Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Review Article

Barbiturates: A Review of Synthesis and Antimicrobial Research Progress

Author(s): Madhvi, Divya Utreja* and Shivali Sharma

Volume 19, Issue 1, 2022

Published on: 14 April, 2021

Page: [31 - 55] Pages: 25

DOI: 10.2174/1570179418666210414104857

Price: $65

Abstract

Background: Barbituric acid and its derivatives have gained significant attention for several years as an indispensable class of compounds in the pharmaceutical industry due to their various biological activities, such as anticonvulsants, hypnotics, anti-diabetic, antiviral, anti-AIDS, anti-cancer, anti-microbial, and antioxidant, etc. A plethora of studies has shed light on the properties, synthesis, and reactivity of these compounds. The depiction of multiple biological activities by barbiturates compelled us, and by virtue of which herein we have mediated over the progress of synthesis of numerous kinds of compounds derived from barbituric acid with well-known and typical examples from 2016 to the present.

Objectives: This review focuses on the advancements in methods of synthesis of barbituric acid derivatives and their applications as antimicrobial agents.

Conclusion: This review will help future researchers to analyze the previous studies and explore new compounds for the development of efficient antimicrobial drugs.

Keywords: Barbituric acid, heterocyclic, antimicrobial, antibacterial, antifungal, barbituric and thiobarbituric acids derivatives.

Graphical Abstract

[1]
Solé, D.; Fernández, I. Advances in transition-metal mediated heterocyclic synthesis; Academic Press, 2018.
[2]
Anamika; Utreja, D.; Kaur, J.; Sharma, S. Synthesis of Schiff bases of coumarin and their antifungal activity. Indian J. Heterocycl. Chem., 2018, 28(4), 433-439.
[3]
Kaur, J.; Utreja, D. Ekta; Jain, N.; Sharma, S. Recent developments in the synthesis and antimicrobial activity of indole and its derivatives. Curr. Org. Synth., 2019, 16(1), 17-37.
[http://dx.doi.org/10.2174/1570179415666181113144939] [PMID: 31965921]
[4]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of indole derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2019, 16(9), 759-767.
[http://dx.doi.org/10.2174/1570178616666190219131042]
[5]
Mishra, B.B.; Kumar, D.; Mishra, A.; Mohapatra, P.P.; Tiwari, V.K. Cyclo-release strategy in solid-phase combinatorial synthesis of heterocyclic skeletons. Adv. Hetero. Chem; Academic Press, 2012, Vol. 107, pp. 41-99.
[6]
Arora, P.; Arora, V.; Lamba, H.S.; Wadhwa, D. Importance of heterocyclic chemistry: A review. Int. J. Pharm. Sci. Res., 2012, 3(9), 2947-2954.
[7]
Wamhoff, H.; Gribble, G.W. Wine and heterocycles. Advances in Heterocyclic Chemistry; Academic Press, 2012, Vol. 106, pp. 185-225.
[8]
Kaur, G.; Utreja, D.; Jain, N.; Dhillon, N.K. Synthesis and evaluation of pyrazole derivatives as potent antinemic agents. Russ. J. Org. Chem., 2020, 56(1), 113-118.
[http://dx.doi.org/10.1134/S1070428020010182]
[9]
Utreja, D.; Kaur, J.; Kaur, K.; Jain, P. Recent advances in 1,3,5-Triazine derivatives as antibacterial agents. Mini Rev. Org. Chem., 2020, 17, 991-1041.
[http://dx.doi.org/10.2174/1570193X17666200129094032]
[10]
Anamika; Utrja, D.; Ekta; Jain, N.; Sharma, S. Advances in synthesis and potentially bioactive of coumarin derivatives. Curr. Org. Chem., 2018, 22, 2507-2534.
[11]
Kaur, G.; Utreja, D. Ekta; Kaur, J. Synthesis of metal complexes of Schiff bases of halogenated anilines and their antifungal activity. Plant Dis. Res., 2017, 32(2), 228-231.
[12]
Dawar, M.; Utreja, D.; Rani, R.; Kaur, K. Synthesis and evaluation of isatin derivatives as antifungal agents. Lett. Org. Chem., 2020, 17(3), 199-205.
[http://dx.doi.org/10.2174/1570178616666190724120308]
[13]
Salotra, R.; Utreja, D. A comprehensive appraisal of chalcones and their heterocyclic analogs as antimicrobial agents. Curr. Org. Chem., 2020, 24(23), 2755-2781.
[http://dx.doi.org/10.2174/1385272824999200922090524]
[14]
Kaur, J.; Utreja, D.; Dhillon, N.K.; Sharma, S. Synthesis of series of triazine derivatives and their evaluation against root knot nematode Meloidogyne incognita. Lett. Org. Chem., 2018, 15(10), 870-877.
[http://dx.doi.org/10.2174/1570178615666180330155049]
[15]
Kaur, K.; Utreja, D. Dhillon, N.K.; Pathak, R.K.; Singh, K. N-alkyl isatin derivatives: Synthesis, nematicidal evaluation and protein target identifications for their mode of action. Pestic. Biochem. Physiol., 2020, 171, 1-26.
[16]
Baeyer, A. Mittheilungen aus dem organischen laboratorium des gewerbeinstitutes in Berlin: Untersuchungen über die harnsäuregruppe. Justus Liebigs Ann. Chem., 1864, 130(2), 129-175.
[http://dx.doi.org/10.1002/jlac.18641300202]
[17]
Levi, L. The barbituric acids, their chemical struture, synthesis and nomenclature. Bull. Narc., 1957, 9(1), 30-40.
[18]
Apostolov, S.; Vaštag, Đ.; Matijević, B.; Mrđan, G.; Nakomčić, J. Study of the biological activity descriptors of the barbituric acid derivatives. Contemp. Mater., 2020, XI-2, 77-84.
[19]
Darvishzad, S.; Daneshvar, N.; Shirini, F.; Tajik, H. Introduction of piperazine-1, 4-diium dihydrogen phosphate as a new and highly efficient dicationic brönsted acidic ionic salt for the synthesis of (thio)barbituric acid derivatives in water. J. Mol. Struct., 2019, 1178, 420-427.
[http://dx.doi.org/10.1016/j.molstruc.2018.10.053]
[20]
Badria, F.A.; Atef, S.; Al-Majid, A.M.; Ali, M.; Elshaier, Y.A.M.M.; Ghabbour, H.A.; Islam, M.S.; Barakat, A. Synthesis and inhibitory effect of some indole‐pyrimidine based hybrid heterocycles on α‐glucosidase and α‐amylase as potential hypoglycemic agents. ChemistryOpen, 2019, 8(10), 1288-1297.
[http://dx.doi.org/10.1002/open.201900240] [PMID: 31649838]
[21]
Shahidpour, S.; Panahi, F.; Yousefi, R.; Nourisefat, M.; Nabipoor, M.; Khalafi-Nezhad, A. Design and synthesis of new antidiabetic α-glucosidase and α-amylase inhibitors based on pyrimidine-fused heterocycles. Med. Chem. Res., 2015, 24(7), 3086-3096.
[http://dx.doi.org/10.1007/s00044-015-1356-2]
[22]
Ranjbar, S.; Shahvaran, P.S.; Edraki, N.; Khoshneviszadeh, M.; Darroudi, M.; Sarrafi, Y.; Hamzehloueian, M.; Khoshneviszadeh, M. 1,2,3‐Triazole‐linked 5‐benzylidene (thio)barb- iturates as novel tyrosinase inhibitors and free‐radical scavengers. Arch. Pharm., 2020, 353(10), 1-9.
[http://dx.doi.org/10.1002/ardp.202000058]
[23]
Biglar, M.; Mirzazadeh, R.; Asadi, M.; Sepehri, S.; Valizadeh, Y.; Sarrafi, Y.; Amanlou, M.; Larijani, B.; Mohammadi-Khanaposhtani, M.; Mahdavi, M.; Novel, N. N-dimethylbarbituric-pyridinium derivatives as potent urease inhibitors: Synthesis, in vitro, and in silico studies. Bioorg. Chem., 2020, 95103529
[http://dx.doi.org/10.1016/j.bioorg.2019.103529] [PMID: 31884139]
[24]
Barakat, A.; Soliman, S.M.; Ali, M.; Elmarghany, A.; Al-Majid, A.M.; Yousuf, S.; Ul-Haq, Z.; Choudhary, M.I.; El-Faham, A. Synthesis, crystal structure, evaluation of urease inhibition potential and the docking studies of cobalt (III) complex based on barbituric acid Schiff base ligand. Inorg. Chim. Acta, 2020, 503119405
[http://dx.doi.org/10.1016/j.ica.2019.119405]
[25]
Xu, S.; Zhou, C.; Liu, R.; Zhu, Q.; Xu, Y.; Lan, F.; Zha, X. Optimization of 5-arylidene barbiturates as potent, selective, reversible LSD1 inhibitors for the treatment of acute promyelocytic leukemia. Bioorg. Med. Chem., 2018, 26(17), 4871-4880.
[http://dx.doi.org/10.1016/j.bmc.2018.08.026] [PMID: 30153955]
[26]
Marecki, J.C.; Aarattuthodiyil, S.; Byrd, A.K.; Penthala, N.R.; Crooks, P.A.; Raney, K.D. N-Naphthoyl-substituted indole thio-barbituric acid analogs inhibit the helicase activity of the hepatitis C virus NS3. Bioorg. Med. Chem. Lett., 2019, 29(3), 430-434.
[http://dx.doi.org/10.1016/j.bmcl.2018.12.026] [PMID: 30578035]
[27]
Barakat, A.; Soliman, S.M.; Al-Majid, A.M.; Lofty, G.; Ghabbour, H.A.; Fun, H.; Yousuf, S.; Choudhary, M.I.; Wadood, A. Synthesis and structure investigation of novel pyrimidine-2,4,6-trione derivatives of highly potential biological activity as anti-diabetic agent. J. Mol. Struct., 2015, 1098, 365-376.
[http://dx.doi.org/10.1016/j.molstruc.2015.06.037]
[28]
Elinson, M.N.; Vereshchagin, A.N.; Anisina, Y.E.; Leonova, N.A.; Egorov, M.P. On water noncatalytic tandem Knoevenagel-Michael reaction of aldehydes, N,N′-dimethylbarbituric acid and cyclohexane-1,3-diones. Mendeleev Commun., 2020, 30(1), 15-17.
[http://dx.doi.org/10.1016/j.mencom.2020.01.005]
[29]
Altowyan, M.S.; Barakat, A.; Soliman, S.M.; Al-Majid, A.M.; Ali, M.; Elshaier, Y.A.M.M.; Ghabbour, H.A. A new barbituric acid derivatives as reactive oxygen scavenger: Experimental and theoretical investigations. J. Mol. Struct., 2019, 1175, 524-535.
[http://dx.doi.org/10.1016/j.molstruc.2018.07.105]
[30]
Liao, Y.J.; Hsu, S.M.; Chien, C.Y.; Wang, Y.H.; Hsu, M.H.; Suk, F.M. Treatment with a new barbituric acid derivative exerts antiproliferative and antimigratory effects against sorafenib resistance in hepatocellular carcinoma. Molecules, 2020, 25(12), 1-17.
[http://dx.doi.org/10.3390/molecules25122856] [PMID: 32575795]
[31]
Wang, Y.H.; Suk, F.M.; Liu, C.L.; Chen, T.L.; Twu, Y.C.; Hsu, M.H.; Liao, Y.J. Antifibrotic effects of a barbituric acid derivative on liver fibrosis by blocking the NF-κB signaling pathway in hepatic stellate cells. Front. Pharmacol., 2020, 11, 388.
[http://dx.doi.org/10.3389/fphar.2020.00388]
[32]
Utreja, D. Vibha, Singh, S.; Kaur, M. Schiff bases and their metal complexes as anti-cancer agents: a review. Curr. Bioact. Compd., 2015, 11(4), 215-230.
[http://dx.doi.org/10.2174/1573407212666151214221219]
[33]
Zonouzi, A.; Rezaei, M.H.; Mirzazadeh, R.; Arjomand, M.R. Solvent-free synthesis of halogenated Furo[2, 3-d]pyrimidines and their cytotoxic activity on the T47D breast cancer cell line. Org. Prep. Proced. Int., 2020, 52(4), 374-380.
[http://dx.doi.org/10.1080/00304948.2020.1771961]
[34]
Aremu, O.S.; Singh, P.; Singh, M.; Mocktar, C.; Koorbanally, N.A. Synthesis of chloro, fluoro, and nitro derivatives of 7‐amino‐5‐aryl‐6‐cyano‐5H‐pyrano pyrimidin‐2,- 4‐diones using organic catalysts and their antimicrobial and anticancer activities. J. Heterocycl. Chem., 2019, 56(11), 3008-3016.
[http://dx.doi.org/10.1002/jhet.3695]
[35]
Bakhotmah, D.A. Synthesis of barbituric and thiobarbituric acids bearing 5,6-diphenyl-1,2,4-triazin-3-yl moiety as CDK2 inhibitors of tumor cells. Am. J. Heterocycl. Chem., 2019, 5(4), 76-80.
[http://dx.doi.org/10.11648/j.ajhc.20190504.11]
[36]
Penthala, N.R.; Ketkar, A.; Sekhar, K.R.; Freeman, M.L.; Eoff, R.L.; Balusu, R.; Crooks, P.A. 1-Benzyl-2-methyl-3-indolylmethylene barbituric acid derivatives: Anti-cancer agents that target nucleophosmin 1 (NPM1). Bioorg. Med. Chem., 2015, 23(22), 7226-7233.
[http://dx.doi.org/10.1016/j.bmc.2015.10.019] [PMID: 26602084]
[37]
Ramisetti, S.R.; Pandey, M.K.; Lee, S.Y.; Karelia, D.; Narayan, S.; Amin, S.; Sharma, A.K. Design and synthesis of novel thiobarbituric acid derivatives targeting both wild-type and BRAF-mutated melanoma cells. Eur. J. Med. Chem., 2018, 143, 1919-1930.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.006] [PMID: 29133035]
[38]
Laxmi, S.V.; Rajitha, G.; Rajitha, B.; Rao, A.J. Photochemical synthesis and anticancer activity of barbituric acid, thiobarbituric acid, thiosemicarbazide, and isoniazid linked to 2-phenyl indole derivatives. J. Chem. Biol., 2015, 9(2), 57-63.
[http://dx.doi.org/10.1007/s12154-015-0148-y] [PMID: 27118996]
[39]
Andina, A.V.; Mirochnik, A.G.; Andin, A.N. Synthesis and spectral-luminescent properties of 5-substituted polyaryl derivatives of barbituric acid. Russ. J. Gen. Chem., 2017, 87(1), 33-36.
[http://dx.doi.org/10.1134/S1070363217010078]
[40]
Goyal, A.; Utreja, D.; Garg, A.; Kumar, V. Synthesis of substituted quaternary quinolinium salts and their evaluation as antifungal agents. Agric. Res. J., 2018, 55(2), 377-379.
[http://dx.doi.org/10.5958/2395-146X.2018.00070.4]
[41]
Daneshvar, N.; Nasiri, M.; Shirzad, M.; Langarudi, M.S.N.; Shirini, F.; Tajik, H. The introduction of two new imidazole-based bis-dicationic Brönsted acidic ionic liquids and comparison of their catalytic activity in the synthesis of barbituric acid derivatives. New J. Chem., 2018, 42(12), 9744-9756.
[http://dx.doi.org/10.1039/C8NJ01179F]
[42]
Ding, S.; Yao, B.; Schobben, L.; Hong, Y. Barbituric acid based fluorogens: Synthesis, aggregation-induced emission, and protein fibril detection. Molecules, 2019, 25(1), 1-13.
[http://dx.doi.org/10.3390/molecules25010032] [PMID: 31861868]
[43]
Zhang, H.J.; Tian, Y.; Tao, F.R.; Yu, W.; You, K.Y.; Zhou, L.R.; Su, X.; Li, T.D.; Cui, Y.Z. Detection of nitroaromatics based on aggregation induced emission of barbituric acid derivatives. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2019, 222117168
[http://dx.doi.org/10.1016/j.saa.2019.117168] [PMID: 31226612]
[44]
Du, J.; Li, X.; Ruan, S.; Li, Y.; Ren, F.; Cao, Y.; Wang, X.; Zhang, Y.; Wu, S.; Li, J. Rational design of a novel turn-on fluorescent probe for the detection and bioimaging of hydrazine with barbituric acid as a recognition group. Analyst (Lond.), 2020, 145(2), 636-642.
[http://dx.doi.org/10.1039/C9AN02058F] [PMID: 31789325]
[45]
Zhou, K.; Fu, H.; Feng, L.; Cui, M.; Dai, J.; Liu, B. The synthesis and evaluation of near-infrared probes with barbituric acid acceptors for in vivo detection of amyloid plaques. Chem. Commun. (Camb.), 2015, 51(58), 11665-11668.
[http://dx.doi.org/10.1039/C5CC03662C] [PMID: 26103205]
[46]
Hadi, N.R.; Abduljalil, H.M.; Kareem, M.M. Synthesis and theoretical study of new barbituric acid derivatives as corrosion inhibitors for mild steel. Asian J. Chem., 2018, 30(12), 2761-2764.
[http://dx.doi.org/10.14233/ajchem.2018.21595]
[47]
Dehghanzadeh, F.; Shahrokhabadi, F.; Anary-Abbasinejad, M. A simple route for synthesis of 5-(furan-3-yl)barbiturate/thiobarbiturate derivatives via a multi-component reaction between arylglyoxals, acetylacetone and barbituric/thiobarbituric acid. Org. Chem., 2019.
[http://dx.doi.org/10.24820/ark.5550190.p010.837]
[48]
Dasgupta, A. Alcohol, Drugs, Genes and The Clinical Laboratory; Science Direct, 2017.
[49]
Vardanyan, R.; Hruby, V. Synthesis of Essential Drugs; Elsevier, 2006, p. 634.
[50]
Malamed, S.F. Medical Emergencies in the Dental Office-E-Book; Elsevier Health Sciences, 2014, p. 576.
[51]
Sharma, A.; Singh, S.; Utreja, D. Recent advances in synthesis and antifungal activity of 1,3,5-triazines. Curr. Org. Synth., 2016, 13(4), 484-503.
[http://dx.doi.org/10.2174/1570179412666150905002356]
[52]
Jain, N.; Utreja, D.; Dhillon, N.K. A convenient one pot synthesis and antinemic studies of nicotinic acid derivatives. Russ. J. Org. Chem., 2019, 55(6), 845-851.
[http://dx.doi.org/10.1134/S1070428019060150]
[53]
Vibha, V.; Utreja, D.; Kaur, J.; Kaur, M. Antifungal activity of dihydropyrimidinones synthesized by using magnesium ferrite nanoparticles as efficient heterogeneous catalyst. Agri. Res. J., 2018, 55(2), 313-317.
[54]
Kaur, K.; Utreja, D.; Garg, A.; Sharma, V.K. Synthesis and antifungal activity of sulfonamides Schiff bases and their metal complexes. Plant Dis. Res., 2016, 31(2), 171-173.
[55]
European Commission. A European one health action plan against antimicrobial resistance (AMR); European Commission, 2017.
[56]
Jain, P.; Utreja, D.; Sharma, P. An efficacious synthesis of N-1, C-3 substituted indole derivatives and their antimicrobial studies. J. Heterocycl. Chem., 2020, 57(1), 428-435.
[57]
Moghaddam-Manesh, M.; Sheikhhosseini, E.; Ghazanfari, D.; Akhgar, M. Synthesis of novel 2-oxospiro[indoline-3,4′-[1,3]dithiine]-5′-carbonitrile derivatives by new spiro[indoline-3,4′-[1,3]dithiine]@Cu(NO3)2 supported on Fe3O4@gly@CE MNPs as efficient catalyst and evaluation of biological activity. Bioorg. Chem., 2020, 98103751
[http://dx.doi.org/10.1016/j.bioorg.2020.103751] [PMID: 32182517]
[58]
Febriantini, D.; Cahyana, A.H.; Yunarti, R.T. A microwave assisted, Fe3O4/Camphor-catalysed three component synthesis of 2-amino-4Hchromenes and their antibacterial and antioxidant activity. IOP Conf. Ser: Mater. Sci. Eng., 2019, 509(1), p. 012036.
[59]
Moradi, L.; Ataei, Z.; Zahraei, Z. Convenient synthesis of spirooxindoles using SnO2 nanoparticles as effective reusable catalyst at room temperature and study of their in vitro antimicrobial activity. J. Iran. Chem. Soc., 2019, 16(6), 1273-1281.
[http://dx.doi.org/10.1007/s13738-019-01598-2]
[60]
Angulwar, J.A.; Khansole, G.S.; Bhosale, V.N. Synthesis, antimicrobial activities of pyrano[2,3-d]pyrimidine derivatives. Int. J. Chem. Phys. Sci., 2018, 7, 1-10.
[61]
Chate, A.V.; Dongre, R.M.; Khaire, M.K.; Bondle, G.M.; Sangshetti, J.N.; Damale, M. β-CD-catalyzed multicomponent domino reaction: synthesis, characterization, in silico molecular docking and biological evaluation of pyrano[2,3-d]pyrimidinone derivatives. Res. Chem. Intermed., 2018, 44(10), 6119-6136.
[http://dx.doi.org/10.1007/s11164-018-3479-9]
[62]
Bhat, A.R. Petra, osiris and molinspiration: A computational bioinformatic platform for experimental in vitro antibacterial activity of annulated uracil derivatives. Iran. Chem. Commun., 2018, 6(2), 114-124.
[63]
Singha, R.; Basak, P.; Bhattacharya, M.; Ghosh, P. Graphene oxide catalyzed one‐pot synthesis of Pyrimido[4,5‐b]quinolinone‐2,4‐diones and their biological evaluation. ChemistrySelect, 2020, 5(21), 6514-6525.
[http://dx.doi.org/10.1002/slct.202000989]
[64]
Bhosle, M.R.; Kharote, S.A.; Bondle, G.M.; Sangshetti, J.N.; Ansari, S.A.; Alkahtani, H.M. Organocatalyzed domino synthesis of new thiazole‐based decahydroacridine‐1,8‐diones and dihydropyrido[2,3‐d:6,5‐d′]‐dipyrimidines in water as antimicrobial agents. Chem. Biodivers., 2020, 17(2)e1900577
[http://dx.doi.org/10.1002/cbdv.201900577] [PMID: 31823465]
[65]
Shukla, S.; Bishnoi, A.; Devi, P.; Kumar, S.; Srivastava, A.; Srivastava, K.; Fatma, S. Synthesis, characterization, and in vitro antibacterial evaluation of barbituric acid derivatives. Russ. J. Org. Chem., 2019, 55(6), 860-865.
[http://dx.doi.org/10.1134/S1070428019060174]
[66]
Bondle, G.M.; Atkore, S.T. Synthesis and biological evaluation of some newly synthesized barbiturates and their derivatives by using task specific ionic liquid [Bmim]OH. Orbital: Electron. J. Chem., 2019, 11(3), 142-150.
[http://dx.doi.org/10.17807/orbital.v11i3.1175]
[67]
Venkatesh, T.; Bodke, Y.D.; Nagaraj, K.S. R.K. One-Pot Synthesis of Novel Substituted phenyl-1,5-dihydro-2H-benzo[4,5]thiazolo[3,2-a]pyrimi-do[4,5-d]pyrimidine derivatives as potent antimicrobial agents. Med. Chem. (Los Angeles), 2018, 8, 1-8.
[http://dx.doi.org/10.4172/2161-0444.1000488]
[68]
Shabeer, M.; Barbosa, L.C.; Karak, M.; Coelho, A.C.; Takahashi, J.A. Thiobarbiturates as potential antifungal agents to control human infections caused by Candida and Cryptococcus species. Med. Chem. Res., 2018, 27(4), 1043-1049.
[http://dx.doi.org/10.1007/s00044-017-2126-0]
[69]
Hossain, M.I.; Bhuiyan, M.M.H.; Kumer, A. Biological studies of pyrido[2,3-d:6,5-d/] dipyrimidine with synthesis. Asian J. Phys. Chem. Sci., 2018, 5(3), 1-9.
[http://dx.doi.org/10.9734/AJOPACS/2018/39709]
[70]
Mubeen, S.; Rauf, A.; Qureshi, A.M. Synthesis of new quinoline scaffolds via a solvent-free fusion method and their anti-microbial properties. Trop. J. Pharm. Res., 2018, 17(9), 1853-1858.
[http://dx.doi.org/10.4314/tjpr.v17i9.25]
[71]
Kumbhar, D.; Chandam, D.; Patil, R.; Jadhav, S.; Patil, D.; Patravale, A.; Deshmukh, M. Synthesis and antimicrobial activity of novel derivatives of 7‐aryl‐10‐thioxo‐7,10,11,12–tertahydro‐9H‐benz- -o[H]pyrimido[4,5‐b]quinoline‐8‐one. J. Heterocycl. Chem., 2018, 55(3), 692-698.
[http://dx.doi.org/10.1002/jhet.3089]
[72]
Bhattacharjee, D.; Sheet, S.K.; Khatua, S.; Biswas, K.; Joshi, S.; Myrboh, B. A reusable magnetic nickel nanoparticle based catalyst for the aqueous synthesis of diverse heterocycles and their evaluation as potential anti-bacterial agent. Bioorg. Med. Chem., 2018, 26(18), 5018-5028.
[http://dx.doi.org/10.1016/j.bmc.2018.08.033] [PMID: 30177493]
[73]
Mohammadi Ziarani, G.; Aleali, F.; Lashgari, N.; Badiei, A.; Abolhasani Soorki, A. Efficient synthesis and antimicrobial evaluation of pyrazolopyranopyrimidines in the presence of SBA-Pr-SO3H as a nanoporous acid catalyst. Iran. J. Pharm. Res., 2018, 17(2), 525-534.
[PMID: 29881410]
[74]
Mohammadi Ziarani, G.; Saidian, F.; Gholamzadeh, P.; Badiei, A.; Abolhasani Soorki, A. Green synthesis of pyrazol-chromeno [2,3-d] pyrimidinones using SBA-Pr-SO3H as an efficient nanocatalyst. Iran. J. Chem. Chem. Eng., 2017, 36(6), 39-48.
[75]
Khan, S.A.; Nami, S.A.A.; Bhat, S.A.; Kareem, A.; Nishat, N. Synthesis, characterization and antimicrobial study of polymeric transition metal complexes of Mn(II), Co(II), Ni(II), Cu(II) and Zn(II). Microb. Pathog., 2017, 110, 414-425.
[http://dx.doi.org/10.1016/j.micpath.2017.07.008] [PMID: 28729223]
[76]
Venkatesh, T.; Bodke, Y.D.; Kenchappa, R.; Telkar, S. Synthesis, antimicrobial and antioxidant activity of chalcone derivatives containing thiobarbitone nucleus. Med. Chem., 2016, 6(7), 440-448.
[77]
Tyrkov, A.G.; Sukhenko, L.T.; Yurtaeva, E.A. Synthesis and antimicrobial activity of 5-(heterylmethylene)hexahydropyrimidin-2,4,6-triones. Pharm. Chem. J., 2016, 50(7), 436-439.
[http://dx.doi.org/10.1007/s11094-016-1465-3]
[78]
B M. V.; Bodke, Y.D.; Telkar, S.; M, A.S.; Venkatesh, T. Fe(III)-montmorillonite catalysed one pot synthesis of 5-substituted dihydropyrimidine derivatives as potent antimicrobial agents. J. Taibah Univ. Med. Sci., 2016, 12(1), 60-69.
[http://dx.doi.org/10.1016/j.jtumed.2016.07.003] [PMID: 31435214]
[79]
Kumarasamy, D.; Mookerjee, M.; Maity, S. Design, synthesis, and in vitro antibacterial activity studies of 5-arylidene(thio)barbituric acid derivatives. Int. J. Pharm. Pharm. Anal., 2016, 1, 25-32.
[80]
Barakat, A.; Al-Qahtani, B.M.; Al-Majid, A.M.; Ali, M.; Shaik, M.R.; Al-Agamy, M.H.M.; Wadood, A. Synthesis, characterization, antimicrobial activity and molecular docking studies of combined pyrazol-barbituric acid pharmacophores. Trop. J. Pharm. Res., 2016, 15(10), 2197-2207.
[http://dx.doi.org/10.4314/tjpr.v15i10.19]
[81]
Masoud, M.S.; Sweyllam, A.M.; Ahmed, M.M. Synthesis, characterization, coordination chemistry and biological activity of some pyrimidine complexes. J. Mol. Struct., 2020, 1219128612
[http://dx.doi.org/10.1016/j.molstruc.2020.128612]
[82]
Vinoth, N.; Lalitha, A. Catalyst-free three-component synthesis, antibacterial, antifungal, and docking studies of spiroindoline derivatives; Polycyclic Aromat. Comp, 2020, pp. 1-17.
[http://dx.doi.org/10.1080/10406638.2020.1744025]
[83]
Venkatesh, T.; Bodke, Y.D. SJ, A.R. Facile CAN catalyzed one pot synthesis of novel indol-5,8-pyrimido[4,5-d]pyrimidine derivatives and their pharmacological study. Chem. Data Collect., 2020, 25100335
[84]
Ibrahim, M.A.; Al‐Harbi, S.A.; Allehyani, E. Synthesis and antimicrobial evaluation of the novel heteroannulated Furo[3`,2`:6,7]chrom- eno[2,3‐b]pyridines: Part 1. J. Heterocycl. Chem., 2020, 57(10), 3632-3641.
[http://dx.doi.org/10.1002/jhet.4082]
[85]
Hassan, F.S.; Kuran, W.S.; Ibrahim, A.A.; Adam, F.A. Synthesis, characterization and biological activity of sodium barbitone-group-VIII metals (viz. Ni(II), Pd(II) and Pt(II)) complexes. Open J. Inorg. Non-met. Mater., 2020, 10(1), 1-14.
[86]
Abbas, N.F.; Abbas, A.K. Novel complexes of thiobarbituric acid–azo dye: structural, spectroscopic, biological activity and dying. Biochem. Cell. Arch., 2020, 20(1), 2419-2433.
[87]
Pakravan, N.; Shayani-Jam, H.; Beiginejad, H.; Tavafi, H.; Paziresh, S. A green method for the synthesis of novel spiro compounds: Enhancement of antibacterial properties of caffeic acid through electrooxidation in the presence of barbituric acid derivatives. J. Electroanal. Chem. (Lausanne Switz.), 2019, 848, 1-8.
[http://dx.doi.org/10.1016/j.jelechem.2019.113286]
[88]
Fahad, M.M.; Ziman, F.H.; Mohamad, M.J. Synthesis and antimicrobial activity of some new barbituric acid derivatives containing thiazole moiety from sulfadiazine. Nano Biomed. Eng., 2019, 11(2), 124-137.
[http://dx.doi.org/10.5101/nbe.v11i2.p124-137]
[89]
Figueiredo, J.; Serrano, J.L.; Cavalheiro, E.; Keurulainen, L.; Yli-Kauhaluoma, J.; Moreira, V.M.; Ferreira, S.; Domingues, F.C.; Silvestre, S.; Almeida, P. Trisubstituted barbiturates and thiobarbiturates: Synthesis and biological evaluation as xanthine oxidase inhibitors, antioxidants, antibacterial and anti-proliferative agents. Eur. J. Med. Chem., 2018, 143, 829-842.
[http://dx.doi.org/10.1016/j.ejmech.2017.11.070] [PMID: 29223098]
[90]
Figueiredo, J.; Serrano, J.L.; Soares, M.; Ferreira, S.; Domingues, F.C.; Almeida, P.; Silvestre, S. 5-Hydrazinylethylidenepyrimidines effective against multidrug-resistant Acinetobacter baumannii: Synthesis and in vitro biological evaluation of antibacterial, radical scavenging and cytotoxic activities. Eur. J. Pharm. Sci., 2019, 137104964
[http://dx.doi.org/10.1016/j.ejps.2019.104964] [PMID: 31233866]
[91]
Stasevych, M.; Zvarych, V.; Lunin, V.; Kopak, N.; Komarovska-Porokhnyavets, O.; Deniz, N.G.; Sayil, C.; Ozyurek, M.; Guclu, K.; Vovk, M.; Novikov, V. Synthesis and investigation of antimicrobial and antioxidant activity of anthraquinonylhydrazones. Monatsh. Chem., 2018, 149(6), 1111-1119.
[http://dx.doi.org/10.1007/s00706-018-2157-3]
[92]
Khatun, K.; Sattar, M.A.; Nahar, K.; Alauddin, J. Green Chemistry Approach for Synthesis of bioactive 2-thiobarbituric acid derivatives. Asian J. Phys. Chem. Sci., 2018, 5(3), 1-7.
[http://dx.doi.org/10.9734/AJOPACS/2018/40562]
[93]
Sattar, M.A.; Khatun, M.K.; Sarkar, T.K.; Al-Reza, S.M. Ecofriendly synthesis of bioactive 2-thiobarbituric acid derivatives. Int. J. Bioorg. Chem., 2017, 2(3), 83-86.
[94]
Wenholz, D.S.; Zeng, M.; Ma, C.; Mielczarek, M.; Yang, X.; Bhadbhade, M.; Black, D.S.C.; Lewis, P.J.; Griffith, R.; Kumar, N. Small molecule inhibitors of bacterial transcription complex formation. Bioorg. Med. Chem. Lett., 2017, 27(18), 4302-4308.
[http://dx.doi.org/10.1016/j.bmcl.2017.08.036] [PMID: 28866270]
[95]
Oraby, A.K.; Abdellatif, K.R.A.; Abdelgawad, M.A.; Attia, K.M.; Georghiou, P.E. Synthesis and antimicrobial activities of a series of disubstitutedarylazo-barbituric- and thiobarbituric acid derivativess. Int. J. Pharm. Chem., 2016, 6(4), 1-8.
[96]
Padmaja, P.; Reddy, B.V.S.; Jain, N.; Mutheneni, S.R.; Bollepelli, P.; Polepalli, S.; Rambabu, G.; Reddy, P.N. Synthesis, molecular docking and in vitro antiproliferative activity of novel pyrano[3, 2-c]carbazole derivatives. New J. Chem., 2016, 40(10), 8305-8315.
[http://dx.doi.org/10.1039/C6NJ01580H]
[97]
Reddy, P.N.; Padmaja, P.; Reddy, B.R.; Rambabu, G.; Kumar, M.P. Synthesis, molecular docking, antiproliferative, and antimicrobial activity of novel pyrano [3, 2-c] carbazole derivatives. Med. Chem. Res., 2016, 25(10), 2093-2103.
[http://dx.doi.org/10.1007/s00044-016-1676-x]
[98]
Rathee, P.; Tonk, R.K.; Dalal, A.; Ruhil, M.K.; Kumar, A. Synthesis and application of thiobarbituric acid derivatives as antifungal agents. Cell. Mol. Biol., 2016, 62(5), 1-5.
[PMID: 27188861]
[99]
Giziroglu, E.; Sarikurkcu, C.; Aygun, M.; Basbulbul, G.; Soyleyici, H.C.; Firinci, E.; Kirkan, B.; Alkis, A.; Saylica, T.; Biyik, H. Barbiturate bearing aroylhydrazine derivatives: Synthesis, NMR investigations, single crystal X-ray studies and biological activity. J. Mol. Struct., 2016, 1108, 325-333.
[http://dx.doi.org/10.1016/j.molstruc.2015.12.036]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy