Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

ERM Complex, A Therapeutic Target for Vascular Leakage Induced by Diabetes

Author(s): Olga Simó-Servat, Hugo Ramos, Patricia Bogdanov, Marta García-Ramírez, Jordi Huerta, Cristina Hernández and Rafael Simó*

Volume 29, Issue 12, 2022

Published on: 17 August, 2021

Page: [2189 - 2199] Pages: 11

DOI: 10.2174/0929867328666210526114417

Abstract

Background: Ezrin, radixin, and moesin (the ERM complex) interact directly with membrane proteins regulating their attachment to actin filaments. ERM protein activation modifies cytoskeleton organization and alters the endothelial barrier function, thus favoring vascular leakage. However, little is known regarding the role of ERM proteins in diabetic retinopathy (DR). Objective: This study aimed to examine whether overexpression of the ERM complex exists in db/db mice and its main regulating factors.

Methods: 9 male db/db mice and 9 male db/+ aged 14 weeks were analyzed. ERM proteins were assessed by western blot and by immunohistochemistry. Vascular leakage was determined by the Evans blue method. To assess ERM regulation, HRECs were cultured in a medium containing 5.5 mM D-glucose (mimicking physiological conditions) and 25 mM D-glucose (mimicking hyperglycemia that occurs in diabetic patients). Moreover, treatment with TNF-α, IL-1β, or VEGF was added to a high glucose condition. The expression of ERM proteins was quantified by RT-PCR. Cell permeability was evaluated by measuring movements of FITC-dextran.

Results: A significant increase of ERM in diabetic mice in comparison with non-diabetic mice was observed. A high glucose condition alone did not have any effect on ERM expression. However, TNF-α and IL-1β induced a significant increase in ERM proteins.

Conclusion: The increase of ERM proteins induced by diabetes could be one of the mechanisms involved in vascular leakage and could be considered as a therapeutic target. Moreover, the upregulation of the ERM complex by diabetes is induced by inflammatory mediators rather than by high glucose itself.

Keywords: Ezrin, radixin, moesin, diabetic retinopathy, retinal permeability, db/db mouse, human retinal endothelial cells.

« Previous
[1]
Simó, R.; Hernández, C. Neurodegeneration in the diabetic eye: New insights and therapeutic perspectives. Trends Endocrinol. Metab., 2014, 25(1), 23-33.
[http://dx.doi.org/10.1016/j.tem.2013.09.005] [PMID: 24183659]
[2]
Solomon, S.D.; Chew, E.; Duh, E.J.; Sobrin, L.; Sun, J.K.; VanderBeek, B.L.; Wykoff, C.C.; Gardner, T.W. Diabetic retinopathy: A position statement by the american diabetes association. Diabetes Care, 2017, 40(3), 412-418.
[http://dx.doi.org/10.2337/dc16-2641] [PMID: 28223445]
[3]
Gardner, T.W.; Davila, J.R. The neurovascular unit and the pathophysiologic basis of diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol., 2017, 255(1), 1-6.
[http://dx.doi.org/10.1007/s00417-016-3548-y] [PMID: 27832340]
[4]
Simó, R.; Stitt, A.W.; Gardner, T.W. Neurodegeneration in diabetic retinopathy: Does it really matter? Diabetologia, 2018, 61(9), 1902-1912.
[http://dx.doi.org/10.1007/s00125-018-4692-1] [PMID: 30030554]
[5]
Antonetti, D.A.; Lieth, E.; Barber, A.J.; Gardner, T.W. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin. Ophthalmol., 1999, 14(4), 240-248.
[http://dx.doi.org/10.3109/08820539909069543] [PMID: 10758225]
[6]
Zhang, X.; Zeng, H.; Bao, S.; Wang, N.; Gillies, M.C. Diabetic macular edema: New concepts in patho-physiology and treatment. Cell Biosci., 2014, 4, 27.
[http://dx.doi.org/10.1186/2045-3701-4-27] [PMID: 24955234]
[7]
Bretscher, A.; Edwards, K.; Fehon, R.G. ERM proteins and merlin: Integrators at the cell cortex. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 586-599.
[http://dx.doi.org/10.1038/nrm882] [PMID: 12154370]
[8]
Yonemura, S.; Matsui, T.; Tsukita, S.; Tsukita, S. Rho-dependent and -independent activation mechanisms of ezrin/radixin/moesin proteins: An essential role for polyphosphoinositides in vivo. J. Cell Sci., 2002, 115(Pt 12), 2569-2580.
[http://dx.doi.org/10.1242/jcs.115.12.2569] [PMID: 12045227]
[9]
Louvet-Vallée, S. ERM proteins: From cellular architecture to cell signaling. Biol. Cell, 2000, 92(5), 305-316.
[http://dx.doi.org/10.1016/S0248-4900(00)01078-9] [PMID: 11071040]
[10]
Simó-Servat, O.; Hernández, C.; Simó, R. The ERM complex: A new player involved in diabetes-induced vascular leakage. Curr. Med. Chem., 2020, 27(18), 3012-3022.
[http://dx.doi.org/10.2174/0929867325666181016162327] [PMID: 30332939]
[11]
Claesson-Welsh, L. Vascular permeability-the essentials. Ups. J. Med. Sci., 2015, 120(3), 135-143.
[http://dx.doi.org/10.3109/03009734.2015.1064501] [PMID: 26220421]
[12]
Prasain, N.; Stevens, T. The actin cytoskeleton in endothelial cell phenotypes. Microvasc. Res., 2009, 77(1), 53-63.
[http://dx.doi.org/10.1016/j.mvr.2008.09.012] [PMID: 19028505]
[13]
Bogatcheva, N.V.; Verin, A.D. The role of cytoskeleton in the regulation of vascular endothelial barrier function. Microvasc. Res., 2008, 76(3), 202-207.
[http://dx.doi.org/10.1016/j.mvr.2008.06.003] [PMID: 18657550]
[14]
Anderson, P.J.; Watts, H.; Hille, C.; Philpott, K.; Clark, P.; Gentleman, M.C.; Jen, L.S. Glial and endothelial blood-retinal barrier responses to amyloid-beta in the neural retina of the rat. Clin. Ophthalmol., 2008, 2(4), 801-816.
[http://dx.doi.org/10.2147/OPTH.S3967] [PMID: 19668434]
[15]
Hernández, C.; Bogdanov, P.; Corraliza, L.; García-Ramírez, M.; Solà-Adell, C.; Arranz, J.A.; Arroba, A.I.; Valverde, A.M.; Simó, R. Topical administration of GLP-1 receptor agonists prevents retinal neurodegeneration in experimental diabetes. Diabetes, 2016, 65(1), 172-187.
[PMID: 26384381]
[16]
Hernández, C.; Bogdanov, P.; Solà-Adell, C.; Sampedro, J.; Valeri, M.; Genís, X.; Simó-Servat, O.; García-Ramírez, M.; Simó, R. Topical administration of DPP-IV inhibitors prevents retinal neurodegeneration in experimental diabetes. Diabetologia, 2017, 60(11), 2285-2298.
[http://dx.doi.org/10.1007/s00125-017-4388-y] [PMID: 28779212]
[17]
Bogdanov, P.; Simó-Servat, O.; Sampedro, J.; Solà-Adell, C.; Garcia-Ramírez, M.; Ramos, H.; Guerrero, M.; Suñé-Negre, J.M.; Ticó, J.R.; Montoro, B.; Durán, V.; Arias, L.; Hernández, C.; Simó, R. Topical administration of bosentan prevents retinal neurodegeneration in experimental diabetes. Int. J. Mol. Sci., 2018, 19(11), 3578.
[http://dx.doi.org/10.3390/ijms19113578] [PMID: 30428543]
[18]
Hernández, C.; Bogdanov, P.; Gómez-Guerrero, C.; Sampedro, J.; Solà-Adell, C.; Espejo, C.; García-Ramírez, M.; Prieto, I.; Egido, J.; Simó, R. SOCS1-derived peptide administered by eye drops prevents retinal neuroinflammation and vascular leakage in experimental diabetes. Int. J. Mol. Sci., 2019, 20(15), 3615.
[http://dx.doi.org/10.3390/ijms20153615] [PMID: 31344857]
[19]
Bogdanov, P.; Corraliza, L.; Villena, J.A.; Carvalho, A.R.; Garcia-Arumí, J.; Ramos, D.; Ruberte, J.; Simó, R.; Hernández, C. The db/db mouse: A useful model for the study of diabetic retinal neurodegeneration. PLoS One, 2014, 9(5), e97302.
[http://dx.doi.org/10.1371/journal.pone.0097302] [PMID: 24837086]
[20]
Adyshev, D.M.; Dudek, S.M.; Moldobaeva, N.; Kim, K.M.; Ma, S.F.; Kasa, A.; Garcia, J.G.; Verin, A.D. Ezrin/radixin/moesin proteins differentially regulate endothelial hyperpermeability after thrombin. Am. J. Physiol. Lung Cell. Mol. Physiol., 2013, 305(3), L240-L255.
[http://dx.doi.org/10.1152/ajplung.00355.2012] [PMID: 23729486]
[21]
Fei, L.; Sun, G.; Zhu, Z.; You, Q. Phosphorylated erm mediates lipopolysaccharide induced pulmonary microvascular endothelial cells permeability through negatively regulating rac1 activity. Arch. Bronconeumol., 2019, 55(6), 306-311.
[PMID: 30448045]
[22]
Guo, X.; Wang, L.; Chen, B.; Li, Q.; Wang, J.; Zhao, M.; Wu, W.; Zhu, P.; Huang, X.; Huang, Q. ERM protein moesin is phosphorylated by advanced glycation end products and modulates endothelial permeability. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(1), H238-H246.
[http://dx.doi.org/10.1152/ajpheart.00196.2009] [PMID: 19395553]
[23]
Li, Q.; Liu, H.; Du, J.; Chen, B.; Li, Q.; Guo, X.; Huang, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine brain endothelium. Brain Res., 2011, 1373, 1-10.
[http://dx.doi.org/10.1016/j.brainres.2010.12.032] [PMID: 21167822]
[24]
Wang, L.; Li, Q.; Du, J.; Chen, B.; Li, Q.; Huang, X.; Guo, X.; Huang, Q. Advanced glycation end products induce moesin phosphorylation in murine retinal endothelium. Acta Diabetol., 2012, 49(1), 47-55.
[http://dx.doi.org/10.1007/s00592-011-0267-z] [PMID: 21327982]
[25]
Zhang, S.S.; Hu, J.Q.; Liu, X.H.; Chen, L.X.; Chen, H.; Guo, X.H.; Huang, Q.B. Role of moesin phosphorylation in retinal pericyte migration and detachment induced by advanced glycation endproducts. Front. Endocrinol. (Lausanne), 2020, 11, 603450.
[http://dx.doi.org/10.3389/fendo.2020.603450] [PMID: 33312163]
[26]
Koss, M.; Pfeiffer, G.R., II; Wang, Y.; Thomas, S.T.; Yerukhimovich, M.; Gaarde, W.A.; Doerschuk, C.M.; Wang, Q. Ezrin/radixin/moesin proteins are phosphorylated by TNF-alpha and modulate permeability increases in human pulmonary microvascular endothelial cells. J. Immunol., 2006, 176(2), 1218-1227.
[http://dx.doi.org/10.4049/jimmunol.176.2.1218] [PMID: 16394012]
[27]
Yao, Y.; Tsirka, S.E. Truncation of monocyte chemoattractant protein 1 by plasmin promotes blood-brain barrier disruption. J. Cell Sci., 2011, 124(Pt 9), 1486-1495.
[http://dx.doi.org/10.1242/jcs.082834] [PMID: 21486949]
[28]
Lee, W.; Kwon, O.K.; Han, M.S.; Lee, Y.M.; Kim, S.W.; Kim, K.M.; Lee, T.; Lee, S.; Bae, J.S. Role of moesin in HMGB1-stimulated severe inflammatory responses. Thromb. Haemost., 2015, 114(2), 350-363.
[PMID: 25947626]
[29]
Mangialardi, G.; Katare, R.; Oikawa, A.; Meloni, M.; Reni, C.; Emanueli, C.; Madeddu, P. Diabetes causes bone marrow endothelial barrier dysfunction by activation of the RhoA-Rho-associated kinase signaling pathway. Arterioscler. Thromb. Vasc. Biol., 2013, 33(3), 555-564.
[http://dx.doi.org/10.1161/ATVBAHA.112.300424] [PMID: 23307872]
[30]
Pitocco, D.; Tesauro, M.; Alessandro, R.; Ghirlanda, G.; Cardillo, C. Oxidative stress in diabetes: Implications for vascular and other complications. Int. J. Mol. Sci., 2013, 14(11), 21525-21550.
[http://dx.doi.org/10.3390/ijms141121525] [PMID: 24177571]
[31]
Saharinen, P.; Ivaska, J. Blocking integrin inactivation as an anti-angiogenic therapy. EMBO J., 2015, 34(10), 1293-1295.
[http://dx.doi.org/10.15252/embj.201591504] [PMID: 25828097]
[32]
Vitorino, P.; Yeung, S.; Crow, A.; Bakke, J.; Smyczek, T.; West, K.; McNamara, E.; Eastham-Anderson, J.; Gould, S.; Harris, S.F.; Ndubaku, C.; Ye, W. MAP4K4 regulates integrin-FERM binding to control endothelial cell motility. Nature, 2015, 519(7544), 425-430.
[http://dx.doi.org/10.1038/nature14323] [PMID: 25799996]

© 2025 Bentham Science Publishers | Privacy Policy