摘要
导电聚合物是一类具有导电性能的杰出材料,使其成为多个领域应用的良好候选者。其中,聚苯胺(PANI)因其非凡的导电能力,生物相容性和低毒性而独一无二。尽管具有令人惊讶的功能,但迄今为止,由于其低溶解度和加工性,PANI尚未在实际应用中得到应用。为了克服这些限制,已经开发了不同的方法,例如聚合物接枝工艺,基于PANI的复合材料和共混物制备。本文综述了PANI在生物医学领域的应用的最新进展,如抗氧化、抗菌和防病毒活性、药物递送、癌症治疗 等。在本文中,还报告了合成程序,这对于未来实现更多创新材料至关重要。
关键词: 聚苯胺,复合材料,共混物,生物医学,合成,应用。
[1]
Zheng, J.; Tang, M.; Hu, Y-Y. Lithium ion pathway within Li7La3Zr2O12-polyethylene oxide composite electrolytes. Angew. Chem. Int. Ed. Engl., 2016, 55(40), 12538-12542.
[http://dx.doi.org/10.1002/anie.201607539] [PMID: 27611222]
[http://dx.doi.org/10.1002/anie.201607539] [PMID: 27611222]
[2]
Han, W.; Zhao, G.; Zhang, X.; Zhou, S.; Wang, P.; An, Y.; Xu, B. Graphene oxide grafted carbon fiber reinforced siliconborocarbonitride ceramics with enhanced thermal stability. Carbon, 2015, 95, 157-165.
[http://dx.doi.org/10.1016/j.carbon.2015.08.028]
[http://dx.doi.org/10.1016/j.carbon.2015.08.028]
[3]
Chen, H.; Ginzburg, V.V.; Yang, J.; Yang, Y.; Liu, W.; Huang, Y.; Du, L.; Chen, B. Thermal conductivity of polymer-based composites: Fundamentals and applications. Prog. Polym. Sci., 2016, 59, 41-85.
[http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001]
[http://dx.doi.org/10.1016/j.progpolymsci.2016.03.001]
[4]
dos Santos, M.C.; Maynart, M.C.; Aveiro, L.R.; da Paz, E.C.; dos Santos Pinheiro, V. Carbon-based Materials: recent advances, challenges, and perspectives. Ref. Module Mat. Sci. Mat. Eng., ; Elsevier: Amsterdam, The Netherlands, 2017.
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09262-6]
[http://dx.doi.org/10.1016/B978-0-12-803581-8.09262-6]
[5]
Aghlavi, M.S.; Nikolova, M.P. Metal oxide nanoparticles and their applications in nanotechnology. SN Applied Science, 2019, 607(1), 1-30.
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[http://dx.doi.org/10.1007/s42452-019-0592-3]
[6]
Alavi, S.; Thomas, S.; Sandeep, K.P.; Kalarikkal, N.; Varghese, J.; Yaragalla, S. Polymers for packaging applications, 1st ed; Apple Academic Press, CRC Press, 2014.
[http://dx.doi.org/10.1201/b17388]
[http://dx.doi.org/10.1201/b17388]
[7]
Scholz, C. Polymers for biomedicine: synthesis, characterization, and applications; John Wiley & Sons, Inc., 2017.
[http://dx.doi.org/10.1002/9781118967904]
[http://dx.doi.org/10.1002/9781118967904]
[8]
Ghori, S.W.; Siakeng, R.; Rasheed, M.; Saba, N.; Jawaid, M. Sustainable Composites for Aerospace Applications. Woodhead Publishing Series in Composites Science and Engineering, 1st ed; Elsevier, 2018.
[9]
Ganachari, S.V. Polymers for energy applications In: Handbook of ecomaterials; L., Martinez; O., Kharissova; B., Kharisov, Eds.; Springer, 2019.
[http://dx.doi.org/10.1007/978-3-319-68255-6_194]
[http://dx.doi.org/10.1007/978-3-319-68255-6_194]
[10]
Zhang, W.; Liao, L.P.; Zhao, Y. Incorporating microcapsules in smart coatings for corrosion protection of steel. Handbook of smart coatings for materials protection; Elsevier, 2014.
[http://dx.doi.org/10.1533/9780857096883.2.287]
[http://dx.doi.org/10.1533/9780857096883.2.287]
[11]
Xu, W.; Hu, Z.; Liu, H.; Lan, L.; Peng, J.; Wang, J.; Cao, Y. Flexible all-organic, all-solution processed thin film transistor array with ultrashort channel. Sci. Rep., 2016, 6(29055), 1-7.
[http://dx.doi.org/10.1038/srep29055]
[http://dx.doi.org/10.1038/srep29055]
[12]
Sahu, P.K.; Chandra, L.; Pandey, R.K.; Mehta, N.S.; Dwevedi, R.; Mishra, V.N.; Prakash, R. Fast development of self-assembled, highly oriented polymer thin film and observation of dual sensing behavior of thin film transistor for ammonia vapor. Macromol. Chem. Phys., 2019, 220(11), 1900010(1-8).
[http://dx.doi.org/10.1002/macp.20190001]
[http://dx.doi.org/10.1002/macp.20190001]
[13]
Murad, A. R.; Iraqi, A.; Aziz, S. B.; Abdullah, S. N.; Brza, M. A. Conducting polymers for optoelectronic devices and organic solar cells: a review. Polymers, 2020, 12(11), 2627(1-47).
[http://dx.doi.org/10.3390/polym12112627]
[http://dx.doi.org/10.3390/polym12112627]
[14]
Lee, D.J.; Heo, D.K.; Yun, C.; Kim, Y.H.; Kang, M.H. Solution-processed semitransparent inverted organic solar cells from a transparent conductive polymer electrode. ECS J. Solid State Sci. Technol., 2019, 8(2), Q32-Q37.
[http://dx.doi.org/10.1149/2.0231902jss]
[http://dx.doi.org/10.1149/2.0231902jss]
[15]
Moiz, S.A.; Alahmadi, A.N.M.; Karimov, Kh.S. Improved organic solar cell by incorporating silver nanoparticles embedded polyaniline as buffer layer. Solid State Electron, 2020, 163, 107658(1-8).
[http://dx.doi.org/10.1016/j.sse.2019.107658]
[http://dx.doi.org/10.1016/j.sse.2019.107658]
[16]
Li, Z.; Ma, G.; Ge, R.; Qin, F.; Dong, X.; Meng, W.; Liu, T.; Tong, J.; Jiang, F.; Zhou, Y.; Li, K.; Min, X.; Huo, K.; Zhou, Y. Free-standing conducting polymer films for high-performance energy devices. Angew. Chem. Int. Ed. Engl., 2016, 55(3), 979-982.
[http://dx.doi.org/10.1002/anie.201509033] [PMID: 26630234]
[http://dx.doi.org/10.1002/anie.201509033] [PMID: 26630234]
[17]
Derakhshankhah, H.; Mohammad-Rezaei, R.; Massoumi, B.; Abbasian, M.; Rezaei, A.; Samadian, H.; Jaymand, M. Conducting polymer-based electrically conductive adhesive materials: design, fabrication, properties, and applications. J. Mater. Sci. Mater. Electron., 2020, 31, 10947-10961.
[http://dx.doi.org/10.1007/s10854-020-03712-0]
[http://dx.doi.org/10.1007/s10854-020-03712-0]