Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

General Review Article

Advances in Polyaniline for Biomedical Applications

Author(s): Cristina Della Pina and Ermelinda Falletta*

Volume 29, Issue 2, 2022

Published on: 19 April, 2021

Page: [329 - 357] Pages: 29

DOI: 10.2174/0929867328666210419135519

Price: $65

Abstract

Conducting polymers are an outstanding class of materials characterized by electroconductive properties that make them good candidates for applications in several sectors. Among them, polyaniline (PANI) is unique for its extraordinary ability to conduct electricity, biocompatibility, and low toxicity. In spite of its surprising features, to date, PANI has not found application in practical uses due to its low solubility and processability. In order to overcome these limitations, different approaches have been developed, such as polymer grafting processes, PANI-based composites, and blends preparation. The present review describes the most recent advances on PANI applications in biomedical fields, such as antioxidant, antimicrobial and antivirus activity, drug delivery, cancer therapy, etc. In this article, synthetic procedures are also reported which are crucial for the realization of more innovative materials in the future.

Keywords: Polyaniline, composites, blends, biomedicine, synthesis, applications.

[1]
Zheng, J.; Tang, M.; Hu, Y-Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12538-12542.
[http://dx.doi.org/10.1002/anie.201607539] [PMID: 27611222]
[2]
Han, W.; Zhao, G.; Zhang, X.; Zhou, S.; Wang, P.; An, Y.; Xu, B. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability. Carbon, 2015, 95, 157-165.
[http://dx.doi.org/10.1016/j.carbon.2015.08.028]
[3]
Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci., 2016, 59, 41-85.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001]
[4]
dos Santos, M.C.; Maynart, M.C.; Aveiro, L.R.; da Paz, E.C.; dos Santos Pinheiro, V. Carbon-based Materials: recent advances, challenges, and perspectives. Ref. Module Mat. Sci. Mat. Eng., ; Elsevier: Amsterdam, The Netherlands, 2017.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09262-6]
[5]
Aghlavi, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Science, 2019, 607(1), 1-30.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[6]
Alavi, S.; Thomas, S.; Sandeep, K.P.; Kalarikkal, N.; Varghese, J.; Yaragalla, S. Polymers for packaging applications, 1st ed; Apple Academic Press, CRC Press, 2014.
[http://dx.doi.org/10.1201/b17388]
[7]
Scholz, C. Polymers for biomedicine: synthesis, characterization, and applications; John Wiley & Sons, Inc., 2017.
[http://dx.doi.org/10.1002/9781118967904]
[8]
Ghori, S.W.; Siakeng, R.; Rasheed, M.; Saba, N.; Jawaid, M. Sustainable Composites for Aerospace Applications. Woodhead Publishing Series in Composites Science and Engineering, 1st ed; Elsevier, 2018.
[9]
Ganachari, S.V. Polymers for energy applications In: Handbook of ecomaterials; L., Martinez; O., Kharissova; B., Kharisov, Eds.; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-319-68255-6_194]
[10]
Zhang, W.; Liao, L.P.; Zhao, Y. Incorporating microcapsules in smart coatings for corrosion protection of steel. Handbook of smart coatings for materials protection; Elsevier, 2014.
[http://dx.doi.org/10.1533/9780857096883.2.287]
[11]
Xu, W.; Hu, Z.; Liu, H.; Lan, L.; Peng, J.; Wang, J.; Cao, Y. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel. Sci. Rep., 2016, 6(29055), 1-7.
[http://dx.doi.org/10.1038/srep29055]
[12]
Sahu, P.K.; Chandra, L.; Pandey, R.K.; Mehta, N.S.; Dwevedi, R.; Mishra, V.N.; Prakash, R. Fast development of self-assembled, highly oriented polymer thin film and observation of dual sensing behavior of thin film transistor for ammonia vapor. Macromol. Chem. Phys., 2019, 220(11), 1900010(1-8).
[http://dx.doi.org/10.1002/macp.20190001]
[13]
Murad, A. R.; Iraqi, A.; Aziz, S. B.; Abdullah, S. N.; Brza, M. A. Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers, 2020, 12(11), 2627(1-47).
[http://dx.doi.org/10.3390/polym12112627]
[14]
Lee, D.J.; Heo, D.K.; Yun, C.; Kim, Y.H.; Kang, M.H. Solution-processed semitransparent inverted organic solar cells from a transparent conductive polymer electrode. ECS J. Solid State Sci. Technol., 2019, 8(2), Q32-Q37.
[http://dx.doi.org/10.1149/2.0231902jss]
[15]
Moiz, S.A.; Alahmadi, A.N.M.; Karimov, Kh.S. Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid State Electron, 2020, 163, 107658(1-8).
[http://dx.doi.org/10.1016/j.sse.2019.107658]
[16]
Li, Z.; Ma, G.; Ge, R.; Qin, F.; Dong, X.; Meng, W.; Liu, T.; Tong, J.; Jiang, F.; Zhou, Y.; Li, K.; Min, X.; Huo, K.; Zhou, Y. Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 979-982.
[http://dx.doi.org/10.1002/anie.201509033] [PMID: 26630234]
[17]
Derakhshankhah, H.; Mohammad-Rezaei, R.; Massoumi, B.; Abbasian, M.; Rezaei, A.; Samadian, H.; Jaymand, M. Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. J. Mater. Sci. Mater. Electron., 2020, 31, 10947-10961.
[http://dx.doi.org/10.1007/s10854-020-03712-0]
[18]
Ibanez, J.G.; Rincón, M.E.; Gutierrez-Granados, S.; Chahma, M.; J

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy