Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Letter Article

Cytotoxicity, Anti-diabetic, and Hepato-protective Potential of Ajuga bracteosa-conjugated Silver Nanoparticles in Balb/c Mice

Author(s): Sadia Nazer, Saiqa Andleeb*, Shaukat Ali, Nazia Gulzar, Abida Raza, Habib Khan, Kalsoom Akhtar and Muhammad Naeem Ahmed

Volume 23, Issue 3, 2022

Published on: 21 April, 2021

Page: [318 - 336] Pages: 19

DOI: 10.2174/1389201022666210421101837

Price: $65

Abstract

Background: Ajuga bracteosa is a traditional herb used against various diseases.

Objectives: Current research aimed to investigate the anti-diabetic and hepato-protective effect of green synthesized silver nanoparticles (ABAgNPs) using Ajuga bracteosa aqueous extract (ABaqu).

Methods: In vitro anti-diabetic and cytotoxic effects were carried out via α- glucosidase inhibition, brine shrimp lethality, and protein kinase inhibition assays. For in vivo screening of 200 mg/kg and 400 mg/kg of both ABAgNPs and ABaqu in alloxan-induced and CCl4-induced Swiss albino mice were used. Liver and kidney functional markers, hematology, and histopathological studies were carried out after 14 days of administration.

Results: In vivo antidiabetic and anti-cancerous effects showed valuable anti-hyperglycemic and hepatoprotective potential when mice were treated with ABaqu and ABAgNPs. A significant reduction in the blood glucose level was recorded when ABaqu and ABAgNPs were administrated orally compared to Glibenclamide treated group. Significant reduction in ALT, AST, ALP, urea, uric acid, and creatinine was recorded in ABaqu and ABAgNPs treated diabetic mice. The hepato-protective findings indicated that ALT, ALP, AST were elevated in CCl4-induced mice while declined in both ABAgNPs and ABaqu treated CCl4-induced mice. Histopathological examination revealed that ABAgNPs have hepato-protective activity.

Conclusion: It was concluded that ABAgNPs and ABaqu possessed strong anti-diabetic and hepatoprotective phytoconstituents, which could be used in the prevention of diseases.

Keywords: Ajuga bracteosa, anti-diabetic activity, anti-cancerous activity, mice, CCl4, silver nanoparticles, alloxan.

Graphical Abstract

[1]
Bhuvaneshwari, J.; Khanam, S.; Devi, K. In-vitro enzyme inhibition studies for antidiabetic activity of mature and tender leaves of Mangifera indica var. Totapuri. Res. Rev. J. Microbiol. Biotechnol., 2014, 3, 36-41.
[2]
Guariguata, L.; Whiting, D.R.; Hambleton, I.; Beagley, J.; Linnenkamp, U.; Shaw, J.E. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res. Clin. Pract., 2014, 103(2), 137-149.
[http://dx.doi.org/10.1016/j.diabres.2013.11.002] [PMID: 24630390]
[3]
Gondi, M.; Prasada Rao, U.J. Ethanol extract of mango (Mangifera indica L.) peel inhibits α-amylase and α-glucosidase activities, and ameliorates diabetes related biochemical parameters in streptozotocin (STZ)-induced diabetic rats. J. Food Sci. Technol., 2015, 52(12), 7883-7893.
[http://dx.doi.org/10.1007/s13197-015-1963-4] [PMID: 26604360]
[4]
Singh, D.; Jain, M.; Upadhyay, K.; Khandelwal, N.; Verma, H.N. Green synthesis of silver nanoparticle using Argemone Mexicana leaf extract and evaluation of their antimicrobial activities. Dig. J. Nanomater. Biostruct., 2011, 2(5), 483-489.
[5]
Zhao, Y.; Jiang, Z.; Guo, C. New hope for type 2 diabetics: targeting insulin resistance through the immune modulation of stem cells. Autoimmun. Rev., 2011, 11(2), 137-142.
[http://dx.doi.org/10.1016/j.autrev.2011.09.003] [PMID: 21964164]
[6]
Sanghera, D.K.; Blackett, P.R. Type 2 diabetes genetics: beyond GWAS. J. Diabetes Metab., 2012, 3(198), 6948.
[http://dx.doi.org/10.4172/2155-6156.1000198]
[7]
Zatalia, S.R.; Sanusi, H. The role of antioxidants in the pathophysiology, complications, and management of diabetes mellitus. Acta Med. Indones., 2013, 45(2), 141-147.
[PMID: 23770795]
[8]
El-Amrani, F.; Rhallab, A.; Alaoui, T.; El-Badaoui, K.; Chaki, S. Hypoglycaemic effect of Thymelaea hirsuta in normal and streptozotocin-induced diabetic rats. J. Med. Plants Res., 2009, 3(9), 625-629.
[9]
Lee, S.J.; Yook, S.; Yhee, J.Y.; Yoon, H.Y.; Kim, M.G.; Ku, S.H.; Kim, S.H.; Park, J.H.; Jeong, J.H.; Kwon, I.C.; Lee, S.; Lee, H.; Kim, K. Co-delivery of VEGF and Bcl-2 dual-targeted siRNA polymer using a single nanoparticle for synergistic anti-cancer effects In vivo. J. Control. Release. 2015. 220(Pt B), 631-641.
[http://dx.doi.org/10.1016/j.jconrel.2015.08.032] [PMID: 26307351]
[10]
Fujita, K.; Iwama, H.; Miyoshi, H.; Tani, J.; Oura, K.; Tadokoro, T.; Sakamoto, T.; Nomura, T.; Morishita, A.; Yoneyama, H.; Masaki, T. Diabetes mellitus and metformin in hepatocellular carcinoma. World J. Gastroenterol., 2016, 22(27), 6100-6113.
[http://dx.doi.org/10.3748/wjg.v22.i27.6100] [PMID: 27468203]
[11]
Kralj, D.; Virović Jukić, L.; Stojsavljević, S.; Duvnjak, M.; Smolić, M.; Čurčić, I.B. Hepatitis C virus, insulin resistance, and steatosis. J. Clin. Transl. Hepatol., 2016, 4(1), 66-75.
[http://dx.doi.org/10.14218/JCTH.2015.00051] [PMID: 27047774]
[12]
Klil-Drori, A.J.; Azoulay, L.; Pollak, M.N. Cancer, obesity, diabetes, and antidiabetic drugs: Is the fog clearing? Nat. Rev. Clin. Oncol., 2017, 14(2), 85-99.
[http://dx.doi.org/10.1038/nrclinonc.2016.120] [PMID: 27502359]
[13]
Mantovani, A.; Targher, G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease. Ann. Transl. Med., 2017, 5(13), 270.
[http://dx.doi.org/10.21037/atm.2017.04.41] [PMID: 28758096]
[14]
Bosch, F.X.; Ribes, J.; Diaz, M.; Cleries, R. Primary liver cancer: Worldwide incidence and trends. Gastroenterol., 2004, 127, 5-16.
[http://dx.doi.org/10.1053/j.gastro.2004.09.011]
[15]
Hiotis, S.P.; Rahbari, N.N.; Villanueva, G.A.; Klegar, E.; Luan, W.; Wang, Q.; Yee, H.T. Hepatitis B vs. hepatitis C infection on viral hepatitis-associated hepatocellular carcinoma. BMC Gastroenterol., 2012, 12(10), 64.
[http://dx.doi.org/10.1186/1471-230X-12-64] [PMID: 22681852]
[16]
Farazi, P.A.; DePinho, R.A. Hepatocellular carcinoma pathogenesis: from genes to environment. Nat. Rev. Cancer, 2006, 6(9), 674-687.
[http://dx.doi.org/10.1038/nrc1934] [PMID: 16929323]
[17]
Nazeema, T.H.; Suganya, P.K. Synthesis and characterization of silver nanoparticle form two medicinal plants and its anticancer property. Int. J. Res. Eng. Tech., 2014, 2, 49-56.
[18]
Kalaydina, R.V.; Bajwa, K.; Qorri, B.; Decarlo, A.; Szewczuk, M.R. Recent advances in “smart” delivery systems for extended drug release in cancer therapy. Int. J. Nanomedicine, 2018, 13, 4727-4745.
[http://dx.doi.org/10.2147/IJN.S168053] [PMID: 30154657]
[19]
Jeyaraj, M.; Rajesh, M.; Arun, R. MubarakAli, D.; Sathishkumar, G.; Sivanandhan, G.; Dev, G.K.; Manickavasagam, M.; Premkumar, K.; Thajuddin, N.; Ganapathi, A. An investigation on the cytotoxicity and caspase-mediated apoptotic effect of biologically synthesized silver nanoparticles using Podophyllum hexandrum on human cervical carcinoma cells. Colloids Sur. B., 2013, 102, 708-717.
[20]
Saratale, G.D.; Saratale, R.G.; Benelli Kumar, G.A.; Pugazhendhi, D.S.; Kim, H.S. Anti-diabetic potential of silver nanoparticles synthesized with Argyreia nervosa leaf extract high synergistic antibacterial activity with standard antibiotics against foodborne bacteria. J. Cluster Sci., 2017, 28(3), 1709-1727.
[http://dx.doi.org/10.1007/s10876-017-1179-z]
[21]
Salem, S.S.; Fouda, A. Green synthesis of metallic nanoparticles and their prospective biotechnological applications: an overview. Biol. Trace Elem. Res., 2021, 199(1), 344-370.
[http://dx.doi.org/10.1007/s12011-020-02138-3] [PMID: 32377944]
[22]
Silva, S.; Costa, E.M.; Costa, M.R.; Pereira, M.F.; Pereira, J.O.; Soares, J.C.; Pintado, M.M. Aqueous extracts of Vaccinium corymbosum as inhibitors of Staphylococcus aureus. Food Control, 2015, 51, 314-320.
[http://dx.doi.org/10.1016/j.foodcont.2014.11.040]
[23]
Patra, J.K.; Baek, K.H. Antibacterial activity and synergistic antibacterial potential of biosynthesized silver nanoparticles against foodborne pathogenic bacteria along with its anticandidal and antioxidant effects’. Front. Microbiol., 2017, 8, 167.
[http://dx.doi.org/10.3389/fmicb.2017.00167] [PMID: 28261161]
[24]
Castro, A.; Coll, J.; Arfan, M. neo-Clerodane diterpenoids from Ajuga bracteosa. J. Nat. Prod., 2011, 74(5), 1036-1041.
[http://dx.doi.org/10.1021/np100929u] [PMID: 21539300]
[25]
Nazer, S.; Andleeb, S.; Ali, S.; Gulzar, N.; Iqbal, T.; Khan, M.A.R.; Raza, A. Synergistic antibacterial efficacy of biogenic synthesized silver nanoparticles using ajuga bractosa with standard antibiotics: A study against bacterial pathogens. Curr. Pharm. Biotechnol., 2020, 21(3), 206-218.
[http://dx.doi.org/10.2174/1389201020666191001123219] [PMID: 31573882]
[26]
Hafeez, K.; Andleeb, S.; Ghousa, T.; Mustafa, R.G.; Naseer, A.; Shafique, I.; Akhter, K. Phytochemical screening, alpha-glucosidase inhibition, antibacterial and antioxidant potential of Ajuga bracteosa Extracts’. Curr. Pharm. Biotechnol., 2017, 18(4), 336-342.
[http://dx.doi.org/10.2174/1389201018666170313095033] [PMID: 28294059]
[27]
Paudel, A. Phytochemical and biological screening of Rhododendron campanulatum. Dissertation, Nepal Tribhuvan University,, 2005.
[28]
Trease, G.E.; Evans, W.C. Pharmacognosy, 15th Edn; Saunders, 2002, pp. 214-393.
[29]
Parekh, J.; Chands, S. Phytochemical screening of some plants from Western regions of India. Plant Arch., 2008, 8, 662.
[30]
Zhou, K.; Yu, L. Total phenolic contents and anti-oxidant properties of commonly consumed vegetables grown in Colorado’. Food Sci. Technol., 2006, 39, 1155-1162.
[31]
Zou, Y.; Lu, Y.; Wei, D.; San Francisco, F. Antioxidant activity of a flavonoid-rich extract of Hypericum perforatum L. in vitro. J. Agric. Food Chem., 2004, 52(16), 5032-5039.
[http://dx.doi.org/10.1021/jf049571r] [PMID: 15291471]
[32]
Fatima, H.; Khan, K.; Zia, M.; Ur-Rehman, T.; Mirza, B.; Haq, I.U. Extraction optimization of medicinally important metabolites from Datura innoxia Mill.: An in vitro biological and phytochemical investigation. BMC Complement. Altern. Med., 2015, 15(1), 376.
[http://dx.doi.org/10.1186/s12906-015-0891-1] [PMID: 26481652]
[33]
Bibi, G.; Ullah, N.; Mannan, A.; Mirza, B. Antitumor, cytotoxic and antioxidant potential of Aster thomsonii extracts. Afr. J. Pharm. Pharmacol., 2011, 5(2), 252-258.
[34]
Dewi, R.T.; Iskandar, Y.M.; Hanafi, M.; Kardono, L.B.; Angelina, M.; Dewijanti, I.D.; Banjarnahor, S.D. Inhibitory effect of koji Aspergillus terreus on α-glucosidase activity and postprandial hyperglycemia. Pak. J. Biol. Sci., 2007, 10(18), 3131-3135.
[http://dx.doi.org/10.3923/pjbs.2007.3131.3135] [PMID: 19090111]
[35]
Mulisa, E.; Asres, K.; Engidawork, E. Evaluation of wound healing and anti-inflammatory activity of the rhizomes of Rumex abyssinicus J. (Polygonaceae) in mice. BMC Complement. Altern. Med., 2015, 15, 341.
[http://dx.doi.org/10.1186/s12906-015-0878-y] [PMID: 26423525]
[36]
OECD. Guidelines for the testing of chemicals. OECD 423. Acute oral toxicity acute toxic class method; Organization for Economic Cooperation and Development: Paris, 2001.
[37]
Tanquilut, N.C.; Tanquilut, M.R.C.; Estacio, M.A.C.; Torres, E.B.; Rasario, J.C.; Reyes, B.A.S. Hypoglycemic effect of Lagerstroemia speciosa (L.) Pers. on alloxan-induced diabetic mice N. C. J. Med. Plants Res., 2009, 3(12), 1066-1071.
[38]
Arockia, J.; Paul, J. KarunaiSelvi, B.; Karmegam, N. Biosynthesis of silver nanoparticles from Premna serratifolia L. leaf and its anticancer activity in CCl4-induced hepato-cancerous Swiss albino mice. Appl. Nanosci., 2015, 5, 937-944.
[http://dx.doi.org/10.1007/s13204-014-0397-z]
[39]
Ahmed, S.; Mudasir, S.U.; Babu, A.; Sawami, L.; Ikram, S. Green synthesis of silver nanoparticles using Azadiranchta indica aqueous leaf extract. J. Radiat. Res. Appl. Sci., 2016, 9(1), 1-7.
[http://dx.doi.org/10.1016/j.jrras.2015.06.006]
[40]
Nahar, K.; Aziz, S.; Bashar, M.S.; Haque, M.A.; Al-Reza, S.M. Synthesis and characterization of Silver nanoparticles from Cinnamomum tamala leaf extract and its antibacterial potential. Int. J. Nanodimens., 2020, 11(1), 88-98.
[41]
Ibrahim, H.M. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J. Radiat. Res. Appl. Sci., 2015, 8(3), 265-275.
[http://dx.doi.org/10.1016/j.jrras.2015.01.007]
[42]
Zaheer, Z. Rafiuddin, Silver nanoparticles to self-assembled films: green synthesis and characterization. Colloids Surf. B Biointerfaces, 2012, 90, 48-52.
[http://dx.doi.org/10.1016/j.colsurfb.2011.09.037] [PMID: 22055624]
[43]
Bonde, S.R.; Rathod, D.P.; Ingle, A.P.; Ade, R.B.; Gade, A.K.; Rai, M.K. Murraya koenigii-mediated synthesis of silver nanoparticles and its activity against three human pathogenic bacteria. Nanosci. Methods, 2012, 1, 25-36.
[http://dx.doi.org/10.1080/17458080.2010.529172]
[44]
Mallikarjun, K.; Narsimha, G.; Dillip, G.; Praveen, B.; Shreedhar, B.; Lakshmi, S. Green synthesis of silver nanoparticles using Ocimum leaf extract and their characterization. Dig. J. Nanomater. Biostruct., 2011, 6, 181-186.
[45]
Almalah, H.I.; Alzahrani, H.A.; Abdelkader, H. Green synthesis of silver nanoparticles using cinnamomum zylinicum and their synergistic effect against multi-drug resistance bacteria. J. Nanotechnol. Res. 2019. 1(3), 095-107.
[46]
Ashok, K.D. Rapid and green synthesis of silver nanoparticles using the leaf extracts of Parthenium hysterophorus: a novel biological approach. Int. Res. J. Pharmacol., 2012, 3(2), 169-171.
[47]
Dada, A.O.; Adekola, F.A.; Odebunmi, E.O. Kinetics and equilibrium models for sorption of Cu(II) onto a novel manganese nano-adsorbent. J. Dispers. Sci. Technol., 2016, 37(1), 119-133.
[http://dx.doi.org/10.1080/01932691.2015.1034361]
[48]
Dada, A.O.; Ojediran, O.J.; Dada, F.E.; Olalekan, A.P.; Awakan, O.J. Green synthesis and characterization of silver nanoparticles using Calotropis Procera extract. J. Appl. Chem. Sci. Interface., 2017, 8(4), 137-143.
[49]
Femi-Adepoju, A.G.; Dada, A.O.; Otun, K.O.; Adepoju, A.O.; Fatoba, O.P. Green synthesis of silver nanoparticles using terrestrial fern (Gleichenia Pectinata (Willd.) C. Presl.): characterization and antimicrobial studies. Heliyon, 2019, 5(4)e01543
[http://dx.doi.org/10.1016/j.heliyon.2019.e01543] [PMID: 31049445]
[50]
Jyoti, M.; Baunthiyal, M.; Singh, A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn.leaves and their synergistic effects with antibiotics. J. Radiat. Res. Appl. Sci., 2016, 9, 217-227.
[http://dx.doi.org/10.1016/j.jrras.2015.10.002]
[51]
Roy, N.; Gaur, A.; Jain, A.; Bhattacharya, S.; Rani, V. Green synthesis of silver nanoparticles: an approach to overcome toxicity. Environ. Toxicol. Pharmacol., 2013, 36(3), 807-812.
[http://dx.doi.org/10.1016/j.etap.2013.07.005] [PMID: 23958974]
[52]
Qais, F.A.; Shafiq, A.; Khan, H.M.; Husain, F.M.; Khan, R.A.; Alenazi, B.; Alsalme, A.; Ahmad, I. Antibacterial effect of silver nanoparticles synthesized using murraya koenigii (l.) Against multidrug-resistant pathogens; Bioorganic Chem. Appl, 2019, p. 4649506.
[53]
Ali, T.; Naqash, A.; Wadoo, R.; Rashid, R.; Bader, G.N. Antimicrobial potential and determination of total phenolic and flavonoid content of aerial part extracts of Ajuga bracteosa Wall ex. Benth. Pharm. Communi., 2018, 8(3), 114-118.
[http://dx.doi.org/10.5530/pc.2018.3.24]
[54]
Makarov, V.V.; Love, A.J.; Sinitsyna, O.V.; Makarova, S.S.; Yaminsky, I.V.; Taliansky, M.E.; Kalinina, N.O. “Green” nanotechnologies: synthesis of metal nanoparticles using plants. Acta Naturae, 2014, 6(1), 35-44.
[http://dx.doi.org/10.32607/20758251-2014-6-1-35-44] [PMID: 24772325]
[55]
Ekor, M. The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol., 2014, 4, 177.
[http://dx.doi.org/10.3389/fphar.2013.00177] [PMID: 24454289]
[56]
Ibrahim, M.B.; Sowemimo, A.A.; Sofidiya, M.O.; Badmos, K.B.; Fageyinbo, M.S.; Abdulkareem, F.B.; Odukoya, O.A. Sub-acute and chronic toxicity profiles of Markhamia tomentosa ethanolic leaf extract in rats. J. Ethnopharmacol., 2016, 193, 68-75.
[http://dx.doi.org/10.1016/j.jep.2016.07.036] [PMID: 27426507]
[57]
Ugwah-Oguejiofor, C.J.; Abubakar, K.; Ugwah, M.O.; Njan, A.A. Evaluation of the antinociceptive and anti-inflammatory effect of Caralluma dalzielii. J. Ethnopharmacol., 2013, 150(3), 967-972.
[http://dx.doi.org/10.1016/j.jep.2013.09.049] [PMID: 24140204]
[58]
Hussain, S.; Malik, F.; Mahmood, S. Review: an exposition of medicinal preponderance of Moringa oleifera (Lank.). Pak. J. Pharm. Sci., 2014, 27(2), 397-403.
[PMID: 24577932]
[59]
Jan, S.A.; Khan, Z.; Zeb, S.A.; Khalil, A.T.; Shah, S.H. Ethnobotany and research trends in trachyspermum ammi l. (ajowan); a popular folklore remedy. Am.-Eurasian J. Agric. Environ. Sci., 2015, 15(1), 68-73.
[60]
Akriti, P.; Jadona, M.; Katarea, Y.K.; Singoura, P.K.; Rajakb, H.; Chaurasiyaa, P.K.; Patila, U.K. Pawara. R.S. Ajuga bracteosa wall: A review on its ethnopharmacological and phytochemical studies. Pelagia Research Library. Pharm. Sin., 2011, 2(2), 1-10.
[61]
Abhishek, V.; Kaur, S.P. Chemical investigation of medicinal plant Ajuga bracteosa. J. Nat. Prod. Plant Res., 2011, 1(1), 37-45.
[62]
Ghufran, M.S.; Qureshi, R.A.; Batool, A.; Kondratyuk, T.P.; Guilford, J.M.; Marler, L.E. Evaluation of selected indigenous medicinal plants from the western Himalayas for cytotoxicity and as potential cancer chemopreventive agents. Pharm. Biol., 2009, 47, 533-538.
[http://dx.doi.org/10.1080/13880200902873847]
[63]
Saleem, U.; Ahmad, B.; Ahmad, M.; Erum, A.; Hussain, K.; Irfan Bukhari, N. Is folklore use of Euphorbia helioscopia devoid of toxic effects? Drug Chem. Toxicol., 2016, 39(2), 233-237.
[http://dx.doi.org/10.3109/01480545.2015.1092040] [PMID: 26453021]
[64]
Iversen, P.O.; Nicolaysen, G. Water–for life, Tidsskrift for Den Norske Laegeforening: tidsskrift for praktisk medicin. Ny Raekke, 2003, 123(23), 3402-3405.
[65]
Sah, S.; Bala, N.; Basu, R.; Das, S. Acute toxicity study of silver nanoparticle coupled with euphorbia thymifolia. J. Nanosci. Technol., 2018, 4, 412-414.
[http://dx.doi.org/10.30799/jnst.125.18040402]
[66]
Abba, S.; Omotoso, O.D.; Joseph, M.I. Hemorrhagic centrolobar necrosis and cytoplasmic vacuolation of the hepatocytes in syzygium guineense chronic treated mice. Int. J. Anat. Appl. Physiol., 2018, 4(4), 99-102.
[67]
Satyapal, U.S.; Kadam, V.J.; Ghosh, R. Hepatoprotective activity of livobond a polyherbal formulation against CCl4 induced hepatotoxicity in rats. Int. J. Pharmacol., 2008, 4(6), 472-476.
[http://dx.doi.org/10.3923/ijp.2008.472.476]
[68]
Yakubu, A.; Adua, M.M.; Adamude, H. Welfare and hematological indices of weaner rabbits as affected by stocking density. Proceedings of the 9th World rabbit congress, Verona, Italy2008.
[69]
Loha, M.; Mulu, A.; Abay, S.M.; Ergete, W.; Geleta, B. Acute and subacute toxicity of methanol extract of Syzygium guineense leaves on the histology of the liver and kidney and biochemical compositions of blood in rats. Evid. Based Complement. Alternat. Med., 2019, 20195702159
[http://dx.doi.org/10.1155/2019/5702159] [PMID: 30956682]
[70]
Debelo, N.; Afework, M.; Debella, A.; Debella, A.; Makonnen, E.; Ergete, W.; Geleta, B. Assessment of hematological, biochemical and histopathological effects of acute and sub-chronic administration of the aqueous leaves extract of Thymus schimperi in rats. J. Clin. Toxicol., 2016, 6(286), 2161-0495.
[http://dx.doi.org/10.4172/2161-0495.1000286]
[71]
Sangian, H.; Faramarzi, H.; Yazdinezhad, A.; Mousavi, S.J.; Zamani, Z.; Noubarani, M.; Ramazani, A. Antiplasmodial activity of ethanolic extracts of some selected medicinal plants from the northwest of Iran. Parasitol. Res., 2013, 112(11), 3697-3701.
[http://dx.doi.org/10.1007/s00436-013-3555-4] [PMID: 23922204]
[72]
Zia, G.; Sadia, H.; Nazir, S.; Ejaz, K.; Ali, S. Ihsan-Ul-Haq; Iqbal, T.; Khan, M.A.R.; Raza, A.; Andleeb, S. Ihsan-ul-Haq, Iqbal, T.; Khan M.A.R.; Raza A.; Andleeb, S. In vitro Studies on cytotoxic, DNA protecting, antibiofilm and antibacterial effects of biogenic silver nanoparticles prepared with Bergenia ciliata rhizome extract’. Curr. Pharm. Biotechnol., 2018, 19(1), 68-78.
[http://dx.doi.org/10.2174/1389201019666180417160049] [PMID: 29667550]
[73]
Smyth, L.A.; Collins, I. Measuring and interpreting the selectivity of protein kinase inhibitors. J. Chem. Biol., 2009, 2(3), 131-151.
[http://dx.doi.org/10.1007/s12154-009-0023-9] [PMID: 19568781]
[74]
Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; Tomassetti, P.; Pavel, M.E.; Hoosen, S.; Haas, T.; Lincy, J.; Lebwohl, D.; Öberg, K. Rad001 in advanced neuroendocrine tumors, third trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med., 2011, 364(6), 514-523.
[http://dx.doi.org/10.1056/NEJMoa1009290] [PMID: 21306238]
[75]
Alvin, C.P.; David Allesio, D.D. Endocrine pancreas and pharmacotherapy of diabetes mellitus and hypoglycaemia.Goodman and Gilman’s the Pharmacological Basis of Therapeutics, 12th ed; Brunton, L.; Chabner, B.; Knollman, B., Eds.; McGraw-Hill: New York, 2011, p. 1237.
[76]
Islam, D.; Huque, A. Sheuly, Mohanta, L.C.; Das, S.K.; Sultana, A.; Lipy, E.P.; Prodhan, U.K. Hypoglycemic and hypolipidemic effects of Nelumbo nucifera flower in Long-Evans rats. J. Herbmed Pharmacol., 2018, 7, 148-154.
[http://dx.doi.org/10.15171/jhp.2018.25]
[77]
Maideen, N.M.P.; Balasubramaniam, R. Pharmacologically relevant drug interactions of sulfonylurea antidiabetics with common herbs. J. Herb med. Pharmacol., 2018, 7, 200-210.
[78]
Azizi, F.; Hatami, H.; Janghorbani, M. Epidemiology and control of common disease in Iranian Tehran; Eshtiagh Pres, 2007.
[79]
Bahramsoltani, R.; Sodagari, H.R.; Farzaei, M.H.; Abdolghaffari, A.H.; Gooshe, M.; Rezaei, N. The preventive and therapeutic potential of natural polyphenols on influenza. Expert Rev. Anti Infect. Ther., 2016, 14(1), 57-80.
[http://dx.doi.org/10.1586/14787210.2016.1120670] [PMID: 26567957]
[80]
Asadi-Samani, M.; Bagheri, N.; Rafieian-Kopaei, M.; Shirzad, H. Inhibition of Th1 and Th17 cells by medicinal plants and their derivatives: A systematic review. Phytother. Res., 2017, 31(8), 1128-1139.
[http://dx.doi.org/10.1002/ptr.5837] [PMID: 28568565]
[81]
Mina, C.N.; Farzaei, M.H.; Gholamreza, A. Medicinal properties of Peganum harmala L. in traditional Iranian medicine and modern phytotherapy: A review. J. Tradit. Chin. Med., 2015, 35(1), 104-109.
[http://dx.doi.org/10.1016/S0254-6272(15)30016-9] [PMID: 25842736]
[82]
Farzaei, M.H.; Bahramsoltani, R.; Abbasabadi, Z.; Rahimi, R. A comprehensive review on phytochemical and pharmacological aspects of Elaeagnus angustifolia L. J. Pharm. Pharmacol., 2015, 67(11), 1467-1480.
[http://dx.doi.org/10.1111/jphp.12442] [PMID: 26076872]
[83]
Farzaei, F.; Morovati, M.R.; Farjadmand, F.; Farzaei, M.H. A Mechanistic Review on Medicinal plants used for diabetes mellitus in traditional Persian medicine. J. Evid. Based Complementary Altern. Med., 2017, 22(4), 944-955.
[http://dx.doi.org/10.1177/2156587216686461] [PMID: 29228789]
[84]
El-Sayed, M.I. Effects of Portulaca oleracea L. seeds in treatment of type-2 diabetes mellitus patients as adjunctive and alternative therapy. J. Ethnopharmacol., 2011, 137(1), 643-651.
[http://dx.doi.org/10.1016/j.jep.2011.06.020] [PMID: 21718775]
[85]
Pourghassem-Gargari, B.; Abedini, S.; Babaei, H.; Aliasgarzadeh, A.; Pourabdollahi, P. Effect of supplementation with grape seed (Vitis vinifera) extract on antioxidant status and lipid peroxidation in patient with type II diabetes. J. Med. Plants Res., 2011, 5, 2029-2034.
[86]
Agila, K.N.; Kavitha, R. Antidiabetic, antihyperlipidaemic and antioxidant activity of Oxalis corniculata in alloxan induced diabetic mice. J. Nat. Sci. Res., 2012, 2, 9-17.
[87]
Lee, A.S.; Lee, Y.J.; Lee, S.M.; Yoon, J.J.; Kim, J.S.; Kang, D.J.; Lee, H.S. Portulaca oleracea ameliorates diabetic vascular inflammation and endothelial dysfunction in db/dbmice; Evid; Based Complement. Altern. Med, 2012, p. 741824.
[88]
Al-Qalhati, I.R.; Waly, M.; Al-Attabi, Z. AL-Subhi, L.K. Protective effect of Pteropyrum scoparium and Oxalis corniculata against streptozotocin-induced diabetes in rats. FASEB, 2016, 30, 1176-1184.
[89]
Sen, S.; Roy, M.; Chakraborti, A.S. Ameliorative effects of glycyrrhizin on streptozotocin-induced diabetes in rats. J. Pharm. Pharmacol., 2011, 63(2), 287-296.
[http://dx.doi.org/10.1111/j.2042-7158.2010.01217.x] [PMID: 21235594]
[90]
Ozcan, F.; Ozmen, A.; Akkaya, B.; Aliciguzel, Y.; Aslan, M. Beneficial effect of myricetin on renal functions in streptozotocin-induced diabetes. Clin. Exp. Med., 2012, 12(4), 265-272.
[http://dx.doi.org/10.1007/s10238-011-0167-0] [PMID: 22083509]
[91]
P, P.S.; T, K.S. Antioxidant, antibacterial and cytotoxic potential of silver nanoparticles synthesized using terpenes rich extract of Lantana camara L. leaves. Biochem. Biophys. Rep., 2017, 10, 76-81.
[http://dx.doi.org/10.1016/j.bbrep.2017.03.002] [PMID: 29114571]
[92]
Annu, A.S.; Kaur, G.; Sharma, P.; Singh, S.; Ikram, S. Fruit waste (peel) as bio-reductant to synthesize silver nanoparticles with antimicrobial, antioxidant and cytotoxic activities. J. Appl. Biomed., 2018, 16(3), 221-231.
[http://dx.doi.org/10.1016/j.jab.2018.02.002]
[93]
Patra, J.K.; Das, G.; Kumar, A.; Ansari, A.; Kim, H.; Shin, H-S. Photo-mediated Biosynthesis of Silver Nanoparticles Using the Non-edible Accrescent Fruiting Calyx of Physalis peruviana L. fruits and investigation of its radical scavenging potential and cytotoxicity activities. J. Photochem. Photobiol. B, 2018, 188, 116-125.
[http://dx.doi.org/10.1016/j.jphotobiol.2018.08.004] [PMID: 30266015]
[94]
Das, G.; Patra, J.K.; Debnath, T.; Ansari, A.; Shin, H.S. investigation of antioxidants, antibacterial, antidiabetic, and cytotoxicity potential of silver nanoparticles synthesized using the outer peel extract of Ananas comosus (L.). PLoS One, 2019, 14(8)0220950
[http://dx.doi.org/10.1371/journal.pone.0220950]
[95]
Rajaram, K.; Aiswarya, D.C.; Sureshkumar, P. Green synthesis of silver nanoparticle using Tephrosia tinctoria and its anti-diabetic activity. Mater. Lett., 2015, 138, 251-254.
[http://dx.doi.org/10.1016/j.matlet.2014.10.017]
[96]
Abideen, S. VijayaSankar, M. In-vitro Screening of Antidiabetic and Antimicrobial Activity against Green Synthesized AgNO3 using Seaweeds. J. Nanomed. Nanotechnol., 2015, 6.
[97]
Sengottaiyan, A.; Aravinthan, A.; Sudhakar, C.; Selvam, K.; Srinivasan, P.; Govarthanan, M.; Manoharan, K.; Selvankumar, T. Synthesis and characterization of Solanum nigrum-mediated silver nanoparticles and its protective effect on alloxan-induced diabetic rats. J. Nanostruct. Chem. 2016, 41-48.
[98]
Hsu, C.H.; Liao, Y.L.; Lin, S.C.; Hwang, K.C.; Chou, P. The mushroom Agaricus Blazei Murill in combination with metformin and gliclazide improves insulin resistance in type 2 diabetes: a randomized, double-blinded, and placebo-controlled clinical trial. J. Altern. Complement. Med., 2007, 13(1), 97-102.
[http://dx.doi.org/10.1089/acm.2006.6054] [PMID: 17309383]
[99]
Shayganni, E.; Bahmani, M.; Asgary, S.; Rafieian-Kopaei, M. Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine, 2016, 23(11), 1119-1126.
[http://dx.doi.org/10.1016/j.phymed.2015.11.004] [PMID: 26776956]
[100]
Rouhi-Boroujeni, H.; Heidarian, E.; Rouhi-Boroujeni, H.; Deris, F. RafieianKopaei, M. Medicinal plants with multiple effects on cardiovascular diseases. Curr. Pharm. Des., 2017, 23, 999-1015.
[http://dx.doi.org/10.2174/1381612822666161021160524] [PMID: 27774898]
[101]
Qasim, AL-Daami; Lamia, Al-Mashhedy Hypoglycemic effect by assay some glucoregµlatory enzymes and hematological parameters using silver nanoparticles of peel Raphanus sativus L aqueous extract in male Rats. J. Phys. Conf. Ser., 2019, 1294062047
[http://dx.doi.org/10.1088/1742-6596/1294/6/062047]
[102]
Wang, Y.; Jiang, Y.; Fan, X.; Tan, H.; Zeng, H.; Wang, Y.; Chen, P.; Huang, M.; Bi, H. Hepato-protective effect of resveratrol against acetaminophen-induced liver injury is associated with inhibition of CYP-mediated bioactivation and regulation of SIRT1-p53 signaling pathways. Toxicol. Lett., 2015, 236(2), 82-89.
[http://dx.doi.org/10.1016/j.toxlet.2015.05.001] [PMID: 25956474]
[103]
Kemelo, M.K.; Pierzynová, A.; Kutinová Canová, N.; Kučera, T.; Farghali, H. The involvement of sirtuin 1 and heme oxygenase 1 in the hepatoprotective effects of quercetin against carbon tetrachloride-induced sub-chronic liver toxicity in rats. Chem. Biol. Interact., 2017, 269, 1-8.
[http://dx.doi.org/10.1016/j.cbi.2017.03.014] [PMID: 28347707]
[104]
De Groot, H.; Littauer, A.; Hugo-Wissemann, D.; Wissemann, P.; Noll, T. Lipid peroxidation and cell viability in isolated hepatocytes in a redesigned oxystat system: evaluation of the hypothesis that lipid peroxidation, preferentially induced at low oxygen partial pressures, is decisive for CCl4 liver cell injury. Arch. Biochem. Biophys., 1988, 264(2), 591-599.
[http://dx.doi.org/10.1016/0003-9861(88)90325-6] [PMID: 3401014]
[105]
Kieczka, H.; Kappus, H. Oxygen dependence of CCl4-induced lipid peroxidation in vitro and In vivo. Toxicol. Lett., 1980, 5(3-4), 191-196.
[http://dx.doi.org/10.1016/0378-4274(80)90058-2] [PMID: 7466845]
[106]
Contreras-Zentella, M.L.; Hernández-Muñoz, R. Is liver enzyme release really associated with cell necrosis induced by oxidant stress? Oxid. Med. Cell. Longev., 2016, 20163529149
[http://dx.doi.org/10.1155/2016/3529149] [PMID: 26798419]
[107]
Ighodaro, O.M.; Akinloye, O.A. Sapium ellipticum (Hochst) Pax leaf extract: antioxidant potential in CCl4-induced oxidative stress model. Bull. Fac. Pharm. Cairo Univ., 2018, 56(1), 54-59.
[http://dx.doi.org/10.1016/j.bfopcu.2017.11.001]
[108]
Lu, Y.; Chen, J.; Ren, D.; Yang, X.; Zhao, Y. Hepatoprotective effects of phloretin against CCl4 induced liver injury in mice. Food Agric. Immunol., 2017, 28(2), 211-222.
[http://dx.doi.org/10.1080/09540105.2016.1258546]
[109]
Meena, R.; Paulraj, R. Oxidative stress mediated cytotoxicity of TiO2 nano anatase in liver and kidney of Wistar rat. Toxicol. Environ. Chem., 2012, 94(1), 146-163.
[http://dx.doi.org/10.1080/02772248.2011.638441]
[110]
Dutta, S.; Chakraborty, A.K.; Dey, P.; Kar, P.; Guha, P.; Sen, S.; Kumar, A.; Sen, A.; Chaudhuri, T.K. Amelioration of CCl4 induced liver injury in swiss albino mice by antioxidant rich leaf extract of Croton bonplandianus Baill. PLoS One, 2018, 13(4)e0196411
[http://dx.doi.org/10.1371/journal.pone.0196411] [PMID: 29709010]
[111]
Shah, M.D.; D’Souza, U.J.A.; Iqbal, M. The potential protective effect of Commelina nudiflora L. against carbon tetrachloride (CCl4)-induced hepatotoxicity in rats, mediated by suppression of oxidative stress and inflammation. Environ. Health Prev. Med., 2017, 22(1), 66.
[http://dx.doi.org/10.1186/s12199-017-0673-0] [PMID: 29165163]
[112]
Mandal, S.; Phadtare, S.; Sastry, M. Interfacing biology with nanoparticles. Curr. Appl. Phys., 2005, 5, 118-127.
[http://dx.doi.org/10.1016/j.cap.2004.06.006]
[113]
Jeyachandran, R.; Mahesh, A.; Cindrella, L. DEN-induced cancer and its alleviation by Anisomeles malabarica (L.) R.Br. ethanolic leaf extract in male albino mice. Int. J. Cancer, 2007, 3, 174-179.
[http://dx.doi.org/10.3923/ijcr.2007.174.179]
[114]
Dai, J.; Mumper, R.J. Plant phenolics: extraction, analysis and their antioxidant and anticancer properties. Molecules, 2010, 15(10), 7313-7352.
[http://dx.doi.org/10.3390/molecules15107313] [PMID: 20966876]
[115]
Ajay, G.O.; Olagunju, J.A.; Ademuyiwa, O.; Martins, O.C. Gas chromatography mass spectrometry analysis and phytochemical screening of ethanol root extract of Plumbago zeylanica. Linn. J. Med. Plants Res., 2011, 5(9), 1756-1761.
[116]
Eidi, A.; Mortazavi, P.; Bazargan, M.; Zaringhalam, J. Hepatoprotective activity of cinnamon ethanolic extract against CCI4-induced liver injury in rats. EXCLI J., 2012, 11, 495-507.
[PMID: 27547174]
[117]
Satish, S.S.; Janakiraman, N.; Johnson, M. Phytochemical analysis of Vitex altissima L. using UV-VIS, FTIR and GC-MS. IJPSR, 2012, 4(1), 56-62.
[118]
Rajaram, K.; Moushmi, M.; Velayutham Dass Prakash, M.; Kumpati, P.; Ganasaraswathi, M.; Sureshkumar, P. Bioactive studies between wild plant and callus culture of Tephrosia tinctoria Pers; Aplp. Biochem. Biotechnol, 2013, pp. 1-16.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy