Generic placeholder image

Recent Patents on Anti-Cancer Drug Discovery

Editor-in-Chief

ISSN (Print): 1574-8928
ISSN (Online): 2212-3970

Case Report

Combining PD-1 Inhibitor with VEGF/VEGFR2 Inhibitor in Chemotherapy: Report of a Patient with End-Stage Cholangiocarcinoma and Review of Literature

Author(s): Zhenjiang Ma, Heping Li and Liangshuai Liu*

Volume 16, Issue 1, 2021

Published on: 31 December, 2020

Page: [101 - 107] Pages: 7

DOI: 10.2174/1574892815999201231215311

Price: $65

Abstract

Background: Cholangiocarcinoma is the second-largest liver cancer, and develops from the biliary epithelium, where it discretely progresses. Unfortunately, many patients miss the opportunity of performing surgery when diagnosed with cholangiocarcinoma, and due to its chemotherapeutic insensitivity, its control has always been considered difficult.

Objective: Here, we present a case of stage 4 cholangiocarcinoma being controlled by the combination of chemotherapy with PD-1 and VEGF/VEGFR2 inhibitors.

Case Presentation: The patient is a 58-year-old male who was diagnosed with a progressed cholangiocarcinoma 2 years ago. From the beginning, metastases were discovered in multiple places, and the patient was unsuccessfully treated with 3 chemotherapy regimens. Therefore, a new therapeutic method was considered, and that involved the testing of a new combination of chemotherapy with PD-1 and VEGF/VEGFR2 inhibitors.

Results: After 6 courses of treatment with this combination, the patient’s lesions became smaller and stable.

Conclusion: Our case highlights the possibility of combining chemotherapy with PD-1 and VEGF/ VEGFR2 inhibitors for the treatment of cholangiocarcinoma patients. This combination may herald new hope for patients who run out of regimens.

Keywords: Camrelizumab, cholangiocarcinoma, fruquintinib, immunotherapy, PD-1, VEGF/VEGFR2.

[1]
Razumilava N, Gores GJ. Cholangiocarcinoma. Lancet 2014; 383(9935): 2168-79.
[http://dx.doi.org/10.1016/S0140-6736(13)61903-0] [PMID: 24581682]
[2]
Khan SA, Davidson BR, Goldin RD, et al. British Society of Gastroenterology. Guidelines for the diagnosis and treatment of cholangiocarcinoma: An update. Gut 2012; 61(12): 1657-69.
[http://dx.doi.org/10.1136/gutjnl-2011-301748] [PMID: 22895392]
[3]
de Groen PC, Gores GJ, LaRusso NF, Gunderson LL, Nagorney DM. Biliary tract cancers. N Engl J Med 1999; 341(18): 1368-78.
[http://dx.doi.org/10.1056/NEJM199910283411807] [PMID: 10536130]
[4]
Fléjou JF, Classification OMS. Classification OMS 2010 des tumeurs digestives: La quatrième edition. Ann Pathol 2011; 31(5)(Suppl.): S27-31.
[http://dx.doi.org/10.1016/j.annpat.2011.08.001] [PMID: 22054452]
[5]
Gunasekaran G, Bekki Y, Lourdusamy V, Schwartz M. Surgical treatments of hepatobiliary cancers. Hepatology 2020; 73: 128-36.
[http://dx.doi.org/10.1002/hep.31325] [PMID: 32438491]
[6]
Kang SH, Choi Y, Lee W, et al. Laparoscopic liver resection versus open liver resection for intrahepatic cholangiocarcinoma: 3-year outcomes of a cohort study with propensity score matching. Surg Oncol 2020; 33: 63-9.
[http://dx.doi.org/10.1016/j.suronc.2020.01.001] [PMID: 32561101]
[7]
Xiong JP, Long JY, Xu WY, et al. Albumin-to-alkaline phosphatase ratio: A novel prognostic index of overall survival in cholangiocarcinoma patients after surgery. World J Gastrointest Oncol 2019; 11(1): 39-47.
[http://dx.doi.org/10.4251/wjgo.v11.i1.39] [PMID: 30984349]
[8]
Ruzzenente A, Conci S, Valdegamberi A, Pedrazzani C, Guglielmi A. Role of surgery in the treatment of intrahepatic cholangiocarcinoma. Eur Rev Med Pharmacol Sci 2015; 19(15): 2892-900.
[PMID: 26241545]
[9]
Juntermanns B, Kaiser GM, Reis H, et al. Long-term survival after resection for perihilar cholangiocarcinoma: Impact of UICC staging and surgical procedure. Turk J Gastroenterol 2019; 30(5): 454-60.
[http://dx.doi.org/10.5152/tjg.2019.18275] [PMID: 31061000]
[10]
Oliveira IS, Kilcoyne A, Everett JM, Mino-Kenudson M, Harisinghani MG, Ganesan K. Cholangiocarcinoma: Classification, diagnosis, staging, imaging features, and management. Abdom Radiol (NY) 2017; 42(6): 1637-49.
[http://dx.doi.org/10.1007/s00261-017-1094-7] [PMID: 28271275]
[11]
Yamamoto M, Takasaki K, Yoshikawa T. Lymph node metastasis in intrahepatic cholangiocarcinoma. Jpn J Clin Oncol 1999; 29(3): 147-50.
[http://dx.doi.org/10.1093/jjco/29.3.147] [PMID: 10225697]
[12]
Rizvi S, Khan SA, Hallemeier CL, Kelley RK, Gores GJ. Cholangiocarcinoma - evolving concepts and therapeutic strategies. Nat Rev Clin Oncol 2018; 15(2): 95-111.
[http://dx.doi.org/10.1038/nrclinonc.2017.157] [PMID: 28994423]
[13]
Gringeri E, Gambato M, Sapisochin G, et al. Cholangiocarcinoma as an indication for liver transplantation in the era of transplant oncology. J Clin Med 2020; 9(5): 1353.
[http://dx.doi.org/10.3390/jcm9051353] [PMID: 32380750]
[14]
Kitajima T, Hibi T, Moonka D, Sapisochin G, Abouljoud MS, Nagai S. Center experience affects liver transplant outcomes in patients with hilar cholangiocarcinoma. Ann Surg Oncol 2020; 27(13): 5209-21.
[http://dx.doi.org/10.1245/s10434-020-08682-5] [PMID: 32495286]
[15]
Tan JH, Zhou WY, Zhou L, Cao RC, Zhang GW. Viral hepatitis B and C infections increase the risks of intrahepatic and extrahepatic cholangiocarcinoma: Evidence from a systematic review and meta-analysis. Turk J Gastroenterol 2020; 31(3): 246-56.
[http://dx.doi.org/10.5152/tjg.2020.19056] [PMID: 32343237]
[16]
Benson ABR III, D’Angelica MI, Abbott DE, et al. NCCN Guidelines Insights: Hepatobiliary Cancers, Version 1.2017. J Natl Compr Canc Netw 2017; 15(5): 563-73.
[http://dx.doi.org/10.6004/jnccn.2017.0059] [PMID: 28476736]
[17]
Zhang H, Zhu B, Zhang H, Liang J, Zeng W. HBV infection status and the risk of cholangiocarcinoma in Asia: A meta-analysis. BioMed Res Int 2016; 2016: 3417976.
[http://dx.doi.org/10.1155/2016/3417976] [PMID: 27999794]
[18]
Wang H, Men P, Xiao Y, et al. Hepatitis B infection in the general population of China: A systematic review and meta-analysis. BMC Infect Dis 2019; 19(1): 811.
[http://dx.doi.org/10.1186/s12879-019-4428-y] [PMID: 31533643]
[19]
Howell M, Valle JW. The role of adjuvant chemotherapy and radiotherapy for cholangiocarcinoma. Best Pract Res Clin Gastroenterol 2015; 29(2): 333-43.
[http://dx.doi.org/10.1016/j.bpg.2015.03.001] [PMID: 25966432]
[20]
Benson AB, D’Angelica MI, Abbott DE, et al. Guidelines Insights: Hepatobiliary Cancers, Version 2.2019. J Natl Compr Canc Netw 2019; 17(4): 302-10.
[http://dx.doi.org/10.6004/jnccn.2019.0019] [PMID: 30959462]
[21]
Massani M, Nistri C, Ruffolo C, et al. Intrahepatic chemotherapy for unresectable cholangiocarcinoma: Review of literature and personal experience. Updates Surg 2015; 67(4): 389-400.
[http://dx.doi.org/10.1007/s13304-015-0330-3] [PMID: 26468142]
[22]
Yan C, Koda S, Wu J, Zhang BB, Yu Q, Netea MG. Roles of trained immunity in the pathogenesis of cholangiopathies: A novel therapeutic target. Hepatology 2020; 72(56): 1838-50.
[23]
Patel T. Worldwide trends in mortality from biliary tract malignancies. BMC Cancer 2002; 2: 10.
[http://dx.doi.org/10.1186/1471-2407-2-10] [PMID: 11991810]
[24]
Aghili M, Saberi H, Zadeh MM, et al. Multimodality treatment in unresectable cholangiocarcinoma. J Contemp Brachytherapy 2020; 12(2): 131-8.
[http://dx.doi.org/10.5114/jcb.2020.94582] [PMID: 32395137]
[25]
Wang L, Lin ZG, Ke Q, et al. Adjuvant transarterial chemoembolization following radical resection for intrahepatic cholangiocarcinoma: A multi-center retrospective study. J Cancer 2020; 11(14): 4115-22.
[http://dx.doi.org/10.7150/jca.40358] [PMID: 32368294]
[26]
Tang S, Ning Q, Yang L, Mo Z, Tang S. Mechanisms of immune escape in the cancer immune cycle. Int Immunopharmacol 2020; 86: 106700.
[http://dx.doi.org/10.1016/j.intimp.2020.106700] [PMID: 32590316]
[27]
Cukier P, Santini FC, Scaranti M, Hoff AO. Endocrine side effects of cancer immunotherapy. Endocr Relat Cancer 2017; 24(12): T331-47.
[http://dx.doi.org/10.1530/ERC-17-0358] [PMID: 29025857]
[28]
Benzaquen J, Marquette CH, Glaichenhaus N, Leroy S, Hofman P, Ilié M. The biological rationale for immunotherapy in cancer. Rev Mal Respir 2018; 35(2): 206-22.
[http://dx.doi.org/10.1016/j.rmr.2017.11.008] [PMID: 29428191]
[29]
Weber J. Immune checkpoint proteins: A new therapeutic paradigm for cancer- preclinical background: CTLA-4 and PD-1 blockade. Semin Oncol 2010; 37(5): 430-9.
[http://dx.doi.org/10.1053/j.seminoncol.2010.09.005] [PMID: 21074057]
[30]
Dalgleish AG. Rationale for combining immunotherapy with chemotherapy. Immunotherapy 2015; 7(3): 309-16.
[http://dx.doi.org/10.2217/imt.14.111] [PMID: 25804482]
[31]
Joo WD, Visintin I, Mor G. Targeted cancer therapy are the days of systemic chemotherapy numbered? Maturitas 2013; 76(4): 308-14.
[http://dx.doi.org/10.1016/j.maturitas.2013.09.008] [PMID: 24128673]
[32]
Carmeliet P. VEGF as a key mediator of angiogenesis in cancer. Oncology 2005; 69(Suppl. 3): 4-10.
[http://dx.doi.org/10.1159/000088478] [PMID: 16301830]
[33]
Sharma PS, Sharma R, Tyagi T. VEGF/VEGFR pathway inhibitors as anti-angiogenic agents: Present and future. Curr Cancer Drug Targets 2011; 11(5): 624-53.
[http://dx.doi.org/10.2174/156800911795655985] [PMID: 21486218]
[34]
Lu S, Chen G, Sun Y, et al. A Phase III, randomized, double-blind, placebo-controlled, multicenter study of fruquintinib in Chinese patients with advanced nonsquamous non-small-cell lung cancer - The FALUCA study. Lung Cancer 2020; 146: 252-62.
[http://dx.doi.org/10.1016/j.lungcan.2020.06.016] [PMID: 32592986]
[35]
Gao S, Lin Z, Shen X. Anti-vascular endothelial growth factor therapy as an alternative or adjunct to pan-retinal photocoagulation in treating proliferative diabetic retinopathy: Meta-analysis of randomized trials. Front Pharmacol 2020; 11: 849.
[http://dx.doi.org/10.3389/fphar.2020.00849] [PMID: 32581805]
[36]
Lu S, Chang J, Liu X, et al. Randomized, double-blind, placebo- controlled, multicenter phase II study of fruquintinib after two prior chemotherapy regimens in Chinese patients with advanced nonsquamous non-small-cell lung cancer. J Clin Oncol 2018; 36(12): 1207-17.
[http://dx.doi.org/10.1200/JCO.2017.76.7145] [PMID: 29528793]
[37]
Voron T, Colussi O, Marcheteau E, et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J Exp Med 2015; 212(2): 139-48.
[http://dx.doi.org/10.1084/jem.20140559] [PMID: 25601652]
[38]
McDermott DF, Huseni MA, Atkins MB, et al. Clinical activity and molecular correlates of response to atezolizumab alone or in combination with bevacizumab versus sunitinib in renal cell carcinoma. Nat Med 2018; 24(6): 749-57.
[http://dx.doi.org/10.1038/s41591-018-0053-3] [PMID: 29867230]
[39]
Zhang X, Shi X, Li J, et al. Combination immunotherapy with interleukin-2 surface-modified tumor cell vaccine and programmed death receptor-1 blockade against renal cell carcinoma. Cancer Sci 2019; 110(1): 31-9.
[http://dx.doi.org/10.1111/cas.13842] [PMID: 30343514]
[40]
Allen E, Jabouille A, Rivera LB, Lodewijckx I, Missiaen R, Steri V. Combined antiangiogenic and Anti-PD-L1 therapy stimulates tumor immunity through HEV formation. Sci Transl Med 2017; 9: 385.
[http://dx.doi.org/10.1126/scitranslmed.aak9679]
[41]
Liu Y, Hao S, Ji N, Wang J, Zhang L. Combination of anti-programmed death 1 therapy and apatinib for a patient with hepatocellular carcinoma and brain metastasis: Case report and literature review. World Neurosurg 2020; 143: 114-7.
[http://dx.doi.org/10.1016/j.wneu.2020.06.015] [PMID: 32534262]
[42]
Kudo M. Scientific rationale for combined immunotherapy with PD-1/PD-L1 antibodies and VEGF inhibitors in advanced hepatocellular carcinoma. Cancers (Basel) 2020; 12(5): 1089.
[http://dx.doi.org/10.3390/cancers12051089] [PMID: 32349374]
[43]
Markham A, Keam SJ. Camrelizumab: First global approval. Drugs 2019; 79(12): 1355-61.
[http://dx.doi.org/10.1007/s40265-019-01167-0] [PMID: 31313098]
[44]
Mou H, Yu L, Liao Q, et al. Successful response to the combination of immunotherapy and chemotherapy in cholangiocarcinoma with high tumour mutational burden and PD-L1 expression: A case report. BMC Cancer 2018; 18(1): 1105.
[http://dx.doi.org/10.1186/s12885-018-5021-2] [PMID: 30419854]
[45]
Lickliter JD, Gan HK, Voskoboynik M, et al. A first-in-human dose finding study of camrelizumab in patients with advanced or metastatic cancer in Australia. Drug Des Devel Ther 2020; 14: 1177-89.
[http://dx.doi.org/10.2147/DDDT.S243787] [PMID: 32256049]
[46]
Li J, Qin S, Xu RH, et al. Effect of fruquintinib vs. placebo on overall survival in patients with previously treated metastatic colorectal cancer: The FRESCO randomized clinical trial. JAMA 2018; 319(24): 2486-96.
[http://dx.doi.org/10.1001/jama.2018.7855] [PMID: 29946728]
[47]
Cao J, Zhang J, Peng W, et al. A Phase I study of safety and pharmacokinetics of fruquintinib, a novel selective inhibitor of vascular endothelial growth factor receptor-1, -2, and -3 tyrosine kinases in Chinese patients with advanced solid tumors. Cancer Chemother Pharmacol 2016; 78(2): 259-69.
[http://dx.doi.org/10.1007/s00280-016-3069-8] [PMID: 27299749]
[48]
Li P, Ke Y, Zhang Y, Zhu W, Yu G, Ma F. Anti-VEGF monoclonal antibody and pharmaceutical composition comprising said antibody. US8986692, 2012.
[49]
Janjic N, Gold L, Schmidt P, Vargeese C. Vascular Endothelial Growth Factor (VEGF) nucleic acid ligand complexes. US6168778, 2000.
[50]
Koh YW, Han JH, Yoon DH, Suh C, Huh J. PD-L1 expression correlates with VEGF and microvessel density in patients with uniformly treated classical Hodgkin lymphoma. Ann Hematol 2017; 96(11): 1883-90.
[http://dx.doi.org/10.1007/s00277-017-3115-6] [PMID: 28842748]
[51]
Mcdermott DF, Infante JR, Chowdhury S, Voss MH, Motzer RJ, Perini RF. 2622 A phase I/II study to assess the safety and efficacy of Pazopanib (Paz) and Pembrolizumab (Pembro) in Patients (Pts) with Advanced renal cell carcinoma (Arcc). Eur J Cancer 2015; 51: S519-20.
[http://dx.doi.org/10.1016/S0959-8049(16)31440-X]
[52]
Amin A, Ernstoff M, Infante J, Heng D, Rini B, Plimack E. A phase I study of nivolumab (anti-PD-1; BMS-936558; ONO-4538) in combination with sunitinib, pazopanib, or ipilimumab in Patients (Pts) with Metastatic Renal Cell Carcinoma (MRCC). J Clin Oncol 2013; 31(15): S4593.
[http://dx.doi.org/10.1200/jco.2013.31.15_suppl.tps4593]
[53]
Babiker HM, McBride A, Newton M, et al. Cardiotoxic effects of chemotherapy: A review of both cytotoxic and molecular targeted oncology therapies and their effect on the cardiovascular system. Crit Rev Oncol Hematol 2018; 126: 186-200.
[http://dx.doi.org/10.1016/j.critrevonc.2018.03.014] [PMID: 29759560]
[54]
Abbas A, Mirza MM, Ganti AK, Tendulkar K. Renal toxicities of targeted therapies. Target Oncol 2015; 10(4): 487-99.
[http://dx.doi.org/10.1007/s11523-015-0368-7] [PMID: 25922090]
[55]
Varvaresou A, Iakovou K, Mellou F, Myrogiannis D, Papageorgiou S. Targeted therapy in oncology patients and skin: Pharmaceutical and dermocosmetic management. J Cosmet Dermatol 2020; 19(4): 782-8.
[http://dx.doi.org/10.1111/jocd.13211] [PMID: 31769600]
[56]
Atkins MB, Plimack ER, Puzanov I, et al. Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: A non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. Lancet Oncol 2018; 19(3): 405-15.
[http://dx.doi.org/10.1016/S1470-2045(18)30081-0] [PMID: 29439857]
[57]
Blechacz B, Gores GJ. Cholangiocarcinoma: Advances in pathogenesis, diagnosis, and treatment. Hepatology 2008; 48(1): 308-21.
[http://dx.doi.org/10.1002/hep.22310] [PMID: 18536057]
[58]
Zhou Y, Zhao Y, Li B, et al. Hepatitis viruses infection and risk of intrahepatic cholangiocarcinoma: Evidence from a meta-analysis. BMC Cancer 2012; 12: 289.
[http://dx.doi.org/10.1186/1471-2407-12-289] [PMID: 22799744]
[59]
Virani S, Akers A, Stephenson K, et al. Comprehensive review of molecular mechanisms during cholestatic liver injury and cholangiocarcinoma. J Liver 2018; 7(3): 231.
[http://dx.doi.org/10.4172/2167-0889.1000231] [PMID: 30613437]
[60]
Cannito S, Milani C, Cappon A, Parola M, Strazzabosco M, Cadamuro M. Fibroinflammatory liver injuries as preneoplastic condition in cholangiopathies. Int J Mol Sci 2018; 19(12): 3875.
[http://dx.doi.org/10.3390/ijms19123875] [PMID: 30518128]
[61]
Brandi G, Tavolari S. Asbestos and intrahepatic cholangiocarcinoma. Cells 2020; 9(2): 421.
[http://dx.doi.org/10.3390/cells9020421] [PMID: 32059499]
[62]
Petrick JL, McMenamin ÚC, Zhang X, et al. Exogenous hormone use, reproductive factors and risk of intrahepatic cholangiocarcinoma among women: Results from cohort studies in the Liver Cancer Pooling Project and the UK Biobank. Br J Cancer 2020; 123(2): 316-24.
[http://dx.doi.org/10.1038/s41416-020-0835-5] [PMID: 32376888]
[63]
Kubo S, Takemura S, Tanaka S, et al. Occupational cholangiocarcinoma caused by exposure to 1,2-dichloropropane and/or dichloromethane. Ann Gastroenterol Surg 2017; 2(2): 99-105.
[http://dx.doi.org/10.1002/ags3.12051] [PMID: 29863124]
[64]
Tomimaru Y, Kobayashi S, Wada H, et al. Intrahepatic cholangiocarcinoma in a worker at an offset color proof-printing company: An autopsy case report. Hepatol Res 2015; 45(4): 488-93.
[http://dx.doi.org/10.1111/hepr.12363] [PMID: 24849871]
[65]
Jiang G, Zhang W, Wang T, Ding S, Shi X, Zhang S. Characteristics of genomic alterations in Chinese cholangiocarcinoma patients. Jpn J Clin Oncol 2020; 50(10): 1117-25.
[66]
Tirotta F, Giovinazzo F, Hodson J, Yates L, Tan D, Salsano M. Risk factors to differentiate between benign proximal biliary strictures and perihilar cholangiocarcinoma. HPB (Oxford) 2020; 22(12): 1753-8.
[67]
Boberg KM, Schrumpf E, Bergquist A, et al. Cholangiocarcinoma in primary sclerosing cholangitis: K-ras mutations and Tp53 dysfunction are implicated in the neoplastic development. J Hepatol 2000; 32(3): 374-80.
[http://dx.doi.org/10.1016/S0168-8278(00)80386-4] [PMID: 10735605]
[68]
Montal R, Sia D, Montironi C, et al. Molecular classification and therapeutic targets in extrahepatic cholangiocarcinoma. J Hepatol 2020; 73(2): 315-27.
[http://dx.doi.org/10.1016/j.jhep.2020.03.008] [PMID: 32173382]
[69]
Xue L, Guo C, Zhang K, et al. Comprehensive molecular profiling of extrahepatic cholangiocarcinoma in Chinese population and potential targets for clinical practice. Hepatobiliary Surg Nutr 2019; 8(6): 615-22.
[http://dx.doi.org/10.21037/hbsn.2019.08.05] [PMID: 31929988]
[70]
Goeppert B, Folseraas T, Roessler S, et al. International PSC Study Group. Genomic characterization of cholangiocarcinoma in primary sclerosing cholangitis reveals therapeutic opportunities. Hepatology 2020; 1: 478-83.
[PMID: 31925805]
[71]
Doussot A, Gonen M, Wiggers JK, et al. Recurrence patterns and disease-free survival after resection of intrahepatic cholangiocarcinoma: Preoperative and postoperative prognostic models. J Am Coll Surg 2016; 223(3): 493-505.e2.
[http://dx.doi.org/10.1016/j.jamcollsurg.2016.05.019] [PMID: 27296525]
[72]
Liu JB, Chu KJ, Ling CC, et al. Prognosis for intrahepatic cholangiocarcinoma patients treated with postoperative adjuvant transcatheter hepatic artery chemoembolization. Curr Probl Cancer 2020; 44(6): 100612.
[http://dx.doi.org/10.1016/j.currproblcancer.2020.100612] [PMID: 32517878]
[73]
Schweitzer N, Vogel A. Systemic therapy of cholangiocarcinoma: From chemotherapy to targeted therapies. Best Pract Res Clin Gastroenterol 2015; 29(2): 345-53.
[http://dx.doi.org/10.1016/j.bpg.2015.01.002] [PMID: 25966433]
[74]
Gonzalez-Carmona MA, Bolch M, Jansen C, et al. Combined photodynamic therapy with systemic chemotherapy for unresectable cholangiocarcinoma. Aliment Pharmacol Ther 2019; 49(4): 437-47.
[http://dx.doi.org/10.1111/apt.15050] [PMID: 30637783]
[75]
Ryu J, Lee K, Joe C, Joo J, Lee N, Yoo HS. Patient with unresectable cholangiocarcinoma treated with radiofrequency hyperthermia in combination with chemotherapy: A case report. Integr Cancer Ther 2018; 17(2): 558-61.
[http://dx.doi.org/10.1177/1534735417722225] [PMID: 28745084]
[76]
Lunsford KE, Javle M, Heyne K, et al. Methodist–MD Anderson Joint Cholangiocarcinoma Collaborative Committee (MMAJCCC). Liver transplantation for locally advanced intrahepatic cholangiocarcinoma treated with neoadjuvant therapy: A prospective case-series. Lancet Gastroenterol Hepatol 2018; 3(5): 337-48.
[http://dx.doi.org/10.1016/S2468-1253(18)30045-1] [PMID: 29548617]
[77]
Filippi L, Schillaci O, Cianni R, Bagni O. Yttrium-90 resin microspheres and their use in the treatment of intrahepatic cholangiocarcinoma. Future Oncol 2018; 14(9): 809-18.
[http://dx.doi.org/10.2217/fon-2017-0443] [PMID: 29251517]
[78]
Higaki T, Aramaki O, Moriguchi M, Nakayama H, Midorikawa Y, Takayama T. Arterial infusion of cisplatin plus S-1 against unresectable intrahepatic cholangiocarcinoma. Biosci Trends 2018; 12(1): 73-8.
[http://dx.doi.org/10.5582/bst.2017.01320] [PMID: 29553105]
[79]
Ke Q, Chen Y, Huang Q, Lin N, Wang L, Liu J. Does additional resection of a positive microscopic ductal margin benefit patients with perihilar cholangiocarcinoma: A systematic review and meta- analysis. PLoS One 2020; 15(5): e0232590.
[http://dx.doi.org/10.1371/journal.pone.0232590] [PMID: 32379819]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy