Generic placeholder image

Current Topics in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1568-0266
ISSN (Online): 1873-4294

Research Article

The Role of Machine Learning in Centralized Authorization Process of Nanomedicines in European Union

Author(s): Ricardo Santana *, Enrique Onieva, Robin Zuluaga , Aliuska Duardo-Sánchez and Piedad Gañán

Volume 21, Issue 9, 2021

Published on: 19 March, 2021

Page: [828 - 838] Pages: 11

DOI: 10.2174/1568026621666210319101847

Price: $65

Abstract

Background: Machine Learning (ML) has experienced an increasing use, given the possibilities to expand the scientific knowledge of different disciplines, such as nanotechnology. This has allowed the creation of Cheminformatic models capable of predicting biological activity and physicochemical characteristics of new components with high success rates in training and test partitions. Given the current gaps of scientific knowledge and the need for efficient application of medicines products law, this paper analyzes the position of regulators for marketing medicinal nanoproducts in the European Union and the role of ML in the authorization process.

Methods: In terms of methodology, a dogmatic study of the European regulation and the guidance of the European Medicine Agency on the use of predictive models for nanomaterials was carried out. The study has, as the framework of reference, the European Regulation 726/2004 and has focused on the analysis of how ML processes are contemplated in the regulations.

Results: As a result, we present a discussion of the information that must be provided for every case for simulation methods. The results show a favorable and flexible position for the development of the use of predictive models to complement the applicant's information.

Conclusion: It is concluded that Machine Learning has the capacity to help improve the application of nanotechnology medicine products regulation. Future regulations should promote this kind of information given the advanced state of the art in terms of algorithms that are able to build accurate predictive models. This especially applies to methods, such as Perturbation Theory Machine Learning (PTML), given that it is aligned with principles promoted by the standards of Organization for Economic Co-operation and Development (OECD), European Union regulations, and European Authority Medicine. To our best knowledge, this is the first study focused on nanotechnology medicine products and machine learning used to support technical European public assessment reports (EPAR) for complementary information.

Keywords: Nanotechnology, Regulation, Safety, Cheminformatic, OECD, European Union Regulations.

Graphical Abstract

[1]
Lane, T.; Russo, D.P.; Zorn, K.M.; Clark, A.M.; Korotcov, A.; Tkachenko, V.; Reynolds, R.C.; Perryman, A.L.; Freundlich, J.S.; Ekins, S. Comparing and validating machine learning models for mycobacterium tuberculosis drug discovery. Mol. Pharm., 2018, 15(10), 4346-4360.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00083] [PMID: 29672063]
[2]
Lei, T.; Sun, H.; Kang, Y.; Zhu, F.; Liu, H.; Zhou, W.; Wang, Z.; Li, D.; Li, Y.; Hou, T. ADMET evaluation in drug discovery. 18. reliable prediction of chemical-induced urinary tract toxicity by boosting machine learning approaches. Mol. Pharm., 2017, 14(11), 3935-3953.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00631] [PMID: 29037046]
[3]
Ohashi, R.; Watanabe, R.; Esaki, T.; Taniguchi, T.; Torimoto-Katori, N.; Watanabe, T.; Ogasawara, Y.; Takahashi, T.; Tsukimoto, M.; Mizuguchi, K. Development of simplified in vitro P-glycoprotein substrate assay and in silico prediction models to evaluate transport potential of P-glycoprotein. Mol. Pharm., 2019, 16(5), 1851-1863.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01143] [PMID: 30933526]
[4]
Fusani, L.; Brown, M.; Chen, H.; Ahlberg, E.; Noeske, T. Predicting the risk of phospholipidosis with in silico models and an image-based in vitro screen. Mol. Pharm., 2017, 14(12), 4346-4352.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00388] [PMID: 29077420]
[5]
Li, X.; Xu, Y.; Lai, L.; Pei, J. Prediction of human cytochrome P450 inhibition using a multitask deep autoencoder neural network. Mol. Pharm., 2018, 15(10), 4336-4345.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00110] [PMID: 29775322]
[6]
Zhavoronkov, A. Artificial Intelligence for Drug Discovery, Biomarker Development, and Generation of Novel Chemistry. Mol. Pharm., 2018, 15(10), 4311-4313.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b00930] [PMID: 30269508]
[7]
Reynolds, G.H. Nanotechnology and Regulatory Policy: Three Futures. Harv. J. Law Technol., 2003, 17, 179-208.
[8]
Toropova, A.P.; Toropov, A.A.; Rallo, R.; Leszczynska, D.; Leszczynski, J. Optimal descriptor as a translator of eclectic data into prediction of cytotoxicity for metal oxide nanoparticles under different conditions. Ecotoxicol. Environ. Saf., 2015, 112, 39-45.
[http://dx.doi.org/10.1016/j.ecoenv.2014.10.003] [PMID: 25463851]
[9]
Sizochenko, N.; Rasulev, B.; Gajewicz, A.; Kuz’min, V.; Puzyn, T.; Leszczynski, J. From basic physics to mechanisms of toxicity: the “liquid drop” approach applied to develop predictive classification models for toxicity of metal oxide nanoparticles. Nanoscale, 2014, 6(22), 13986-13993.
[http://dx.doi.org/10.1039/C4NR03487B] [PMID: 25317542]
[10]
Mikolajczyk, A.; Gajewicz, A.; Rasulev, B.; Schaeublin, N.; Maurer-Gardner, E.; Hussain, S.; Leszczynski, J.; Puzyn, T. Zeta potential for metal oxide nanoparticles: A predictive model developed by a nano-quantitative structure-property relationship approach. Chem. Mater., 2015, 27, 2400-2407.
[http://dx.doi.org/10.1021/cm504406a]
[11]
Ojha, P.K.; Kar, S.; Roy, K.; Leszczynski, J. Toward comprehension of multiple human cells uptake of engineered nano metal oxides : Quantitative inter cell line uptake specificity (QICLUS) modeling. Nanotoxicology, 2018, 13(1), 14-34.
[PMID: 30354872]
[12]
Golbamaki, A.; Golbamaki, N.; Sizochenko, N.; Rasulev, B.; Cassano, A.; Puzyn, T. Leszczynski, J., Benfenati, E. Classification nano-SAR modeling of metal oxides nanoparticles genotoxicity based on comet assay data. Toxicol. Lett., 2016, 258, 62-324.
[http://dx.doi.org/10.1016/j.toxlet.2016.06.1950]
[13]
Fjodorova, N.; Novic, M.; Gajewicz, A.; Rasulev, B. The way to cover prediction for cytotoxicity for all existing nano-sized metal oxides by using neural network method. Nanotoxicology, 2017, 11(4), 475-483.
[http://dx.doi.org/10.1080/17435390.2017.1310949] [PMID: 28330416]
[14]
Sizochenko, N.; Mikolajczyk, A.; Jagiello, K.; Puzyn, T.; Leszczynski, J.; Rasulev, B. How the toxicity of nanomaterials towards different species could be simultaneously evaluated: A novel multi-nano-read-across approach. Nanoscale, 2018, 10(2), 582-591.
[http://dx.doi.org/10.1039/C7NR05618D] [PMID: 29168526]
[15]
Mikolajczyk, A.; Gajewicz, A.; Mulkiewicz, E.; Rasulev, B.; Marchelek, M.; Diak, M.; Hirano, S.; Medynska, A.; Puzyn, T. Nano-QSAR modeling for ecosafe design of heterogeneous TiO 2-based nano-photocatalysts. Environ. Sci. Nano, 2018, 5, 1150-1160.
[http://dx.doi.org/10.1039/C8EN00085A]
[16]
Golbamaki, A.; Golbamaki, N.; Sizochenko, N.; Rasulev, B.; Leszczynski, J.; Benfenati, E. Genotoxicity induced by metal oxide nanoparticles: A weight of evidence study and effect of particle surface and electronic properties. Nanotoxicology, 2018, 12(10), 1113-1129.
[http://dx.doi.org/10.1080/17435390.2018.1478999] [PMID: 29888633]
[17]
Singh, K.P.; Gupta, S. Nano-QSAR modeling for predicting biological activity of diverse nanomaterials. RSC Advances, 2014, 4, 13215-13230.
[http://dx.doi.org/10.1039/C4RA01274G]
[18]
Puzyn, T.; Rasulev, B.; Gajewicz, A.; Hu, X.; Dasari, T.P.; Michalkova, A.; Hwang, H.M.; Toropov, A.; Leszczynska, D.; Leszczynski, J. Using nano-QSAR to predict the cytotoxicity of metal oxide nanoparticles. Nat. Nanotechnol., 2011, 6(3), 175-178.
[http://dx.doi.org/10.1038/nnano.2011.10] [PMID: 21317892]
[19]
Toropov, A.A.; Toropova, A.P.; Benfenati, E.; Gini, G.; Puzyn, T.; Leszczynska, D.; Leszczynski, J. Novel application of the CORAL software to model cytotoxicity of metal oxide nanoparticles to bacteria Escherichia coli. Chemosphere, 2012, 89(9), 1098-1102.
[http://dx.doi.org/10.1016/j.chemosphere.2012.05.077] [PMID: 22704203]
[20]
Pathakoti, K.; Huang, M-J.; Watts, J.D.; He, X.; Hwang, H-M. Using experimental data of Escherichia coli to develop a QSAR model for predicting the photo-induced cytotoxicity of metal oxide nanoparticles. J. Photochem. Photobiol. B, 2014, 130, 234-240.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.11.023] [PMID: 24362319]
[21]
Gajewicz, A.; Schaeublin, N.; Rasulev, B.; Hussain, S.; Leszczynska, D.; Puzyn, T.; Leszczynski, J. Towards understanding mechanisms governing cytotoxicity of metal oxides nanoparticles: Hints from nano-QSAR studies. Nanotoxicology, 2015, 9(3), 313-325.
[http://dx.doi.org/10.3109/17435390.2014.930195] [PMID: 24983896]
[22]
Sayes, C.; Ivanov, I. Comparative study of predictive computational models for nanoparticle-induced cytotoxicity. Risk Anal., 2010, 30(11), 1723-1734.
[http://dx.doi.org/10.1111/j.1539-6924.2010.01438.x] [PMID: 20561263]
[23]
Toropova, A.P.; Toropov, A.A. Optimal descriptor as a translator of eclectic information into the prediction of membrane damage by means of various TiO(2) nanoparticles. Chemosphere, 2013, 93(10), 2650-2655.
[http://dx.doi.org/10.1016/j.chemosphere.2013.09.089] [PMID: 24161577]
[24]
Kar, S.; Gajewicz, A.; Puzyn, T.; Roy, K.; Leszczynski, J. Periodic table-based descriptors to encode cytotoxicity profile of metal oxide nanoparticles: A mechanistic QSTR approach. Ecotoxicol. Environ. Saf., 2014, 107, 162-169.
[http://dx.doi.org/10.1016/j.ecoenv.2014.05.026] [PMID: 24949897]
[25]
Liu, R.; Rallo, R.; George, S.; Ji, Z.; Nair, S.; Nel, A.E.; Cohen, Y. Classification NanoSAR development for cytotoxicity of metal oxide nanoparticles. Small, 2011, 7(8), 1118-1126.
[http://dx.doi.org/10.1002/smll.201002366] [PMID: 21456088]
[26]
Liu, R.; Zhang, H.Y.; Ji, Z.X.; Rallo, R.; Xia, T.; Chang, C.H.; Nel, A.; Cohen, Y. Development of structure-activity relationship for metal oxide nanoparticles. Nanoscale, 2013, 5(12), 5644-5653.
[http://dx.doi.org/10.1039/c3nr01533e] [PMID: 23689214]
[27]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Korenstein, R.; Leszczynska, D.; Leszczynski, J. Optimal nano-descriptors as translators of eclectic data into prediction of the cell membrane damage by means of nano metal-oxides. Environ. Sci. Pollut. Res. Int., 2015, 22(1), 745-757.
[http://dx.doi.org/10.1007/s11356-014-3566-4] [PMID: 25223357]
[28]
Patel, T.; Telesca, D.; Low-Kam, C. Ji, Zx, Zhang, H. Y., Xia, T., Zinc, J. I., Nel, A. E. Relating nano-particle properties to biological outcomes in exposure escalation experiments. Environmetrics, 2014, 25, 57-68.
[http://dx.doi.org/10.1002/env.2246] [PMID: 24764692]
[29]
Toropova, A.P.; Toropov, A.A.; Benfenati, E.; Korenstein, R. QSAR model for cytotoxicity of SiO2nanoparticles on human lung fibroblasts. J. Nanopart. Res., 2014, 16, 2282.
[http://dx.doi.org/10.1007/s11051-014-2282-9]
[30]
Burello, E.; Worth, A.P. A theoretical framework for predicting the oxidative stress potential of oxide nanoparticles. Nanotoxicology, 2011, 5(2), 228-235.
[http://dx.doi.org/10.3109/17435390.2010.502980] [PMID: 21609138]
[31]
Epa, V.C.; Burden, F.R.; Tassa, C.; Weissleder, R.; Shaw, S.; Winkler, D.A. Modeling biological activities of nanoparticles. Nano Lett., 2012, 12(11), 5808-5812.
[http://dx.doi.org/10.1021/nl303144k] [PMID: 23039907]
[32]
Mitter, N.; Hussey, K. Moving policy and regulation forward for nanotechnology applications in agriculture. Nat. Nanotechnol., 2019, 14(6), 508-510.
[http://dx.doi.org/10.1038/s41565-019-0464-4] [PMID: 31168072]
[33]
Eisenhardt, K.M. Agency theory: An assessment and review. Acad. Manage. Rev., 1989, 14, 57-74.
[http://dx.doi.org/10.5465/amr.1989.4279003]
[34]
Uskokovic, V. Nanotechnologies : What we do not know. Technol. Soc., 2007, 29, 43-61.
[http://dx.doi.org/10.1016/j.techsoc.2006.10.005]
[35]
Commission, E. Regulation (EC) No 726/2004. 2004.
[36]
Stone, V.; Führ, M.; Feindt, P.H.; Bouwmeester, H.; Linkov, I.; Sabella, S.; Murphy, F.; Bizer, K.; Tran, L.; Ågerstrand, M.; Fito, C.; Andersen, T.; Anderson, D.; Bergamaschi, E.; Cherrie, J.W.; Cowan, S.; Dalemcourt, J.F.; Faure, M.; Gabbert, S.; Gajewicz, A.; Fernandes, T.F.; Hristozov, D.; Johnston, H.J.; Lansdown, T.C.; Linder, S.; Marvin, H.J.P.; Mullins, M.; Purnhagen, K.; Puzyn, T.; Sanchez Jimenez, A.; Scott-Fordsmand, J.J.; Streftaris, G.; van Tongeren, M.; Voelcker, N.H.; Voyiatzis, G.; Yannopoulos, S.N.; Poortvliet, P.M. The Essential Elements of a Risk Governance Framework for Current and Future Nanotechnologies. Risk Anal., 2018, 38(7), 1321-1331.
[http://dx.doi.org/10.1111/risa.12954] [PMID: 29240986]
[37]
Schmidt, J.; Marques, M.R.G.; Botti, S.; Marques, M. Recent advances and applications of machine learning in solid- state materials science. Comput. Mater., 2019, 5, 1-36.
[http://dx.doi.org/10.1038/s41524-019-0221-0]
[38]
Wirth, R.; Hipp, J. CRISP-DM : Towards a Standard Process Model for Data Mining. Proceedings of the Fourth International Conference on the Practical Application of Knowledge Discovery and Data Mining, Crowne Plaza Midland Hotel, Manchester, UK, 2000, pp. 29-39.
[39]
OECD. Guidance document on the validation of (quantitative) structure-activity relationships [(q)sar] models. In: OECD Series on Testing and Assessment; OECD Publishing: Paris, 2007.
[40]
CHMP. Guidanceline on reporting the results of population pharmacokinetic analyses. Eur. Med. Agency, 2007, 1, 1-11.
[41]
CHMP. Guidanceline on the Investigation of Drug Interactions. Eur. Med. Agency, 2013, 1-59.
[42]
CHMP. Guidanceline on the qualification and reporting of physiologically based pharmacokinetic (PBPK) modelling and simulation. Eur. Med. Agency, 2017, 1-18.
[43]
CHMP. Data requirements for intravenous iron-based nano-colloidal products developed with reference to an innovator medicinal product. Eur. Med. Agency, 2012, 1-11.
[44]
CHMP. Data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. Eur. Med. Agency, 2009, 1-13.
[45]
CHMP. Joint MHLW/EMA reflection paper on the development of block copolymer micelle medicinal products. Eur. Med. Agency, 2013, 1-18.
[46]
CHMP. Reflection paper on surface coatings: general issues for consideration regarding parenteral administration of coated nanomedicine products. Eur. Med. Agency, 2013, 1-5.

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy