Generic placeholder image

Current Organic Synthesis

Editor-in-Chief

ISSN (Print): 1570-1794
ISSN (Online): 1875-6271

Mini-Review Article

Diselenides and Selenocyanates as Versatile Precursors for the Synthesis of Pharmaceutically Relevant Compounds

Author(s): Marina D. Kostić* and Vera M. Divac

Volume 19, Issue 3, 2022

Published on: 03 March, 2021

Page: [317 - 330] Pages: 14

DOI: 10.2174/1570179418666210303113723

Price: $65

Abstract

Organoselenium chemistry has undergone extensive development during the past decades, mostly due to the unique chemical properties of organoselenium compounds that have been widely explored in a number of synthetic transformations, as well as due to the interesting biological properties of these compounds. Diselenides and selenocyanates constitute the promising classes of organoselenium compounds that possess interesting biological effects, and that can be used in the preparation of other selenium compounds. The combination of diselenide and selenocyanate moieties with other biologically relevant molecules (such as heterocycles, steroids, etc.) is a way for the development of compounds with promising pharmaceutical potential. Therefore, the aim of this review is to highlight the recent achievements in the use of diselenides or selenocyanates as precursors for the synthesis of pharmaceutically relevant compounds, preferentially compounds with antitumor and antimicrobial activities.

Keywords: Diselenides, selenocyanates, antitumor activity, antimicrobial activity, heterocycles, drugs.

Graphical Abstract

[1]
Berzelius, J.J. Afhandl. Fys. Kemi Mineralog., 1818, 6, 42.
[2]
Stadtman, T.C. Selenium biochemistry. Science, 1974, 183(4128), 915-922.
[http://dx.doi.org/10.1126/science.183.4128.915] [PMID: 4605100]
[3]
Andreesen, J.R.; Ljungdahl, L.G. Formate dehydrogenase of Clostridium thermoaceticum: incorporation of selenium-75, and the effects of selenite, molybdate, and tungstate on the enzyme. J. Bacteriol., 1973, 116(2), 867-873.
[http://dx.doi.org/10.1128/JB.116.2.867-873.1973] [PMID: 4147651]
[4]
Turner, D.C.; Stadtman, T.C. Purification of protein components of the clostridial glycine reductase system and characterization of protein A as a selenoprotein. Arch. Biochem. Biophys., 1973, 154(1), 366-381.
[http://dx.doi.org/10.1016/0003-9861(73)90069-6] [PMID: 4734725]
[5]
Kieliszek, M.; Błażejak, S. Selenium: Significance, and outlook for supplementation. Nutrition, 2013, 29(5), 713-718.
[http://dx.doi.org/10.1016/j.nut.2012.11.012] [PMID: 23422539]
[6]
Mousa, R.; Notis Dardashti, R.; Metanis, N. Selenium and selenocysteine in protein chemistry. Angew. Chem. Int. Ed. Engl., 2017, 56(50), 15818-15827.
[http://dx.doi.org/10.1002/anie.201706876] [PMID: 28857389]
[7]
Wrobel, J.K.; Power, R.; Toborek, M. Biological activity of selenium: Revisited. IUBMB Life, 2016, 68(2), 97-105.
[http://dx.doi.org/10.1002/iub.1466] [PMID: 26714931]
[8]
Bhuyan, B.J.; Mugesh, G. Biological and Biochemical Aspects of Selenium Compounds. In: Organoselenium Chemistry: Synthesis and Reactions; Wirth, T. Wiley-VCH: Verlag, 2012; pp. 361-396.
[9]
Rayman, M.P. Selenium and human health. Lancet, 2012, 379(9822), 1256-1268.
[http://dx.doi.org/10.1016/S0140-6736(11)61452-9] [PMID: 22381456]
[10]
Cone, J.E.; Del Río, R.M.; Davis, J.N.; Stadtman, T.C. Chemical characterization of the selenoprotein component of clostridial glycine reductase: Identification of selenocysteine as the organoselenium moiety. Proc. Natl. Acad. Sci. USA, 1976, 73(8), 2659-2663.
[http://dx.doi.org/10.1073/pnas.73.8.2659] [PMID: 1066676]
[11]
Böck, A.; Forchhammer, K.; Heider, J.; Leinfelder, W.; Sawers, G.; Veprek, B.; Zinoni, F. Selenocysteine: The 21st amino acid. Mol. Microbiol., 1991, 5(3), 515-520.
[http://dx.doi.org/10.1111/j.1365-2958.1991.tb00722.x] [PMID: 1828528]
[12]
Guo, F.; Monsefi, N.; Moritz, A.; Beiras-Fernandez, A. Selenium and cardiovascular surgery: An overview. Curr. Drug Saf., 2012, 7(4), 321-327.
[http://dx.doi.org/10.2174/1574886311207040321] [PMID: 23030412]
[13]
Self, W.T. Selenium proteins containing selenocysteine. Encyclopedia of Inorganic and Bioinorganic Chemistry; John Wiley & Sons, Ltd, 2012.
[14]
Steinbrenner, H.; Speckmann, B.; Klotz, L.O. Selenoproteins: Antioxidant selenoenzymes and beyond. Arch. Biochem. Biophys., 2016, 595, 113-119.
[http://dx.doi.org/10.1016/j.abb.2015.06.024] [PMID: 27095226]
[15]
Engman, L.; Hallberg, A. Expedient synthesis of ebselen and related compounds. J. Org. Chem., 1989, 54(12), 2964-2966.
[http://dx.doi.org/10.1021/jo00273a035]
[16]
Ye, S.F.; Yang, Y.; Wu, L.; Ma, W.W.; Zeng, H.H. Ethaselen: A novel organoselenium anticancer agent targeting thioredoxin reductase 1 reverses cisplatin resistance in drug-resistant K562 cells by inducing apoptosis. J. Zhejiang Univ. Sci. B, 2017, 18(5), 373-382.
[http://dx.doi.org/10.1631/jzus.B1600073] [PMID: 28471109]
[17]
Alberto, E.E.; Nascimiento, V.; Braga, A.L. Catalytic application of selenium and tellurium compounds as glutathione peroxidase enzyme mimetics. J. Braz. Chem. Soc., 2010, 21, 2032-2041.
[http://dx.doi.org/10.1590/S0103-50532010001100004]
[18]
Schewe, T. Molecular actions of ebselen-An antiinflammatory antioxidant. Gen. Pharmacol., 1995, 26(6), 1153-1169.
[http://dx.doi.org/10.1016/0306-3623(95)00003-J] [PMID: 7590103 ]
[19]
Wang, L.; Yang, Z.; Fu, J.; Yin, H.; Xiong, K.; Tan, Q.; Jin, H.; Li, J.; Wang, T.; Tang, W.; Yin, J.; Cai, G.; Liu, M.; Kehr, S.; Becker, K.; Zeng, H. Ethaselen: A potent mammalian thioredoxin reductase 1 inhibitor and novel organoselenium anticancer agent. Free Radic. Biol. Med., 2012, 52(5), 898-908.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.11.034] [PMID: 22210352]
[20]
Marshall, A.C.; Kidd, S.E.; Lamont-Friedrich, S.J.; Arentz, G.; Hoffmann, P.; Coad, B.R.; Bruning, J.B. Structure, mechanism, and inhibition of thioredoxin reductase. Antimicrob. Agents Chemother., 2019, 63, e02281-e18.
[http://dx.doi.org/10.1128/AAC.02281-18] [PMID: 30642940]
[21]
Sanmartín, C.; Plano, D.; Sharma, A.K.; Palop, J.A. Selenium compounds, apoptosis and other types of cell death: An overview for cancer therapy. Int. J. Mol. Sci., 2012, 13(8), 9649-9672.
[http://dx.doi.org/10.3390/ijms13089649] [PMID: 22949823]
[22]
Fernandes, A.P.; Gandin, V. Selenium compounds as therapeutic agents in cancer. Biochim. Biophys. Acta, 2015, 1850(8), 1642-1660.
[http://dx.doi.org/10.1016/j.bbagen.2014.10.008] [PMID: 25459512]
[23]
Sanmartín, C.; Plano, D.; Font, M.; Palop, J.A. Selenium and clinical trials: New therapeutic evidence for multiple diseases. Curr. Med. Chem., 2011, 18(30), 4635-4650.
[http://dx.doi.org/10.2174/092986711797379249] [PMID: 21864284]
[24]
Mugesh, G.; du Mont, W.W.; Sies, H. Chemistry of biologically important synthetic organoselenium compounds. Chem. Rev., 2001, 101(7), 2125-2179.
[http://dx.doi.org/10.1021/cr000426w] [PMID: 11710243]
[25]
Banerjee, B.; Koketsu, M. Recent developments in the synthesis of biologically relevant selenium-containing scaffolds. Coord. Chem. Rev., 2017, 339, 104-127.
[http://dx.doi.org/10.1016/j.ccr.2017.03.008]
[26]
Nogueira, C.W.; Zeni, G.; Rocha, J.B. Organoselenium and organotellurium compounds: toxicology and pharmacology. Chem. Rev., 2004, 104(12), 6255-6285.
[http://dx.doi.org/10.1021/cr0406559] [PMID: 15584701]
[27]
Jain, V.K.; Priyadarsini, K.I. Organoselenium compounds in biology and medicine: Synthesis, biological and therapeutic treatments; RSC: London, 2017, pp. 401-435.
[http://dx.doi.org/10.1039/9781788011907]
[28]
Ninomiya, M.; Garud, D.R.; Koketsu, M. Biologically significant selenium-containing heterocycles. Coord. Chem. Rev., 2011, 255, 2968-2990.
[http://dx.doi.org/10.1016/j.ccr.2011.07.009]
[29]
Álvarez-Pérez, M.; Ali, W.; Marć, M.A.; Handzlik, J.; Domínguez-Álvarez, E. Selenides and diselenides: A review of their anticancer and chemopreventive activity. Molecules, 2018, 23(3), 628.
[http://dx.doi.org/10.3390/molecules23030628] [PMID: 29534447]
[30]
Santi, C.; Tidei, C.; Scalera, C.; Piroddi, M.; Galli, F. Selenium containing compounds from poison to drug candidates: A review on the GPx-like activity. Curr. Chem. Biol., 2013, 7, 25-36.
[http://dx.doi.org/10.2174/2212796811307010003]
[31]
Gandin, V.; Khalkar, P.; Braude, J.; Fernandes, A.P. Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radic. Biol. Med., 2018, 127, 80-97.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.05.001] [PMID: 29746900]
[32]
Guillemin, J.C. Organic Selenocyanates: Synthesis, characterization and uses in chemistry and biology. Curr. Org. Chem., 2011, 15, 1670-1687.
[http://dx.doi.org/10.2174/138527211795656642]
[33]
Ali, W.; Álvarez-Pérez, M.; Marć, M.A.; Salardón-Jiménez, N.; Handzlik, J.; Domínguez-Álvarez, E. The anticancer and chemopreventive activity of selenocyanate-containing compounds. Curr. Pharmacol. Rep., 2018, 4, 468-481.
[http://dx.doi.org/10.1007/s40495-018-0160-3]
[34]
Leo, I.D.; Messina, F.; Nascimento, V.; Nacca, F.G.; Pietrella, D.; Lenardão, E.J.; Perin, G.; Sancineto, L. Synthetic approaches to organoselenium derivatives with antimicrobial and anti-biofilm activity. Mini Rev. Org. Chem., 2019, 16, 589-601.
[http://dx.doi.org/10.2174/1570193X16666181227111038]
[35]
Santi, C.; Tomassini, C.; Sancineto, L. Organic diselenides: Versatile reagents, precursors, and intriguing biologically active compounds. Chimia (Aarau), 2017, 71(9), 592-595.
[http://dx.doi.org/10.2533/chimia.2017.592] [PMID: 30188290]
[36]
Potapov, V.A. Organic diselenides, ditellurides, polyselenides and polytellurides. Synthesis and reactions. PATAI’S Chemistry of Functional Groups; Rappoport, Z., Ed.; John Wiley & Sons, Ltd, 2013.
[http://dx.doi.org/10.1002/9780470682531.pat0716]
[37]
Shimodaira, S.; Asano, Y.; Arai, K.; Iwaoka, M. Selenoglutathione diselenide: Unique redox reactions in the GPx-like catalytic cycle and repairing of disulfide bonds in scrambled protein. Biochemistry, 2017, 56(42), 5644-5653.
[http://dx.doi.org/10.1021/acs.biochem.7b00751] [PMID: 29022711]
[38]
Misra, S.; Boylan, M.; Selvam, A.; Spallholz, J.E.; Björnstedt, M. Redox-active selenium compounds-From toxicity and cell death to cancer treatment. Nutrients, 2015, 7(5), 3536-3556.
[http://dx.doi.org/10.3390/nu7053536] [PMID: 25984742]
[39]
Sugie, S.; Tanaka, T.; El-Bayoumy, K. Chemoprevention of carcinogenesis by organoselenium compounds. J. Health Sci., 2000, 46, 422-425.
[http://dx.doi.org/10.1248/jhs.46.422]
[40]
Reddy, B.S.; Rivenson, A.; El-Bayoumy, K.; Upadhyaya, P.; Pittman, B.; Rao, C.V. Chemoprevention of colon cancer by organoselenium compounds and impact of high- or low-fat diets. J. Natl. Cancer Inst., 1997, 89(7), 506-512.
[http://dx.doi.org/10.1093/jnci/89.7.506] [PMID: 9086007]
[41]
Ip, C.; el-Bayoumy, K.; Upadhyaya, P.; Ganther, H.; Vadhanavikit, S.; Thompson, H. Comparative effect of inorganic and organic selenocyanate derivatives in mammary cancer chemoprevention. Carcinogenesis, 1994, 15(2), 187-192.
[http://dx.doi.org/10.1093/carcin/15.2.187] [PMID: 8313507]
[42]
Enguehard-Gueiffier, C.; Gueiffier, A. Recent progress in the pharmacology of imidazo[1,2-a]pyridines. Mini Rev. Med. Chem., 2007, 7(9), 888-899.
[http://dx.doi.org/10.2174/138955707781662645] [PMID: 17897079]
[43]
Kumar, S.; Sharma, N.; Maurya, I.K.; Bhasin, A.K.K.; Wangoo, N.; Brandão, P.; Félix, V.; Bhasin, K.K.; Sharma, R.K. Facile synthesis, structural evaluation, antimicrobial activity and synergistic effects of novel imidazo[1,2-a]pyridine based organoselenium compounds. Eur. J. Med. Chem., 2016, 123, 916-924.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.076] [PMID: 27565415]
[44]
Kumar, S.; Sharma, N.; Maurya, I.K.; Verma, A.; Kumar, S.; Bhasin, K.K.; Sharma, R.K. Insights into selenylation of imidazo[1,2-a]pyridine: Synthesis, structural and antimicrobial evaluation. New J. Chem., 2017, 41, 2919-2926.
[http://dx.doi.org/10.1039/C7NJ00338B]
[45]
Sharma, N.; Kumar, S.; Maurya, I.K.; Bhasin, K.K.; Verma, A.; Wangoo, N.; Bhasin, A.K.K.; Mehta, S.K.; Kumar, S.; Sharma, R.K. Synthesis, structural analysis, antimicrobial evaluation and synergistic studies of imidazo[1,2-a] pyrimidine chalcogenides. RSC Advances, 2016, 6, 114224-114234.
[http://dx.doi.org/10.1039/C6RA24020H]
[46]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[47]
Matsumura, M.; Takahashi, T.; Yamauchi, H.; Sakuma, S.; Hayashi, Y.; Hyodo, T.; Obata, T.; Yamaguchi, K.; Fujiwara, Y.; Yasuike, S. Synthesis and anticancer activity of bis(2-arylimidazo[1,2-a]pyridin-3-yl) selenides and diselenides: The copper-catalyzed tandem C-H selenation of 2-arylimidazo[1,2-a]pyridine with selenium. Beilstein J. Org. Chem., 2020, 16, 1075-1083.
[http://dx.doi.org/10.3762/bjoc.16.94] [PMID: 32550922]
[48]
Angeli, A.; Tanini, D.; Capperucci, A.; Supuran, C.T. Synthesis of novel selenides bearing benzenesulfonamide moieties as carbonic anhydrase I, II, IV, VII, and IX Inhibitors. ACS Med. Chem. Lett., 2017, 8(12), 1213-1217.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00387] [PMID: 29259736]
[49]
Angeli, A.; Abbas, G.; Del Prete, S.; Capasso, C.; Supuran, C.T. Selenides bearing benzenesulfonamide show potent inhibition activity against carbonic anhydrases from pathogenic bacteria Vibrio cholerae and Burkholderia pseudomallei. Bioorg. Chem., 2018, 79, 319-322.
[http://dx.doi.org/10.1016/j.bioorg.2018.05.015] [PMID: 29803078]
[50]
Angeli, A.; Trallori, E.; Ferraroni, M.; Di Cesare Mannelli, L.; Ghelardini, C.; Supuran, C.T. Discovery of new 2, 5-disubstituted 1,3-selenazoles as selective human carbonic anhydrase IX inhibitors with potent anti-tumor activity. Eur. J. Med. Chem., 2018, 157, 1214-1222.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.096] [PMID: 30193219]
[51]
de Souza, D.; Mariano, D.O.C.; Nedel, F.; Schultze, E.; Campos, V.F.; Seixas, F.; da Silva, R.S.; Munchen, T.S.; Ilha, V.; Dornelles, L.; Braga, A.L.; Rocha, J.B.T.; Collares, T.; Rodrigues, O.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives. J. Med. Chem., 2015, 58(8), 3329-3339.
[http://dx.doi.org/10.1021/jm5015296] [PMID: 25811955]
[52]
Mani, R.; Natesan, V. Chrysin: Sources, beneficial pharmacological activities, and molecular mechanism of action. Phytochemistry, 2018, 145, 187-196.
[http://dx.doi.org/10.1016/j.phytochem.2017.09.016] [PMID: 29161583]
[53]
Fonseca, S.F.; Lima, D.B.; Alves, D.; Jacob, R.G.; Perin, G.; Lenardão, E.J.; Savegnago, L. Synthesis, characterization and antioxidant activity of organoselenium and organotellurium compounds derivatives of chrysin. New J. Chem., 2015, 39, 3043-3050.
[http://dx.doi.org/10.1039/C4NJ02329C]
[54]
Nobre, P.C.; Vargas, H.A.; Jacoby, C.G.; Schneider, P.H.; Casaril, A.M.; Savegnago, L.; Schumacher, R.F.; Lenardão, E.J.; Ávila, D.S.; Rodrigues, L.B.L. Junior; Perin, G. Synthesis of enantiomerically pure glycerol derivatives containing an organochalcogen unit: In vitro and in vivo antioxidant activity. Arab. J. Chem., 2020, 13, 883-899.
[http://dx.doi.org/10.1016/j.arabjc.2017.08.007]
[55]
Stephenson, C.; Yoon, T.; MacMillan, D.C.W. Visible light photocatalysis in organic chemistry, first;; Wiley-VCH: Verlag GmbH & Co. KGaA, 2018, pp. 25-71.
[56]
Zhou, X.J.; Liu, H.Y.; Mo, Z.Y.; Ma, X.L.; Chen, Y.Y.; Tang, H.T.; Pan, Y.M.; Xu, Y.L. Visible-light-promoted selenylative spirocyclization of indolyl-ynones toward the formation of 3-selenospiroindolenine anticancer agents. Chem. Asian J., 2020, 15(10), 1536-1539.
[http://dx.doi.org/10.1002/asia.202000298] [PMID: 32207240]
[57]
Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Expeditious entry to functionalized pseudo-peptidic organoselenide redox modulators via sequential Ugi/SN methodology. Anticancer. Agents Med. Chem., 2016, 16(5), 621-632.
[http://dx.doi.org/10.2174/1871520615666150916092035] [PMID: 26373394]
[58]
Kharb, R.; Sharma, P.C.; Yar, M.S. Pharmacological significance of triazole scaffold. J. Enzyme Inhib. Med. Chem., 2011, 26(1), 1-21.
[http://dx.doi.org/10.3109/14756360903524304] [PMID: 20583859]
[59]
Cui, F.H.; Chen, J.; Mo, Z.Y.; Su, S.X.; Chen, Y.Y.; Ma, X.L.; Tang, H.T.; Wang, H.S.; Pan, Y.M.; Xu, Y.L. Copper-Catalyzed decarboxylative/Click cascade reaction: Regioselective assembly of 5-selenotriazole anticancer agents. Org. Lett., 2018, 20(4), 925-929.
[http://dx.doi.org/10.1021/acs.orglett.7b03734] [PMID: 29388780]
[60]
Fonseca, S.F.; Padilha, N.B.; Thurow, S.; Roehrs, J.A.; Savegnago, L.; de Souza, M.N.; Fronza, M.G.; Collares, T.; Buss, J.; Seixas, F.K.; Alves, D.; Lenardão, E.J. Ultrasound-promoted copper-catalyzed synthesis of bis-arylselanyl chrysin derivatives with boosted antioxidant and anticancer activities. Ultrason. Sonochem., 2017, 39, 827-836.
[http://dx.doi.org/10.1016/j.ultsonch.2017.06.007] [PMID: 28733012]
[61]
Vieira, A.A.; Brandão, I.R.; Valença, W.O.; de Simone, C.A.; Cavalcanti, B.C.; Pessoa, C.; Carneiro, T.R.; Braga, A.L.; da Silva, E.N. Hybrid compounds with two redox centres: modular synthesis of chalcogen-containing lapachones and studies on their antitumor activity. Eur. J. Med. Chem., 2015, 101, 254-265.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.044] [PMID: 26142490]
[62]
Pacuła, A.J.; Kaczor, K.B.; Antosiewicz, J.; Janecka, A.; Długosz, A.; Janecki, T.; Wojtczak, A.; Ścianowski, J. New chiral ebselen analogues with antioxidant and cytotoxic potential. Molecules, 2017, 22(3), 492.
[http://dx.doi.org/10.3390/molecules22030492] [PMID: 28335518]
[63]
Giurg, M.; Gołąb, A.; Suchodolski, J.; Kaleta, R.; Krasowska, A.; Piasecki, E.; Piętka-Ottlik, M. Reaction of bis[(2-chlorocarbonyl)phenyl] diselenide with phenols, aminophenols, and other amines towards diphenyl diselenides with antimicrobial and antiviral properties. Molecules, 2017, 22(6), 974.
[http://dx.doi.org/10.3390/molecules22060974] [PMID: 28604620]
[64]
Krasowska, D.; Iraci, N.; Santi, C.; Drabowicz, J.; Cieslak, M.; Kaźmierczak-Barańska, J.; Palomba, M.; Królewska-Golińska, K.; Magiera, J.; Sancineto, L. Diselenides and benzisoselenazolones as antiproliferative agents and glutathione-s-transferase inhibitors. Molecules, 2019, 24(16), 2914.
[http://dx.doi.org/10.3390/molecules24162914] [PMID: 31405214]
[65]
Garnica, P.; Encío, I.; Plano, D.; Palop, J.A.; Sanmartín, C. Combined acylselenourea-diselenide structures: new potent and selective antitumoral agents as autophagy activators. ACS Med. Chem. Lett., 2018, 9(4), 306-311.
[http://dx.doi.org/10.1021/acsmedchemlett.7b00482] [PMID: 29670691]
[66]
Shaaban, S.; Negm, A.; Sobh, M.A.; Wessjohann, L.A. Organoselenocyanates and symmetrical diselenides redox modulators: Design, synthesis and biological evaluation. Eur. J. Med. Chem., 2015, 97, 190-201.
[http://dx.doi.org/10.1016/j.ejmech.2015.05.002] [PMID: 25969171]
[67]
Garnica, P.; Encío, I.; Plano, D.; Palop, J.A.; Sanmartín, C. Organoseleno cytostatic derivatives: Autophagic cell death with AMPK and JNK activation. Eur. J. Med. Chem., 2019, 175, 234-246.
[http://dx.doi.org/10.1016/j.ejmech.2019.04.074] [PMID: 31082766]
[68]
Shaaban, S.; Gaffer, H.E.; Alshahd, M.; Elmorsy, S.S. Cytotoxic symmetrical thiazolediselenides with increased selectivity against MCF-7 breast cancer cells. Int. J. Res. Dev. Pharm. L. Sci, 2015, 4, 1654-1668.
[69]
Shaaban, S.; Gaffer, H.E.; Jabar, Y.; Elmorsy, S.S. Cytotoxic naphthalene based-symmetrical diselenides with increased selectivity against MCF-7 breast cancer cells. Int. J. Pharm., 2015, 5, 721-737.
[70]
Baquedano, Y.; Alcolea, V.; Toro, M.Á.; Gutiérrez, K.J.; Nguewa, P.; Font, M.; Moreno, E.; Espuelas, S.; Jiménez-Ruiz, A.; Palop, J.A.; Plano, D.; Sanmartín, C. Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents. Antimicrob. Agents Chemother., 2016, 60(6), 3802-3812.
[http://dx.doi.org/10.1128/AAC.02529-15] [PMID: 27067328]
[71]
Pang, Y.; An, B.; Lou, L.; Zhang, J.; Yan, J.; Huang, L.; Li, X.; Yin, S. Design, synthesis, and biological evaluation of novel selenium-containing isocombretastatins and phenstatins as antitumor agents. J. Med. Chem., 2017, 60(17), 7300-7314.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00480] [PMID: 28792756]
[72]
Romano, B.; Plano, D.; Encío, I.; Palop, J.A.; Sanmartín, C. In vitro radical scavenging and cytotoxic activities of novel hybrid selenocarbamates. Bioorg. Med. Chem., 2015, 23(8), 1716-1727.
[http://dx.doi.org/10.1016/j.bmc.2015.02.048] [PMID: 25792142]
[73]
Harris, R.E.; Chlebowski, R.T.; Jackson, R.D.; Frid, D.J.; Ascenseo, J.L.; Anderson, G.; Loar, A.; Rodabough, R.J.; White, E.; McTiernan, A. Breast cancer and nonsteroidal anti-inflammatory drugs: Prospective results from the Women’s Health Initiative. Cancer Res., 2003, 63(18), 6096-6101.
[PMID: 14522941]
[74]
Liu, I.; Li, S.; Li, X.; Zhong, M.; Lu, Y.; Jiajie, Y.; Yongmin, Z.; He, X. Synthesis of NSAIDs#Se derivatives as potent anticancer agents. Med. Chem. Res., 2018, 27, 2071-2078.
[http://dx.doi.org/10.1007/s00044-018-2216-7]
[75]
He, X.; Zhong, M.; Li, S.; Li, X.; Li, Y.; Li, Z.; Gao, Y.; Ding, F.; Wen, D.; Lei, Y.; Zhang, Y. Synthesis and biological evaluation of organoselenium (NSAIDs-SeCN and SeCF3) derivatives as potential anticancer agents. Eur. J. Med. Chem., 2020, 208, 112864.
[http://dx.doi.org/10.1016/j.ejmech.2020.112864] [PMID: 32987314]
[76]
Quatrin, P.M.; Lana, D.F.D.; Bazana, L.C.G.; de Oliveira, L.F.S.; Teixeira, M.L.; Silva, E.E.; Lopes, W.; Canto, R.F.S.; Silveira, G.P.; Fuentefria, A.M. 3-Selenocyanate-indoles as new agents for the treatment of superficial and mucocutaneousinfections. New J. Chem., 2019, 43, 926-933.
[http://dx.doi.org/10.1039/C8NJ04935A]
[77]
Santi, C. Perspective in green chemistry for organoselenium compounds (no more an oxymoron). Curr. Green Chem., 2019, 6, 9-11.
[http://dx.doi.org/10.2174/221334610601190329164654]
[78]
Sies, H.; Parnham, M.J. Potential therapeutic use of ebselen for COVID-19 and other respiratory viral infections. Free Radic. Biol. Med., 2020, 156, 107-112.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.06.032] [PMID: 32598985]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy