Abstract
Heat shock proteins (HSPs) play an essential role as molecular chaperones in proteostasis. Small HSPs are a group of low-molecular-weight HSPs in the range of 12- 43 kDa and are classified as HSPB. Within the ten members of the family, HSPB1(HSP27), HSPB5 (αB-crystallin), HSPB6 (HSP20), and HSPB8 (HSP22) ubiquitously exist in various tissues, including liver tissue. These small HSPs undergo phosphorylation as a post-translational modification, and their functions are modulated. Hepatocellular carcinoma (HCC) is one of the most frequent cancers and the fourth leading cause of cancer-related death worldwide. HSPs play a cytoprotective role as molecular chaperones. Thus, HSPB has been generally considered to protect HCC cells and help the progression of HCC. On the other hand, recent studies from our laboratories have demonstrated suppressive roles of phospho-HSPB1, HSPB6, and HSPB8 in the progression of HCC. These findings may provide a basis for a novel defense system by HSPB against HCC progression. This review focuses on the cellular functions of HSPB in HCC and summarizes the current research.
Keywords: Small HSP, HSPB, HCC, apoptosis, proliferation, metastasis.
Current Molecular Medicine
Title:Cellular Functions of Small Heat Shock Proteins (HSPB) in Hepatocellular Carcinoma
Volume: 21 Issue: 10
Author(s): Noriko Yamada, Rie Matsushima-Nishiwaki, Kaido Kobayashi, Shota Takahata, Hidenori Toyoda, Takashi Kumada and Osamu Kozawa*
Affiliation:
- Department of Pharmacology, Gifu University Graduate School of Medicine, Gifu,Japan
Keywords: Small HSP, HSPB, HCC, apoptosis, proliferation, metastasis.
Abstract: Heat shock proteins (HSPs) play an essential role as molecular chaperones in proteostasis. Small HSPs are a group of low-molecular-weight HSPs in the range of 12- 43 kDa and are classified as HSPB. Within the ten members of the family, HSPB1(HSP27), HSPB5 (αB-crystallin), HSPB6 (HSP20), and HSPB8 (HSP22) ubiquitously exist in various tissues, including liver tissue. These small HSPs undergo phosphorylation as a post-translational modification, and their functions are modulated. Hepatocellular carcinoma (HCC) is one of the most frequent cancers and the fourth leading cause of cancer-related death worldwide. HSPs play a cytoprotective role as molecular chaperones. Thus, HSPB has been generally considered to protect HCC cells and help the progression of HCC. On the other hand, recent studies from our laboratories have demonstrated suppressive roles of phospho-HSPB1, HSPB6, and HSPB8 in the progression of HCC. These findings may provide a basis for a novel defense system by HSPB against HCC progression. This review focuses on the cellular functions of HSPB in HCC and summarizes the current research.
Export Options
About this article
Cite this article as:
Yamada Noriko , Matsushima-Nishiwaki Rie , Kobayashi Kaido , Takahata Shota , Toyoda Hidenori , Kumada Takashi and Kozawa Osamu *, Cellular Functions of Small Heat Shock Proteins (HSPB) in Hepatocellular Carcinoma, Current Molecular Medicine 2021; 21 (10) . https://dx.doi.org/10.2174/1573405617666210204211252
DOI https://dx.doi.org/10.2174/1573405617666210204211252 |
Print ISSN 1566-5240 |
Publisher Name Bentham Science Publisher |
Online ISSN 1875-5666 |
- Author Guidelines
- Graphical Abstracts
- Fabricating and Stating False Information
- Research Misconduct
- Post Publication Discussions and Corrections
- Publishing Ethics and Rectitude
- Increase Visibility of Your Article
- Archiving Policies
- Peer Review Workflow
- Order Your Article Before Print
- Promote Your Article
- Manuscript Transfer Facility
- Editorial Policies
- Allegations from Whistleblowers
Related Articles
-
2D, 3D, G-QSAR and Docking Studies of Thiazolyl-pyrazoline Analogues as Potent (Epidermal Growth Factor Receptor-tyrosine Kinase) EGFR-TK Inhibitors
Letters in Drug Design & Discovery Bioactive Compounds Effective Against Type 2 Diabetes Mellitus: A Systematic Review
Current Topics in Medicinal Chemistry Isoprenylation of Intracellular Proteins as a New Target for the Therapy of Human Neoplasms: Preclinical and Clinical Implications
Current Drug Targets Helicobacter Pylori and Inflammation
Current Pharmaceutical Design Impact of Liver Cancer Somatic Mutations on Protein Structures and Functions
Current Proteomics Evaluation on Auto-segmentation of the Clinical Target Volume (CTV) for Graves' Ophthalmopathy (GO) with a Fully Convolutional Network (FCN) on CT Images
Current Medical Imaging The Design of Amphiphilic Polymeric Micelles of Curcumin for Cancer Management
Current Medicinal Chemistry Anti-cancer and Other Bioactivities of Korean Angelica gigas Nakai (AGN) and Its Major Pyranocoumarin Compounds
Anti-Cancer Agents in Medicinal Chemistry NF-κB Signaling and Carcinogenesis
Current Pharmaceutical Design Mechanism of Action and Therapeutic Potential of Novel Adamantyl Retinoid-Related Molecules
Current Cancer Therapy Reviews Recent Advance in Drug Development of Squamous Cell Carcinoma
Anti-Cancer Agents in Medicinal Chemistry Oncolytic Virotherapy and Gene Therapy Strategies for Hepatobiliary Cancers
Current Cancer Drug Targets Gestational Trophoblastic Neoplasia, an Ancient Disease: New Light and Potential Therapeutic Targets
Anti-Cancer Agents in Medicinal Chemistry CETUXIMAB: From Bench to Bedside
Current Cancer Drug Targets Ion Transporters in Brain Tumors
Current Medicinal Chemistry PI3K/Akt/JNK/c-Jun Signaling Pathway is a Mediator for Arsenite- Induced Cyclin D1 Expression and Cell Growth in Human Bronchial Epithelial Cells
Current Cancer Drug Targets Tumour-Specific Uptake of Anti-Cancer Drugs: The Future is Here
Current Drug Metabolism Gut Microbiota as an Emerging Therapeutic Avenue for the Treatment of Nonalcoholic Fatty Liver Disease
Current Pharmaceutical Design Tumor-Receptor Imaging in Breast Cancer: A Tool for Patient Selection and Response Monitoring
Current Molecular Medicine Expression of Specificity Protein Transcription Factors in Pancreatic Cancer and their Association in Prognosis and Therapy
Current Medicinal Chemistry