Abstract
Background: This paper aims to reveal an urgent industrial scheme for a fast and facile total synthesis of umifenovir (arbidol) (by one-pot stages) as an antiviral agent for treating the 2019-nCoV virus via inhibiting its viral replication in the human cells. As COVID-19 takes thousands of lives all around the world, it seems that the medicinal resources would not be enough to supply billions of peoples currently living on the planet. Thus, this pandemic and its subsequent impacts on the natural order of our life would be one of the most important threats against the entire human race.
Methods: In this project, we have made attempts to find an operative approach for synthesizing this compound as an active pharmaceutical ingredient (API), which showed it could be effective in inhibiting the newly emerged coronavirus..
Results: The designed scheme uses relatively cheap precursors and contains one pot stage instead of seven time-consuming and more costly linear steps. Moreover, safe and cheap solvents have been used like water and ethanol, instead of toxic ones like methanol and pyridine which could cause rejection of the API in the organic volatile impurities (OVI) test of pharmacopeia analysis, as well as increase the concern of inflammability, explosivity, and carcinogenic properties of those common solvents.
Conclusion: The most important pharmaceutical analytical methods containing OVI test (mainly ethanol (about 171 ppm) much lower than the limits, by gas chromatography-Flame Ionization Detector (GC-FID) instrument), assay content (about 99.6% by potentiometric titration), and related purity analysis (by high-performance liquid chromatography-Ultraviolet Detector (HPLCUV)) (about 99.8%) were performed and described to give a more clear industrial scheme.
Keywords: Umifenovir, total synthesis, COVID-19 antiviral, GC-FID, HPLC, potentiometric titration.
Graphical Abstract
[http://dx.doi.org/10.1126/science.325_1072a] [PMID: 19713511]
[http://dx.doi.org/10.1111/j.1574-6968.2002.tb11298.x] [PMID: 12167530]
[http://dx.doi.org/10.1126/science.abb3405] [PMID: 32198291]
(b) Alexpandi, R.; De Mesquita, J.F.; Pandian, S.K.; Ravi, A.V. Quinolines-Based SARS-CoV-2 3CLpro and RdRp Inhibitors and Spike-RBD-ACE2 Inhibitor for Drug-Repurposing Against COVID-19: An in silico Analysis. Front. Microbiol., 2020, 11, 1796.
[http://dx.doi.org/10.3389/fmicb.2020.01796] [PMID: 32793181]
(c) Ferraz, W.R.; Gomes, R.A.; S Novaes, A.L.; Goulart Trossini, G.H. Ligand and structure-based virtual screening applied to the SARS-CoV-2 main protease: an in silico repurposing study. Future Med. Chem., 2020, 12(20), 1815-1828.
[http://dx.doi.org/10.4155/fmc-2020-0165] [PMID: 32787684]
(b) Hagar, M.; Ahmed, H.A.; Aljohani, G.; Alhaddad, O.A. Investigation of Some Antiviral N-Heterocycles as COVID 19 Drug: Molecular Docking and DFT Calculations. Int. J. Mol. Sci., 2020, 21(11), 3922.
[http://dx.doi.org/10.3390/ijms21113922] [PMID: 32486229]
(c) Ngo, S.T.; Quynh Anh Pham, N.; Thi Le, L.; Pham, D.H.; Vu, V.V. Computational determination of potential inhibitors of SARS-CoV-2 main protease. J. Chem. Inf. Model., 2020, 60(12), 5771-5780.
[http://dx.doi.org/10.1021/acs.jcim.0c00491] [PMID: 32530282]
[http://dx.doi.org/10.1016/S1473-3099(20)30132-8] [PMID: 32113509]
(b) Grant, W.B.; Lahore, H.; McDonnell, S.L.; Baggerly, C.A.; French, C.B. J. L.; Bhattoa, H. P. Evidence that vitamin D supplementation could reduce risk of influenza and COVID-19 infections and deaths. Nutrients, 2020, 12, 988.
[http://dx.doi.org/10.3390/nu12040988]
(b) Zachar, O. Formulations for COVID-19 Treatment via Silver Nanoparticles Inhalation Delivery., 2020.osf.io/adnyb
(c) Patel, M. Nanoparticle-based antimicrobial paper as spread-breaker for corona virus. Paper Tech. Int., 2020, 62, 20-25.
[http://dx.doi.org/10.1016/j.lfs.2020.117592] [PMID: 32222463]
[http://dx.doi.org/10.1038/s41422-020-0282-0] [PMID: 32020029]
[http://dx.doi.org/10.1002/cpt.1877] [PMID: 32350860]
[http://dx.doi.org/10.1038/d41573-020-00016-0] [PMID: 32127666]
(b) Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect., 2020, 81(1), e21-e23.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
(c) Chen, J.; Lin, S.; Niu, C.; Xiao, Q. Clinical evaluation of Shufeng Jiedu Capsules combined with umifenovir (Arbidol) in the treatment of common-type COVID-19: a retrospective study. Expet. Rev. Respir. Med., 2020, 1-9..
[http://dx.doi.org/10.3390/v10040184] [PMID: 29642580]
[http://dx.doi.org/10.1070/RCR4791]
[http://dx.doi.org/10.1007/BF00772858]
[http://dx.doi.org/10.1007/BF00780660]
[http://dx.doi.org/10.1517/17460441.2015.1041496] [PMID: 25959748]
[http://dx.doi.org/10.1007/BF00944494]
[http://dx.doi.org/10.1021/jo01346a503]
[http://dx.doi.org/10.1016/j.bmcl.2017.06.074] [PMID: 28689973]
(b) Li, X.; Wang, X.; Jiang, Q.; Chi, F.; Liu, Q.; Zhang, T. The delivery of arbidol by salt engineering: synthesis, physicochemical properties and pharmacokinetics. Drug Dev. Ind., 2017, 43, 151-159.
[http://dx.doi.org/10.1080/03639045.2016.1225755]
[http://dx.doi.org/10.1007/s10593-016-1807-9]
(b) Balzarini, J.; Ruchko, E.A.; Zakharova, E.K.; Kameneva, I.Y.; Nawrozkij, M.B. Structural Analogs of Umifenovir. 1. Synthesis and Biological Activity of Ethyl 5-Hydroxy-1-Methyl-2-(Trans-2-Phenylcyclopropyl)-1H-Indole-3-Carboxylate. Chem Heterocycl Compd (N Y), 2014, 50(4), 489-495.
[http://dx.doi.org/10.1007/s10593-014-1499-y] [PMID: 32214417]
[http://dx.doi.org/10.1016/j.antiviral.2013.05.005] [PMID: 23707194]
(b) Rostami-Charati, F.; Hossaini, Z.; Sheikholeslami-Farahani, F.; Azizi, Z.; Siadati, S.A. Synthesis of 9H-furo [2,3-f]Chromene Derivatives by Promoting ZnO Nanoparticles. Comb. Chem. High Throughput Screen., 2015, 18(9), 872-880.
[http://dx.doi.org/10.2174/1386207318666150525094109] [PMID: 26004051]
(c) Hossaini, Z.; Rostami-Charati, F.; Ghambarian, M.; Siadati, S.A. Synthesis of a new class of phosphonate derivatives using a three component reaction of trialkylphosphites or triarylphosphites in water. PHOSPHORUS SULFUR, 2015, 190, 1177-1182.
[http://dx.doi.org/10.1080/10426507.2014.978329]
[http://dx.doi.org/10.3184/174751914X14180425794376]
(b) Bakherad, M.; Keivanloo, A.; Samangooei, S.; Omidian, M. A phenyldithiocarbazate-functionalized polyvinyl chloride resin-supported Pd (II) complex as an effective catalyst for solvent-and copper-free Sonogashira reactions under aerobic conditions. J. Organomet. Chem., 2013, 740, 78-82.
[http://dx.doi.org/10.1016/j.jorganchem.2013.04.058]
(c) Bakherad, M.; Keivanloo, A.; Siavashi, M.; Omidian, M. Three-component synthesis of imidazo [1, 2-c] pyrimidines using silica sulfuric acid (SSA). Chin. Chem. Lett., 2014, 25, 149-151.
[http://dx.doi.org/10.1016/j.cclet.2013.10.013]
[http://dx.doi.org/10.2174/1386207319666151216145408] [PMID: 26673901]
(b) Siadati, S.A. An example of a stepwise mechanism for the catalyst-free 1, 3-dipolar cycloaddition between a nitrile oxide and an electron rich alkene. Tetrahedron Lett., 2015, 56, 4857-4863.
[http://dx.doi.org/10.1016/j.tetlet.2015.06.048]
(c) Siadati, S.A. The Effect of Position Replacement of Functional Groups on the Stepwise character of 1, 3-Dipolar Reaction of a Nitrile Oxide and an Alkene. Helv. Chim. Acta, 2016, 99, 273-280.
[http://dx.doi.org/10.1002/hlca.201500165]
(d)Zardoost, M.R.; Siadati, S.A. A theoretical study of substitution effect on an electrocyclization reaction. Comb. Chem. High Throughput Screen., 2013, 16(5), 408-412.
[http://dx.doi.org/10.2174/1386207311316050006] [PMID: 23330875]
[http://dx.doi.org/10.3184/146867816X14719552202168]
(b) Siadati, S.A.; Mahboobifar, A.; Nasiri, R. A theoretical study on the reaction pathways and the mechanism of 1,3- dipolar cycloaddition of vinyl acetylene and methyl azide. Comb. Chem. High Throughput Screen., 2014, 17(8), 703-708.
[http://dx.doi.org/10.2174/138620731708140922163855] [PMID: 24852164]
(c) Jasiński, R.; Dresler, E. On the Question of Zwitterionic Intermediates in the [3+ 2] Cycloaddition Reactions: A Critical Review. Organics, 2020, 1, 49-69.
[http://dx.doi.org/10.3390/org1010005]
[http://dx.doi.org/10.1016/S0939-6411(96)00037-9]
[PMID: 26290585]
[http://dx.doi.org/10.1016/j.poly.2016.12.037]
[http://dx.doi.org/10.1371/journal.pone.0203558] [PMID: 30192844]
(b) Siadati, S. A.; Rezvanfar, M. A.; Payab, M.; Beheshti, A. Development and validation of a short runtime method for separation of trace amounts of 4-aminophenol, phenol, 3-nitrosalicylic acid and mesalamine by using HPLC system. Current. Chem. Lett., 2021, 9, 1-10.
[http://dx.doi.org/10.5267/j.ccl.2020.12.002]