Generic placeholder image

Current Cardiology Reviews

Editor-in-Chief

ISSN (Print): 1573-403X
ISSN (Online): 1875-6557

Review Article

Highlighting Exosomes’ Function in Cardiovascular Diseases

Author(s): Sidhi Laksono*, Budhi Setianto, Ananta Siddhi Prawara and Bambang Dwiputra

Volume 18, Issue 3, 2022

Published on: 24 November, 2021

Article ID: e241121191159 Pages: 9

DOI: 10.2174/1573403X17666210204153526

Price: $65

Abstract

Exosomes, as one of the extracellular vesicles’ subgroups, played an important role in the cell to cell communication. The cargos and surface protein of exosomes have been known to affect the cardiovascular system both positively and negatively in chronic heart failure, ischemic heart disease, and atherosclerosis. There have been several exosomes that emerged as potential diagnostic and prognostic markers in cardiovascular patients. However, the conditions affecting the patients and the method of isolation should be considered to create a standardized normal value of the exosomes and the components. CPC-derived exosomes, ADSCs-derived exosomes, and telocyte- derived exosomes have been proven to be capable of acting as a therapeutic agent in myocardial infarction models. Exosomes have the potential to become a diagnostic marker, prognostic marker, and therapeutic agent in cardiovascular diseases.

Keywords: Diagnostic, exosomes, prognostic role, therapeutic role, endothelial cells, cardiovascular disease.

Graphical Abstract

[1]
Shah R, Patel T, Freedman JE. Circulating extracellular vesicles in human disease. N Engl J Med 2018; 379(10): 958-66.
[http://dx.doi.org/10.1056/NEJMra1704286] [PMID: 30184457]
[2]
Rosenson RS. Lipid lowering therapy as an important adjunct to stroke prevention in coronary heart disease patients. Drugs Today (Barc) 2001; 37(11): 731-8.
[http://dx.doi.org/10.1358/dot.2001.37.11.662242] [PMID: 12738969]
[3]
Xu MY, Ye ZS, Song XT, Huang RC. Differences in the cargos and functions of exosomes derived from six cardiac cell types: A systematic review. Stem Cell Res Ther 2019; 10(1): 194.
[http://dx.doi.org/10.1186/s13287-019-1297-7] [PMID: 31248454]
[4]
Bellin G, Gardin C, Ferroni L, et al. Exosome in cardiovascular diseases: A complex world full of hope. Cells 2019; 8(2): 166.
[http://dx.doi.org/10.3390/cells8020166] [PMID: 30781555]
[5]
Zhang Y, Hu YW, Zheng L, Wang Q. Characteristics and roles of exosomes in cardiovascular disease. DNA Cell Biol 2017; 36(3): 202-11.
[http://dx.doi.org/10.1089/dna.2016.3496] [PMID: 28112546]
[6]
Ibrahim A, Marbán E. Exosomes: Fundamental biology and roles in cardiovascular physiology. Annu Rev Physiol 2016; 78(1): 67-83.
[http://dx.doi.org/10.1146/annurev-physiol-021115-104929] [PMID: 26667071]
[7]
Yu H, Wang Z. Cardiomyocyte-derived exosomes: Biological functions and potential therapeutic implications. Front Physiol 2019; 10: 1049.
[http://dx.doi.org/10.3389/fphys.2019.01049] [PMID: 31481897]
[8]
Groot M, Lee H. Sorting mechanisms for microRNAs into extracellular vesicles and their associated diseases. Cells 2020; 9(4): 1-16.
[http://dx.doi.org/10.3390/cells9041044] [PMID: 32331346]
[9]
Zhang J, Li S, Li L, et al. Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinform 2015; 13(1): 17-24.
[http://dx.doi.org/10.1016/j.gpb.2015.02.001] [PMID: 25724326]
[10]
Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annu Rev Cell Dev Biol 2014; 30(1): 255-89.
[http://dx.doi.org/10.1146/annurev-cellbio-101512-122326] [PMID: 25288114]
[11]
Ye W, Tang X, Yang Z, et al. Plasma-derived exosomes contribute to inflammation via the TLR9-NF-κB pathway in chronic heart failure patients. Mol Immunol 2017; 87: 114-21.
[http://dx.doi.org/10.1016/j.molimm.2017.03.011] [PMID: 28433888]
[12]
Mann DL. Inflammatory mediators and the failing heart: Past, present, and the foreseeable future. Circ Res 2002; 91(11): 988-98.
[http://dx.doi.org/10.1161/01.RES.0000043825.01705.1B] [PMID: 12456484]
[13]
Riehle C, Bauersachs J. Key inflammatory mechanisms underlying heart failure. Herz 2019; 44(2): 96-106.
[http://dx.doi.org/10.1007/s00059-019-4785-8] [PMID: 30715565]
[14]
Nie X, Fan J, Li H, et al. miR-217 promotes cardiac hypertrophy and dysfunction by targeting PTEN. Mol Ther Nucl Acids 2018; 12: 254-66.
[http://dx.doi.org/10.1016/j.omtn.2018.05.013] [PMID: 30195764]
[15]
Lyu L, Wang H, Bin L, et al. A critical role of cardiac fibroblast-derived exosomes in activating renin angiotensin system in cardiomyocytes. J Mol Cell Cardiol 2015; 89(B): 268-79.
[http://dx.doi.org/10.1016/j.yjmcc.2015.10.022]
[16]
Modulates MH, Datta R, Bansal T, Rana S, Datta K. Crossm activation of STAT-3 in fibroblasts during cardiac hypertrophy. Mol Cell Biol 2017; 37(6): e00611-16.
[http://dx.doi.org/10.1128/MCB.00611-16] [PMID: 28031326]
[17]
Sluijter JPG, Verhage V, Deddens JC, van den Akker F, Doevendans PA. Microvesicles and exosomes for intracardiac communication. Cardiovasc Res 2014; 102(2): 302-11.
[http://dx.doi.org/10.1093/cvr/cvu022] [PMID: 24488559]
[18]
Li H, Liao Y, Gao L, et al. Coronary serum exosomes derived from patients with myocardial ischemia regulate angiogenesis through the miR-939-mediated nitric oxide signaling pathway. Theranostics 2018; 8(8): 2079-93.
[http://dx.doi.org/10.7150/thno.21895] [PMID: 29721064]
[19]
Zhan R, Leng X, Liu X, et al. Heat shock protein 70 is secreted from endothelial cells by a non-classical pathway involving exosomes. Biochem Biophys Res Commun 2009; 387(2): 229-33.
[http://dx.doi.org/10.1016/j.bbrc.2009.06.095] [PMID: 19555663]
[20]
Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: Successes, surprises, and future challenges. Circ Res 2016; 118(4): 531-4.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.308334] [PMID: 26892955]
[21]
Zheng B, Yin WN, Suzuki T, et al. Exosome-mediated miR-155 transfer from smooth muscle cells to endothelial cells induces endothelial injury and promotes atherosclerosis. Mol Ther 2017; 25(6): 1279-94.
[http://dx.doi.org/10.1016/j.ymthe.2017.03.031] [PMID: 28408180]
[22]
Njock MS, Cheng HS, Dang LT, et al. Endothelial cells suppress monocyte activation through secretion of extracellular vesicles containing antiinflammatory microRNAs. Blood 2015; 125(20): 3202-12.
[http://dx.doi.org/10.1182/blood-2014-11-611046] [PMID: 25838349]
[23]
Luo H, Li X, Li T, et al. microRNA-423-3p exosomes derived from cardiac fibroblasts mediates the cardioprotective effects of ischaemic post-conditioning. Cardiovasc Res 2019; 115(7): 1189-204.
[http://dx.doi.org/10.1093/cvr/cvy231] [PMID: 30202848]
[24]
Gartz M, Darlington A, Afzal MZ, Strande JL. Exosomes exert cardioprotection in dystrophin-deficient cardiomyocytes via ERK1/2-p38/MAPK signaling. Sci Rep 2018; 8(1): 16519.
[http://dx.doi.org/10.1038/s41598-018-34879-6] [PMID: 30410044]
[25]
Judge DP, Kass DA, Thompson WR, Wagner KR. Pathophysiology and therapy of cardiac dysfunction in Duchenne muscular dystrophy. Am J Cardiovasc Drugs 2011; 11(5): 287-94.
[http://dx.doi.org/10.2165/11594070-000000000-00000] [PMID: 21812510]
[26]
Kuwabara Y, Ono K, Horie T, et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet 2011; 4(4): 446-54.
[http://dx.doi.org/10.1161/CIRCGENETICS.110.958975] [PMID: 21642241]
[27]
Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: A novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 2010; 31(6): 659-66.
[http://dx.doi.org/10.1093/eurheartj/ehq013] [PMID: 20159880]
[28]
Li YQ, Zhang MF, Wen HY, et al. Comparing the diagnostic values of circulating microRNAs and cardiac troponin T in patients with acute myocardial infarction. Clinics (São Paulo) 2013; 68(1): 75-80.
[http://dx.doi.org/10.6061/clinics/2013(01)OA12] [PMID: 23420161]
[29]
Collet J-P, Thiele H, Barbato E, et al. 2020 ESC Guidelines for the management of acute coronary syndromes in patients presenting without persistent ST-segment elevation. Eur Heart J 2020; 00: 1-79.
[30]
Koutsoulidou A, Mastroyiannopoulos NP, Furling D, Uney JB, Phylactou LA. Expression of miR-1, miR-133a, miR-133b and miR-206 increases during development of human skeletal muscle. BMC Dev Biol 2011; 11: 34.
[http://dx.doi.org/10.1186/1471-213X-11-34] [PMID: 21645416]
[31]
Gidlöf O, Smith JG, Miyazu K, et al. Circulating cardio-enriched microRNAs are associated with long-term prognosis following myocardial infarction. BMC Cardiovasc Disord 2013; 13: 12.
[http://dx.doi.org/10.1186/1471-2261-13-12] [PMID: 23448306]
[32]
Ha D, Yang N, Nadithe V. Exosomes as therapeutic drug carriers and delivery vehicles across biological membranes: Current perspectives and future challenges. Acta Pharm Sin B 2016; 6(4): 287-96.
[http://dx.doi.org/10.1016/j.apsb.2016.02.001] [PMID: 27471669]
[33]
Witman N, Sahara M. Cardiac progenitor cells in basic biology and regenerative medicine. Stem Cells Int 2018; 2018: 8283648.
[http://dx.doi.org/10.1155/2018/8283648] [PMID: 29535783]
[34]
Barile L, Lionetti V, Cervio E, et al. Extracellular vesicles from human cardiac progenitor cells inhibit cardiomyocyte apoptosis and improve cardiac function after myocardial infarction. Cardiovasc Res 2014; 103(4): 530-41.
[http://dx.doi.org/10.1093/cvr/cvu167] [PMID: 25016614]
[35]
Xiao J, Pan Y, Li XH, et al. Cardiac progenitor cell-derived exosomes prevent cardiomyocytes apoptosis through exosomal miR-21 by targeting PDCD4. Cell Death Dis 2016; 7(6): e2277.
[http://dx.doi.org/10.1038/cddis.2016.181] [PMID: 27336721]
[36]
Kim JH, Joo HJ, Kim M, et al. Transplantation of adipose-derived stem cell sheet attenuates adverse cardiac remodeling in acute myocardial infarction. Tissue Eng Part A 2017; 23(1-2): 1-11.
[http://dx.doi.org/10.1089/ten.tea.2016.0023] [PMID: 27676105]
[37]
Lin KC, Yip HK, Shao PL, et al. Combination of adipose-derived mesenchymal stem cells (ADMSC) and ADMSC-derived exosomes for protecting kidney from acute ischemia-reperfusion injury. Int J Cardiol 2016; 216: 173-85.
[http://dx.doi.org/10.1016/j.ijcard.2016.04.061] [PMID: 27156061]
[38]
Cui X, He Z, Liang Z, Chen Z, Wang H, Zhang J. Exosomes from adipose-derived mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through Wnt/β-catenin signaling pathway. J Cardiovasc Pharmacol 2017; 70(4): 225-31.
[http://dx.doi.org/10.1097/FJC.0000000000000507] [PMID: 28582278]
[39]
Luo Q, Guo D, Liu G, Chen G, Hang M, Jin M. Exosomes from MiR-126-overexpressing adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell Physiol Biochem 2017; 44(6): 2105-16.
[http://dx.doi.org/10.1159/000485949] [PMID: 29241208]
[40]
Liu J, Jiang M, Deng S, et al. miR-93-5p-containing exosomes treatment attenuates acute myocardial infarction-induced myocardial damage. Mol Ther Nucleic Acids 2018; 11(June): 103-15.
[http://dx.doi.org/10.1016/j.omtn.2018.01.010] [PMID: 29858047]
[41]
Gherghiceanu M, Popescu LM. Cardiomyocyte precursors and telocytes in epicardial stem cell niche: Electron microscope images. J Cell Mol Med 2010; 14(4): 871-7.
[http://dx.doi.org/10.1111/j.1582-4934.2010.01060.x] [PMID: 20367663]
[42]
Manole CG, Cismaşiu V, Gherghiceanu M, Popescu LM. Experimental acute myocardial infarction: Telocytes involvement in neo-angiogenesis. J Cell Mol Med 2011; 15(11): 2284-96.
[http://dx.doi.org/10.1111/j.1582-4934.2011.01449.x] [PMID: 21895968]
[43]
Yang J, Li Y, Xue F, Liu W, Zhang S. Exosomes derived from cardiac telocytes exert positive effects on endothelial cells. Am J Transl Res 2017; 9(12): 5375-87.
[PMID: 29312490]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy