J. Pharmacol., 2005, 517(3), 174-181.
[http://dx.doi.org/10.1016/j.ejphar.2005.05.032] [PMID: 15987634]
[59]
O’Sullivan, S.E. Cannabinoids go nuclear: Evidence for activation of peroxisome proliferator-activated receptors. Br. J. Pharmacol., 2007, 152(5), 576-582.
[http://dx.doi.org/10.1038/sj.bjp.0707423] [PMID: 17704824]
[60]
Rodriguez-Cuenca, S.; Carobbio, S.; Velagapudi, V.R.; Barbarroja, N.; Moreno-Navarrete, J.M.; Tinahones, F.J.; Fernandez-Real, J.M.; Orešic, M.; Vidal-Puig, A. Peroxisome proliferator-activated receptor γ-dependent regulation of lipolytic nodes and metabolic flexibility. Mol. Cell. Biol., 2012, 32(8), 1555-1565.
[http://dx.doi.org/10.1128/MCB.06154-11] [PMID: 22310664]
[61]
Guo, M.; Li, C.; Lei, Y.; Xu, S.; Zhao, D.; Lu, X.Y. Role of the adipose PPARγ-adiponectin axis in susceptibility to stress and depression/anxiety-related behaviors. Mol. Psychiatry, 2017, 22(7), 1056-1068.
[http://dx.doi.org/10.1038/mp.2016.225] [PMID: 27956741]
[62]
Scherer, P.E.; Williams, S.; Fogliano, M.; Baldini, G.; Lodish, H.F. A novel serum protein similar to C1q, produced exclusively in adipocytes. J. Biol. Chem., 1995, 270(45), 26746-26749.
[http://dx.doi.org/10.1074/jbc.270.45.26746] [PMID: 7592907]
[63]
Hu, E.; Liang, P.; Spiegelman, B.M. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J. Biol. Chem., 1996, 271(18), 10697-10703.
[http://dx.doi.org/10.1074/jbc.271.18.10697] [PMID: 8631877]
[64]
Tao, C.; Sifuentes, A.; Holland, W.L. Regulation of glucose and lipid homeostasis by adiponectin: Effects on hepatocytes, pancreatic β cells and adipocytes. Best Pract. Res. Clin. Endocrinol. Metab., 2014, 28(1), 43-58.
[http://dx.doi.org/10.1016/j.beem.2013.11.003] [PMID: 24417945]
[65]
Matias, I.; Gonthier, M-P.; Orlando, P.; Martiadis, V.; De Petrocellis, L.; Cervino, C.; Petrosino, S.; Hoareau, L.; Festy, F.; Pasquali, R.; Roche, R.; Maj, M.; Pagotto, U.; Monteleone, P.; Di Marzo, V. Regulation, function, and dysregulation of endocannabinoids in models of adipose and β- pancreatic cells and in obesity and hyperglycemia. J. Clin. Endocrinol. Metab., 2006, 91(8), 3171-3180.
[http://dx.doi.org/10.1210/jc.2005-2679] [PMID: 16684820]
[66]
Gary-Bobo, M.; Elachouri, G.; Scatton, B.; Le Fur, G.; Oury-Donat, F.; Bensaid, M. The cannabinoid CB1 receptor antagonist rimonabant (SR141716) inhibits cell proliferation and increases markers of adipocyte maturation in cultured mouse 3T3 F442A preadipocytes. Mol. Pharmacol., 2006, 69(2), 471-478.
[http://dx.doi.org/10.1124/mol.105.015040] [PMID: 16282221]
[67]
Di Marzo, V. The endocannabinoid system in obesity and type 2 diabetes. Diabetologia, 2008, 51(8), 1356-1367.
[http://dx.doi.org/10.1007/s00125-008-1048-2] [PMID: 18563385]
[68]
Motaghedi, R.; McGraw, T.E. The CB1 endocannabinoid system modulates adipocyte insulin sensitivity. Obesity (Silver Spring), 2008, 16(8), 1727-1734.
[http://dx.doi.org/10.1038/oby.2008.309] [PMID: 18551116]
[69]
Pagano, C.; Pilon, C.; Calcagno, A.; Urbanet, R.; Rossato, M.; Milan, G.; Bianchi, K.; Rizzuto, R.; Bernante, P.; Federspil, G.; Vettor, R. The endogenous cannabinoid system stimulates glucose uptake in human fat cells via phosphatidylinositol 3-kinase and calcium-dependent mechanisms. J. Clin. Endocrinol. Metab., 2007, 92(12), 4810-4819.
[http://dx.doi.org/10.1210/jc.2007-0768] [PMID: 17785353]
[70]
Gallant, M.; Odei-Addo, F.; Frost, C.L.; Levendal, R.A. Biological effects of THC and a lipophilic cannabis extract on normal and insulin resistant 3T3-L1 adipocytes. Phytomedicine : International journal of phytotherapy and phytopharmacology, 2009, 16(10), 942-949.
[71]
Jbilo, O.; Ravinet-Trillou, C.; Arnone, M.; Buisson, I.; Bribes, E.; Péleraux, A.; Pénarier, G.; Soubrié, P.; Le Fur, G.; Galiègue, S.; Casellas, P. The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J., 2005, 19(11), 1567-1569.
[http://dx.doi.org/10.1096/fj.04-3177fje] [PMID: 16009704]
[72]
Bensaid, M.; Gary-Bobo, M.; Esclangon, A.; Maffrand, J.P.; Le Fur, G.; Oury-Donat, F.; Soubrié, P. The cannabinoid CB1 receptor antagonist SR141716 increases Acrp30 mRNA expression in adipose tissue of obese fa/fa rats and in cultured adipocyte cells. Mol. Pharmacol., 2003, 63(4), 908-914.
[http://dx.doi.org/10.1124/mol.63.4.908] [PMID: 12644592]
[73]
Fuster, J.J.; Ouchi, N.; Gokce, N.; Walsh, K. Obesity-Induced Changes in Adipose Tissue Microenvironment and Their Impact on Cardiovascular Disease. Circ. Res., 2016, 118(11), 1786-1807.
[http://dx.doi.org/10.1161/CIRCRESAHA.115.306885] [PMID: 27230642]
[74]
Francis, G.A.; Annicotte, J.S.; Auwerx, J. PPAR agonists in the treatment of atherosclerosis. Curr. Opin. Pharmacol., 2003, 3(2), 186-191.
[http://dx.doi.org/10.1016/S1471-4892(03)00014-6] [PMID: 12681242]
[75]
Blüher, M.; Engeli, S.; Klöting, N.; Berndt, J.; Fasshauer, M.; Bátkai, S.; Pacher, P.; Schön, M.R.; Jordan, J.; Stumvoll, M. Dysregulation of the peripheral and adipose tissue endocannabinoid system in human abdominal obesity. Diabetes, 2006, 55(11), 3053-3060.
[http://dx.doi.org/10.2337/db06-0812] [PMID: 17065342]
[76]
Annuzzi, G.; Piscitelli, F.; Di Marino, L.; Patti, L.; Giacco, R.; Costabile, G.; Bozzetto, L.; Riccardi, G.; Verde, R.; Petrosino, S.; Rivellese, A.A.; Di Marzo, V. Differential alterations of the concentrations of endocannabinoids and related lipids in the subcutaneous adipose tissue of obese diabetic patients. Lipids Health Dis., 2010, 9, 43.
[http://dx.doi.org/10.1186/1476-511X-9-43] [PMID: 20426869]
[77]
Bennetzen, M.F.; Wellner, N.; Ahmed, S.S.; Ahmed, S.M.; Diep, T.A.; Hansen, H.S.; Richelsen, B.; Pedersen, S.B. Investigations of the human endocannabinoid system in two subcutaneous adipose tissue depots in lean subjects and in obese subjects before and after weight loss. Int. J. Obes., 2011, 35(11), 1377-1384.
[http://dx.doi.org/10.1038/ijo.2011.8] [PMID: 21326208]
[78]
Kola, B.; Hubina, E.; Tucci, S.A.; Kirkham, T.C.; Garcia, E.A.; Mitchell, S.E.; Williams, L.M.; Hawley, S.A.; Hardie, D.G.; Grossman, A.B.; Korbonits, M. Cannabinoids and ghrelin have both central and peripheral metabolic and cardiac effects via AMP-activated protein kinase. J. Biol. Chem., 2005, 280(26), 25196-25201.
[http://dx.doi.org/10.1074/jbc.C500175200] [PMID: 15899896]
[79]
Ladeiras-Lopes, R.; Sampaio, F.; Bettencourt, N.; Fontes-Carvalho, R.; Ferreira, N.; Leite-Moreira, A.; Gama, V. The ratio between visceral and subcutaneous abdominal fat assessed by computed tomography is an independent predictor of mortality and cardiac events. Rev. Esp. Cardiol. (Engl. Ed.), 2017, 70(5), 331-337.
[http://dx.doi.org/10.1016/j.rec.2016.09.010] [PMID: 27765543]
[80]
Singla, S.; Sachdeva, R.; Mehta, J.L. Cannabinoids and atherosclerotic coronary heart disease. Clin. Cardiol., 2012, 35(6), 329-335.
[http://dx.doi.org/10.1002/clc.21962] [PMID: 22278660]
[81]
Steffens, S.; Mach, F. Cannabinoid receptors in atherosclerosis. Curr. Opin. Lipidol., 2006, 17(5), 519-526.
[http://dx.doi.org/10.1097/01.mol.0000245257.17764.b2] [PMID: 16960500]
[82]
Sugamura, K.; Sugiyama, S.; Nozaki, T.; Matsuzawa, Y.; Izumiya, Y.; Miyata, K.; Nakayama, M.; Kaikita, K.; Obata, T.; Takeya, M.; Ogawa, H. Activated endocannabinoid system in coronary artery disease and antiinflammatory effects of cannabinoid 1 receptor blockade on macrophages. Circulation, 2009, 119(1), 28-36.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.108.811992] [PMID: 19103987]
[83]
Han, K.H.; Lim, S.; Ryu, J.; Lee, C.W.; Kim, Y.; Kang, J.H.; Kang, S.S.; Ahn, Y.K.; Park, C.S.; Kim, J.J. CB1 and CB2 cannabinoid receptors differentially regulate the production of reactive oxygen species by macrophages. Cardiovasc. Res., 2009, 84(3), 378-386.
[http://dx.doi.org/10.1093/cvr/cvp240] [PMID: 19596672]
[84]
Rajesh, M.; Mukhopadhyay, P.; Haskó, G.; Liaudet, L.; Mackie, K.; Pacher, P. Cannabinoid-1 receptor activation induces reactive oxygen species-dependent and -independent mitogen-activated protein kinase activation and cell death in human coronary artery endothelial cells. Br. J. Pharmacol., 2010, 160(3), 688-700.
[http://dx.doi.org/10.1111/j.1476-5381.2010.00712.x] [PMID: 20590572]
[85]
Rajesh, M.; Mukhopadhyay, P.; Bátkai, S.; Haskó, G.; Liaudet, L.; Huffman, J.W.; Csiszar, A.; Ungvari, Z.; Mackie, K.; Chatterjee, S.; Pacher, P. CB2-receptor stimulation attenuates TNF-alpha-induced human endothelial cell activation, transendothelial migration of monocytes, and monocyte-endothelial adhesion. Am. J. Physiol. Heart Circ. Physiol., 2007, 293(4), H2210-H2218.
[http://dx.doi.org/10.1152/ajpheart.00688.2007] [PMID: 17660390]
[86]
Takeda, S.; Usami, N.; Yamamoto, I.; Watanabe, K. Cannabidiol-2′,6′-dimethyl ether, a cannabidiol derivative, is a highly potent and selective 15-lipoxygenase inhibitor. Drug Metab. Dispos., 2009, 37(8), 1733-1737.
[http://dx.doi.org/10.1124/dmd.109.026930] [PMID: 19406952]
[87]
Gao, S.; Liu, J. Association between circulating oxidized low-density lipoprotein and atherosclerotic cardiovascular disease. Chronic Dis Transl Med, 2017, 3(2), 89-94.
[http://dx.doi.org/10.1016/j.cdtm.2017.02.008] [PMID: 29063061]
[88]
Jiang, L.S.; Pu, J.; Han, Z.H.; Hu, L.H.; He, B. Role of activated endocannabinoid system in regulation of cellular cholesterol metabolism in macrophages. Cardiovasc. Res., 2009, 81(4), 805-813.
[http://dx.doi.org/10.1093/cvr/cvn344] [PMID: 19074161]
[89]
Després, J.P.; Golay, A.; Sjöström, L. Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. N. Engl. J. Med., 2005, 353(20), 2121-2134.
[http://dx.doi.org/10.1056/NEJMoa044537] [PMID: 16291982]
[90]
Rajesh, M.; Mukhopadhyay, P.; Haskó, G.; Huffman, J.W.; Mackie, K.; Pacher, P. CB2 cannabinoid receptor agonists attenuate TNF-alpha-induced human vascular smooth muscle cell proliferation and migration. Br. J. Pharmacol., 2008, 153(2), 347-357.
[http://dx.doi.org/10.1038/sj.bjp.0707569] [PMID: 17994109]
[91]
Tiyerili, V.; Zimmer, S.; Jung, S.; Wassmann, K.; Naehle, C.P.; Lütjohann, D.; Zimmer, A.; Nickenig, G.; Wassmann, S. CB1 receptor inhibition leads to decreased vascular AT1 receptor expression, inhibition of oxidative stress and improved endothelial function. Basic Res. Cardiol., 2010, 105(4), 465-477.
[http://dx.doi.org/10.1007/s00395-010-0090-7] [PMID: 20361197]
[92]
Farb, A.; Burke, A.P.; Tang, A.L.; Liang, T.Y.; Mannan, P.; Smialek, J.; Virmani, R. Coronary plaque erosion without rupture into a lipid core. A frequent cause of coronary thrombosis in sudden coronary death. Circulation, 1996, 93(7), 1354-1363.
[http://dx.doi.org/10.1161/01.CIR.93.7.1354] [PMID: 8641024]
[93]
Quillard, T.; Franck, G.; Mawson, T.; Folco, E.; Libby, P. Mechanisms of erosion of atherosclerotic plaques. Curr. Opin. Lipidol., 2017, 28(5), 434-441.
[http://dx.doi.org/10.1097/MOL.0000000000000440] [PMID: 28682809]
[94]
van der Wal, A.C.; Becker, A.E.; van der Loos, C.M.; Das, P.K. Site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994, 89(1), 36-44.
[http://dx.doi.org/10.1161/01.CIR.89.1.36] [PMID: 8281670]
[95]
Bär, S.; Praz, F.; Räber, L. Plaque erosion causing ST-elevation myocardial infarction after consumption of cannabis and N2O in a 27-year old man: A case report. BMC Cardiovasc. Disord., 2021, 21(1), 147.
[http://dx.doi.org/10.1186/s12872-021-01953-3] [PMID: 33757456]
[96]
Montisci, M.; Thiene, G.; Ferrara, S.D.; Basso, C. Cannabis and cocaine: A lethal cocktail triggering coronary sudden death. Cardiovasc. Pathol., 2008, 17(5), 344-346.
[http://dx.doi.org/10.1016/j.carpath.2007.05.005] [PMID: 18402793]
[97]
Partida, R.A.; Libby, P.; Crea, F.; Jang, I-K. Plaque erosion: A new in vivo diagnosis and a potential major shift in the management of patients with acute coronary syndromes. Eur. Heart J., 2018, 39(22), 2070-2076.
[http://dx.doi.org/10.1093/eurheartj/ehx786] [PMID: 29329384]
[98]
Kolodgie, F.D.; Burke, A.P.; Farb, A.; Weber, D.K.; Kutys, R.; Wight, T.N.; Virmani, R. Differential accumulation of proteoglycans and hyaluronan in culprit lesions: Insights into plaque erosion. Arterioscler. Thromb. Vasc. Biol., 2002, 22(10), 1642-1648.
[http://dx.doi.org/10.1161/01.ATV.0000034021.92658.4C] [PMID: 12377743]
[99]
Naruko, T.; Ueda, M.; Haze, K.; van der Wal, A.C.; van der Loos, C.M.; Itoh, A.; Komatsu, R.; Ikura, Y.; Ogami, M.; Shimada, Y.; Ehara, S.; Yoshiyama, M.; Takeuchi, K.; Yoshikawa, J.; Becker, A.E. Neutrophil infiltration of culprit lesions in acute coronary syndromes. Circulation, 2002, 106(23), 2894-2900.
[http://dx.doi.org/10.1161/01.CIR.0000042674.89762.20] [PMID: 12460868]
[100]
Ferrante, G.; Nakano, M.; Prati, F.; Niccoli, G.; Mallus, M.T.; Ramazzotti, V.; Montone, R.A.; Kolodgie, F.D.; Virmani, R.; Crea, F. High levels of systemic myeloperoxidase are associated with coronary plaque erosion in patients with acute coronary syndromes: A clinicopathological study. Circulation, 2010, 122(24), 2505-2513.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.110.955302] [PMID: 21126969]
[101]
Sugiyama, S.; Kugiyama, K.; Aikawa, M.; Nakamura, S.; Ogawa, H.; Libby, P. Hypochlorous acid, a macrophage product, induces endothelial apoptosis and tissue factor expression: Involvement of myeloperoxidase-mediated oxidant in plaque erosion and thrombogenesis. Arterioscler. Thromb. Vasc. Biol., 2004, 24(7), 1309-1314.
[http://dx.doi.org/10.1161/01.ATV.0000131784.50633.4f] [PMID: 15142860]
[102]
Quillard, T.; Araújo, H.A.; Franck, G.; Shvartz, E.; Sukhova, G.; Libby, P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: Implications for superficial erosion. Eur. Heart J., 2015, 36(22), 1394-1404.
[http://dx.doi.org/10.1093/eurheartj/ehv044] [PMID: 25755115]
[103]
Gould, T.J.; Vu, T.T.; Swystun, L.L.; Dwivedi, D.J.; Mai, S.H.C.; Weitz, J.I.; Liaw, P.C. Neutrophil extracellular traps promote thrombin generation through platelet-dependent and platelet-independent mechanisms. Arterioscler. Thromb. Vasc. Biol., 2014, 34(9), 1977-1984.
[http://dx.doi.org/10.1161/ATVBAHA.114.304114] [PMID: 25012129]
[104]
Mendizábal, V.E.; Adler-Graschinsky, E. Cannabinoids as therapeutic agents in cardiovascular disease: A tale of passions and illusions. Br. J. Pharmacol., 2007, 151(4), 427-440.
[http://dx.doi.org/10.1038/sj.bjp.0707261] [PMID: 17450170]
[105]
Eid, B.G. Cannabinoids for treating cardiovascular disorders: putting together a complex puzzle. J. Microsc. Ultrastruct., 2018, 6(4), 171-176.
[PMID: 30464888]
[106]
Rezkalla, S.; Stankowski, R.; Kloner, R.A. Cardiovascular effects of marijuana. J. Cardiovasc. Pharmacol. Ther., 2016, 21(5), 452-455.
[http://dx.doi.org/10.1177/1074248415627874] [PMID: 26801372]
[107]
Alshaarawy, O.; Elbaz, H.A. Cannabis use and blood pressure levels: United States National Health and Nutrition Examination Survey, 2005-2012. J. Hypertens., 2016, 34(8), 1507-1512.
[http://dx.doi.org/10.1097/HJH.0000000000000990] [PMID: 27270185]
[108]
Yankey, B.A.; Rothenberg, R.; Strasser, S.; Ramsey-White, K.; Okosun, I.S. Effect of marijuana use on cardiovascular and cerebrovascular mortality: A study using the National Health and Nutrition Examination Survey linked mortality file. Eur. J. Prev. Cardiol., 2017, 24(17), 1833-1840.
[http://dx.doi.org/10.1177/2047487317723212] [PMID: 28789567]
[109]
Fogel, J.S.; Kelly, T.H.; Westgate, P.M.; Lile, J.A. Sex differences in the subjective effects of oral Δ9-THC in cannabis users. Pharmacol. Biochem. Behav., 2017, 152, 44-51.
[http://dx.doi.org/10.1016/j.pbb.2016.01.007] [PMID: 26780348]
[110]
Spindle, T.R.; Cone, E.J.; Schlienz, N.J.; Mitchell, J.M.; Bigelow, G.E.; Flegel, R.; Hayes, E.; Vandrey, R. Acute effects of smoked and vaporized cannabis in healthy adults who infrequently use cannabis: a crossover trial. JAMA Netw. Open, 2018, 1(7), e184841.
[http://dx.doi.org/10.1001/jamanetworkopen.2018.4841] [PMID: 30646391]
[111]
Solowij, N.; Broyd, S.; Greenwood, L.M.; van Hell, H.; Martelozzo, D.; Rueb, K.; Todd, J.; Liu, Z.; Galettis, P.; Martin, J.; Murray, R.; Jones, A.; Michie, P.T.; Croft, R. A randomised controlled trial of vaporised Δ9-tetrahydrocannabinol and cannabidiol alone and in combination in frequent and infrequent cannabis users: Acute intoxication effects. Eur. Arch. Psychiatry Clin. Neurosci., 2019, 269(1), 17-35.
[http://dx.doi.org/10.1007/s00406-019-00978-2] [PMID: 30661105]
[112]
Lee, J.D.; Schatz, D.; Hochman, J. Cannabis and heart disease: forward into the great unknown? J. Am. Coll. Cardiol., 2018, 71(22), 2552-2554.
[http://dx.doi.org/10.1016/j.jacc.2018.03.010] [PMID: 29535063]
[113]
Filali, T.; Lahidheb, D.; Gommidh, M.; Jdaida, B.; Hajlaoui, N.; Fehri, W.; Haouala, H. Spontaneous multivessel coronary artery dissection associated with cannabis use. J. Cardiol. Cases, 2012, 7(1), e4-e7.
[http://dx.doi.org/10.1016/j.jccase.2012.08.002] [PMID: 30533106]
[114]
Elsheshtawy, M.; Sriganesh, P.; Virparia, V.; Patel, F.; Khanna, A. Synthetic marijuana induced acute nonischemic left ventricular dysfunction. Case Rep. Cardiol., 2016, 2016, 9625758.
[http://dx.doi.org/10.1155/2016/9625758] [PMID: 27119030]
[115]
DeFilippis, E.M.; Singh, A.; Divakaran, S.; Gupta, A.; Collins, B.L.; Biery, D.; Qamar, A.; Fatima, A.; Ramsis, M.; Pipilas, D.; Rajabi, R.; Eng, M.; Hainer, J.; Klein, J.; Januzzi, J.L.; Nasir, K.; Di Carli, M.F.; Bhatt, D.L.; Blankstein, R. Cocaine and marijuana use among young adults with myocardial infarction. J. Am. Coll. Cardiol., 2018, 71(22), 2540-2551.
[http://dx.doi.org/10.1016/j.jacc.2018.02.047] [PMID: 29535062]
[116]
Booz, G.W. Cannabidiol as an emergent therapeutic strategy for lessening the impact of inflammation on oxidative stress. Free Radic. Biol. Med., 2011, 51(5), 1054-1061.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.01.007] [PMID: 21238581]
[117]
Bátkai, S.; Pacher, P.; Osei-Hyiaman, D.; Radaeva, S.; Liu, J.; Harvey-White, J.; Offertáler, L.; Mackie, K.; Rudd, M.A.; Bukoski, R.D.; Kunos, G. Endocannabinoids acting at cannabinoid-1 receptors regulate cardiovascular function in hypertension. Circulation, 2004, 110(14), 1996-2002.
[http://dx.doi.org/10.1161/01.CIR.0000143230.23252.D2] [PMID: 15451779]
[118]
Ghosh, M.; Naderi, S. Cannabis and cardiovascular disease. Curr. Atheroscler. Rep., 2019, 21(6), 21.
[http://dx.doi.org/10.1007/s11883-019-0783-9] [PMID: 30980200]
[119]
Sandoo, A.; van Zanten, J.J.; Metsios, G.S.; Carroll, D.; Kitas, G.D. The endothelium and its role in regulating vascular tone. Open Cardiovasc. Med. J., 2010, 4, 302-312.
[http://dx.doi.org/10.2174/1874192401004010302] [PMID: 21339899]
[120]
Daigle, T.L.; Kearn, C.S.; Mackie, K. Rapid CB1 cannabinoid receptor desensitization defines the time course of ERK1/2 MAP kinase signaling. Neuropharmacology, 2008, 54(1), 36-44.
[http://dx.doi.org/10.1016/j.neuropharm.2007.06.005] [PMID: 17681354]
[121]
Nguyen, P.T.; Schmid, C.L.; Raehal, K.M.; Selley, D.E.; Bohn, L.M.; Sim-Selley, L.J. β-arrestin2 regulates cannabinoid CB1 receptor signaling and adaptation in a central nervous system region-dependent manner. Biol. Psychiatry, 2012, 71(8), 714-724.
[http://dx.doi.org/10.1016/j.biopsych.2011.11.027] [PMID: 22264443]
[122]
Stanley, C.; O’Sullivan, S.E. Vascular targets for cannabinoids: Animal and human studies. Br. J. Pharmacol., 2014, 171(6), 1361-1378.
[http://dx.doi.org/10.1111/bph.12560] [PMID: 24329566]
[123]
Chemin, J.; Monteil, A.; Perez-Reyes, E.; Nargeot, J.; Lory, P. Direct inhibition of T-type calcium channels by the endogenous cannabinoid anandamide. EMBO J., 2001, 20(24), 7033-7040.
[http://dx.doi.org/10.1093/emboj/20.24.7033] [PMID: 11742980]
[124]
Montecucco, F.; Di Marzo, V. At the heart of the matter: The endocannabinoid system in cardiovascular function and dysfunction. Trends Pharmacol. Sci., 2012, 33(6), 331-340.
[http://dx.doi.org/10.1016/j.tips.2012.03.002] [PMID: 22503477]
[125]
Ahmad, A.; Dempsey, S.K.; Daneva, Z.; Azam, M.; Li, N.; Li, P.L.; Ritter, J.K. Role of nitric oxide in the cardiovascular and renal systems. Int. J. Mol. Sci., 2018, 19(9), E2605.
[http://dx.doi.org/10.3390/ijms19092605] [PMID: 30177600]
[126]
Klumpers, L.E.; Roy, C.; Ferron, G.; Turpault, S.; Poitiers, F.; Pinquier, J.L.; van Hasselt, J.G.; Zuurman, L.; Erwich, F.A.; van Gerven, J.M. Surinabant, a selective cannabinoid receptor type 1 antagonist, inhibits Δ9-tetrahydrocannabinol-induced central nervous system and heart rate effects in humans. Br. J. Clin. Pharmacol., 2013, 76(1), 65-77.
[http://dx.doi.org/10.1111/bcp.12071] [PMID: 23278647]
[127]
Pacher, P.; Bátkai, S.; Kunos, G. Cardiovascular pharmacology of cannabinoids. Handb. Exp. Pharmacol., 2005, (168), 599-625.
[http://dx.doi.org/10.1007/3-540-26573-2_20] [PMID: 16596789]
[128]
Nayak, S.K.; Suman, S.; Nayak, B.M.; Banerjee, I.; Pal, K.; Champaty, B.; Mohapatra, B.; Tibarewala, D.N. Acquisition and classification of EMG using a dual-channel EMG biopotential amplifier for controlling assistive devices. IEEE Annual India Conference (INDICON), 2016, pp. 1-5.
[http://dx.doi.org/10.1109/INDICON.2016.7839015]
[129]
Richards, J.R. Cannabinoid hyperemesis syndrome: A disorder of the HPA axis and sympathetic nervous system? Med. Hypotheses, 2017, 103, 90-95.
[http://dx.doi.org/10.1016/j.mehy.2017.04.018] [PMID: 28571820]
[130]
Thomas, K.N.; van Rij, A.M.; Lucas, S.J.; Cotter, J.D. Lower-limb hot-water immersion acutely induces beneficial hemodynamic and cardiovascular responses in peripheral arterial disease and healthy, elderly controls. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2017, 312(3), R281-R291.
[http://dx.doi.org/10.1152/ajpregu.00404.2016] [PMID: 28003211]
[131]
Micale, V.; Drago, F. Endocannabinoid system, stress and HPA axis. Eur. J. Pharmacol., 2018, 834, 230-239.
[http://dx.doi.org/10.1016/j.ejphar.2018.07.039] [PMID: 30036537]
[132]
Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr. Physiol., 2016, 6(2), 603-621.
[http://dx.doi.org/10.1002/cphy.c150015] [PMID: 27065163]
[133]
Llorente-Berzal, A.; Terzian, A.L.; di Marzo, V.; Micale, V.; Viveros, M.P.; Wotjak, C.T. 2-AG promotes the expression of conditioned fear via cannabinoid receptor type 1 on GABAergic neurons. Psychopharmacology, 2015, 232(15), 2811-2825.
[http://dx.doi.org/10.1007/s00213-015-3917-y] [PMID: 25814137]
[134]
Zou, S.; Kumar, U. Cannabinoid receptors and the endocannabinoid system: signaling and function in the central nervous system. Int. J. Mol. Sci., 2018, 19(3), E833.
[http://dx.doi.org/10.3390/ijms19030833] [PMID: 29533978]
[135]
Gray, J.M.; Vecchiarelli, H.A.; Morena, M.; Lee, T.T.; Hermanson, D.J.; Kim, A.B.; McLaughlin, R.J.; Hassan, K.I.; Kühne, C.; Wotjak, C.T.; Deussing, J.M.; Patel, S.; Hill, M.N. Corticotropin-releasing hormone drives anandamide hydrolysis in the amygdala to promote anxiety. J. Neurosci., 2015, 35(9), 3879-3892.
[http://dx.doi.org/10.1523/JNEUROSCI.2737-14.2015] [PMID: 25740517]
[136]
Gray, J.M.; Wilson, C.D.; Lee, T.T.; Pittman, Q.J.; Deussing, J.M.; Hillard, C.J.; McEwen, B.S.; Schulkin, J.; Karatsoreos, I.N.; Patel, S.; Hill, M.N. Sustained glucocorticoid exposure recruits cortico-limbic CRH signaling to modulate endocannabinoid function. Psychoneuroendocri- nology, 2016, 66, 151-158.
[http://dx.doi.org/10.1016/j.psyneuen.2016.01.004] [PMID: 26821211]
[137]
Surkin, P.N.; Gallino, S.L.; Luce, V.; Correa, F.; Fernandez-Solari, J.; De Laurentiis, A. Pharmacological augmentation of endocannabinoid signaling reduces the neuroendocrine response to stress. Psychoneuroendocrinology, 2018, 87, 131-140.
[http://dx.doi.org/10.1016/j.psyneuen.2017.10.015] [PMID: 29065362]
[138]
Cservenka, A.; Lahanas, S.; Dotson-Bossert, J. Marijuana use and hypothalamic-pituitary-adrenal axis functioning in humans. Front. Psychiatry, 2018, 9, 472.
[http://dx.doi.org/10.3389/fpsyt.2018.00472] [PMID: 30327619]
[139]
Kleinloog, D.; Liem-Moolenaar, M.; Jacobs, G.; Klaassen, E.; de Kam, M.; Hijman, R.; van Gerven, J. Does olanzapine inhibit the psychomimetic effects of Δ9-tetrahydrocannabinol? J. Psychopharmacol., 2012, 26(10), 1307-1316.
[http://dx.doi.org/10.1177/0269881112446534] [PMID: 22596206]
[140]
De Sousa Fernandes Perna, E.B.; Theunissen, E.L.; Kuypers, K.P.; Toennes, S.W.; Ramaekers, J.G. Subjective aggression during alcohol and cannabis intoxication before and after aggression exposure. Psychopharmacology (Berl.), 2016, 233(18), 3331-3340.
[http://dx.doi.org/10.1007/s00213-016-4371-1] [PMID: 27422568]
[141]
Childs, E.; Lutz, J.A.; de Wit, H. Dose-related effects of delta-9-THC on emotional responses to acute psychosocial stress. Drug Alcohol Depend., 2017, 177, 136-144.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.03.030] [PMID: 28599212]
[142]
Cuttler, C.; Spradlin, A.; Nusbaum, A.T.; Whitney, P.; Hinson, J.M.; McLaughlin, R.J. Blunted stress reactivity in chronic cannabis users. Psychopharmacology, 2017, 234(15), 2299-2309.
[http://dx.doi.org/10.1007/s00213-017-4648-z] [PMID: 28567696]
[143]
Nusbaum, A.T.; Whitney, P.; Cuttler, C.; Spradlin, A.; Hinson, J.M.; McLaughlin, R.J. Altered attentional control strategies but spared executive functioning in chronic cannabis users. Drug Alcohol Depend., 2017, 181, 116-123.
[http://dx.doi.org/10.1016/j.drugalcdep.2017.09.019] [PMID: 29045919]
[144]
Hoffman, A.F.; Lupica, C.R. Synaptic targets of Δ9-tetrahydrocannabinol in the central nervous system. Cold Spring Harb. Perspect. Med., 2013, 3(8), a012237.
[http://dx.doi.org/10.1101/cshperspect.a012237] [PMID: 23209160]
[145]
McLaughlin, R.J.; Hill, M.N.; Gorzalka, B.B. Monoaminergic neurotransmission contributes to cannabinoid-induced activation of the hypothalamic-pituitary-adrenal axis. Eur. J. Pharmacol., 2009, 624(1-3), 71-76.
[http://dx.doi.org/10.1016/j.ejphar.2009.09.055] [PMID: 19818759]
[146]
Ullian, M.E. The role of corticosteriods in the regulation of vascular tone. Cardiovasc. Res., 1999, 41(1), 55-64.
[http://dx.doi.org/10.1016/S0008-6363(98)00230-2] [PMID: 10325953]
[147]
Ma, L.; Del Buono, M.G.; Moeller, F.G. Cannabis use as a risk factor for takotsubo (stress) cardiomyopathy: exploring the evidence from brain-heart link. Curr. Cardiol. Rep., 2019, 21(10), 121.
[http://dx.doi.org/10.1007/s11886-019-1210-0] [PMID: 31473817]
[148]
Vidal-Perez, R.; Abou Jokh Casas, C.; Agra-Bermejo, R.M.; Alvarez-Alvarez, B.; Grapsa, J.; Fontes-Carvalho, R.; Rigueiro Veloso, P.; Garcia Acuña, J.M.; Gonzalez-Juanatey, J.R. Myocardial infarction with non-obstructive coronary arteries: A comprehensive review and future research directions. World J. Cardiol., 2019, 11(12), 305-315.
[http://dx.doi.org/10.4330/wjc.v11.i12.305] [PMID: 31908730]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy