Generic placeholder image

Current Cancer Drug Targets

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

The Role of RNA Modifications and RNA-modifying Proteins in Cancer Therapy and Drug Resistance

Author(s): Shaun Wood, Amber Willbanks and Jason X. Cheng*

Volume 21, Issue 4, 2021

Published on: 26 January, 2021

Page: [326 - 352] Pages: 27

DOI: 10.2174/1568009621666210127092828

Price: $65

Abstract

The advent of new genome-wide sequencing technologies has uncovered abnormal RNA modifications and RNA editing in a variety of human cancers. The discovery of reversible RNA N6-methyladenosine (RNA: m6A) by fat mass and obesity-associated protein (FTO) demethylase has led to exponential publications on the pathophysiological functions of m6A and its corresponding RNA modifying proteins (RMPs) in the past decade. Some excellent reviews have summarized the recent progress in this field. Compared to the extent of research into RNA: m6A and DNA 5-methylcytosine (DNA: m5C), much less is known about other RNA modifications and their associated RMPs, such as the role of RNA: m5C and its RNA cytosine methyltransferases (RCMTs) in cancer therapy and drug resistance. In this review, we will summarize the recent progress surrounding the function, intramolecular distribution and subcellular localization of several major RNA modifications, including 5′ cap N7-methylguanosine (m7G) and 2′-O-methylation (Nm), m6A, m5C, A-to-I editing, and the associated RMPs. We will then discuss dysregulation of those RNA modifications and RMPs in cancer and their role in cancer therapy and drug resistance.

Keywords: 5′ cap, Myc, mTOR, drug resistance, N6-methyladenosine (m6A), adenosine-to-inosine editing (A-to-I), 5-methylcytosine (m5C), NOL1/NOP2/sun domain (NSUN).

Graphical Abstract

[1]
Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169(7), 1187-1200.
[http://dx.doi.org/10.1016/j.cell.2017.05.045] [PMID: 28622506]
[2]
Jiang, Q.; Crews, L.A.; Holm, F.; Jamieson, C.H.M. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat. Rev. Cancer, 2017, 17(6), 381-392.
[http://dx.doi.org/10.1038/nrc.2017.23] [PMID: 28416802]
[3]
Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 608-624.
[http://dx.doi.org/10.1038/s41580-019-0168-5] [PMID: 31520073]
[4]
Barbieri, I.; Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer, 2020, 20(6), 303-322.
[http://dx.doi.org/10.1038/s41568-020-0253-2] [PMID: 32300195]
[5]
Schaefer, M.; Kapoor, U.; Jantsch, M.F. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol., 2017, 7(5)
[http://dx.doi.org/10.1098/rsob.170077] [PMID: 28566301]
[6]
Huang, H.; Weng, H.; Chen, J. m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37(3), 270-288.
[http://dx.doi.org/10.1016/j.ccell.2020.02.004] [PMID: 32183948]
[7]
Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science, 2018, 361(6409), 1346-1349.
[http://dx.doi.org/10.1126/science.aau1646] [PMID: 30262497]
[8]
Uddin, M.B.; Wang, Z.; Yang, C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics, 2020, 10(7), 3164-3189.
[http://dx.doi.org/10.7150/thno.41687] [PMID: 32194861]
[9]
Janin, M.; Coll-SanMartin, L.; Esteller, M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol. Cancer, 2020, 19(1), 70.
[http://dx.doi.org/10.1186/s12943-020-01192-8] [PMID: 32241281]
[10]
Delaunay, S.; Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol., 2019, 21(5), 552-559.
[http://dx.doi.org/10.1038/s41556-019-0319-0] [PMID: 31048770]
[11]
Jonkhout, N.; Tran, J.; Smith, M.A.; Schonrock, N.; Mattick, J.S.; Novoa, E.M. The RNA modification landscape in human disease. RNA, 2017, 23(12), 1754-1769.
[http://dx.doi.org/10.1261/rna.063503.117] [PMID: 28855326]
[12]
Shen, L.; Song, C.X.; He, C.; Zhang, Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem., 2014, 83, 585-614.
[http://dx.doi.org/10.1146/annurev-biochem-060713-035513] [PMID: 24905787]
[13]
Chellamuthu, A.; Gray, S.G. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells, 2020, 9(8)
[http://dx.doi.org/10.3390/cells9081758] [PMID: 32708015]
[14]
Xue, C.; Zhao, Y.; Li, L. Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer. Biomark. Res., 2020, 8, 43.
[http://dx.doi.org/10.1186/s40364-020-00225-0] [PMID: 32944246]
[15]
Esteve-Puig, R.; Bueno-Costa, A.; Esteller, M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett., 2020, 474, 127-137.
[http://dx.doi.org/10.1016/j.canlet.2020.01.021] [PMID: 31991154]
[16]
Cheng, J.X.; Chen, L.; Li, Y.; Cloe, A.; Yue, M.; Wei, J.; Watanabe, K.A.; Shammo, J.M.; Anastasi, J.; Shen, Q.J.; Larson, R.A.; He, C.; Le Beau, M.M.; Vardiman, J.W. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun., 2018, 9(1), 1163.
[http://dx.doi.org/10.1038/s41467-018-03513-4] [PMID: 29563491]
[17]
Boriack-Sjodin, P.A.; Ribich, S.; Copeland, R.A. RNA-modifying proteins as anticancer drug targets. Nat. Rev. Drug Discov., 2018, 17(6), 435-453.
[http://dx.doi.org/10.1038/nrd.2018.71] [PMID: 29773918]
[18]
Werner, F.; Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol., 2011, 9(2), 85-98.
[http://dx.doi.org/10.1038/nrmicro2507] [PMID: 21233849]
[19]
Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 2012, 149(7), 1635-1646.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[20]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[21]
Squires, J.E.; Patel, H.R.; Nousch, M.; Sibbritt, T.; Humphreys, D.T.; Parker, B.J.; Suter, C.M.; Preiss, T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 2012, 40(11), 5023-5033.
[http://dx.doi.org/10.1093/nar/gks144] [PMID: 22344696]
[22]
Gilbert, W.V.; Bell, T.A.; Schaening, C. Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352(6292), 1408-1412.
[http://dx.doi.org/10.1126/science.aad8711] [PMID: 27313037]
[23]
Rebelo-Guiomar, P.; Powell, C.A.; Van Haute, L.; Minczuk, M. The mammalian mitochondrial epitranscriptome. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 429-446.
[http://dx.doi.org/10.1016/j.bbagrm.2018.11.005] [PMID: 30529456]
[24]
Thapar, R.; Bacolla, A.; Oyeniran, C.; Brickner, J.R.; Chinnam, N.B.; Mosammaparast, N.; Tainer, J.A. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58(5), 312-329.
[http://dx.doi.org/10.1021/acs.biochem.8b00949] [PMID: 30346748]
[25]
Tzelepis, K.; Rausch, O.; Kouzarides, T. RNA-modifying enzymes and their function in a chromatin context. Nat. Struct. Mol. Biol., 2019, 26(10), 858-862.
[http://dx.doi.org/10.1038/s41594-019-0312-0] [PMID: 31582848]
[26]
Chen, X.Y.; Zhang, J.; Zhu, J.S. The role of m6A RNA methylation in human cancer. Mol. Cancer, 2019, 18(1), 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[27]
Huang, Y. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell., 2019, 35(4), 677-691.
[http://dx.doi.org/10.1016/j.ccell.2019.03.006]
[28]
Hocine, S.; Singer, R.H.; Grünwald, D. RNA processing and export. Cold Spring Harb. Perspect. Biol., 2010, 2(12)
[http://dx.doi.org/10.1101/cshperspect.a000752] [PMID: 20961978]
[29]
Bohnsack, K.E.; Höbartner, C.; Bohnsack, M.T. Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes (Basel), 2019, 10(2)
[http://dx.doi.org/10.3390/genes10020102] [PMID: 30704115]
[30]
Popis, M.C.; Blanco, S.; Frye, M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Curr. Opin. Oncol., 2016, 28(1), 65-71.
[http://dx.doi.org/10.1097/CCO.0000000000000252] [PMID: 26599292]
[31]
Schumann, U.; Zhang, H.N.; Sibbritt, T.; Pan, A.; Horvath, A.; Gross, S.; Clark, S.J.; Yang, L.; Preiss, T. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol., 2020, 18(1), 40.
[http://dx.doi.org/10.1186/s12915-020-00769-5] [PMID: 32293435]
[32]
Shinoda, S.; Kitagawa, S.; Nakagawa, S.; Wei, F.Y.; Tomizawa, K.; Araki, K.; Araki, M.; Suzuki, T.; Suzuki, T. Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Res., 2019, 47(16), 8734-8745.
[http://dx.doi.org/10.1093/nar/gkz575] [PMID: 31287866]
[33]
Bohnsack, M.T.; Sloan, K.E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci., 2018, 75(2), 241-260.
[http://dx.doi.org/10.1007/s00018-017-2598-6] [PMID: 28752201]
[34]
Shatkin, A.J. Capping of eucaryotic mRNAs. Cell, 1976, 9(4 PT 2), 645-653.
[http://dx.doi.org/10.1016/0092-8674(76)90128-8] [PMID: 1017010]
[35]
Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526.
[http://dx.doi.org/10.1093/nar/gkw551] [PMID: 27317694]
[36]
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 619-625.
[http://dx.doi.org/10.1038/nrm880] [PMID: 12154373]
[37]
Fabrega, C.; Hausmann, S.; Shen, V.; Shuman, S.; Lima, C.D. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol. Cell, 2004, 13(1), 77-89.
[http://dx.doi.org/10.1016/S1097-2765(03)00522-7] [PMID: 14731396]
[38]
Moteki, S.; Price, D. Functional coupling of capping and transcription of mRNA. Mol. Cell, 2002, 10(3), 599-609.
[http://dx.doi.org/10.1016/S1097-2765(02)00660-3] [PMID: 12408827]
[39]
Dimitrova, D.G.; Teysset, L.; Carré, C. RNA 2′-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel), 2019, 10(2), 117.
[http://dx.doi.org/10.3390/genes10020117] [PMID: 30764532]
[40]
Darzacq, X.; Jády, B.E.; Verheggen, C.; Kiss, A.M.; Bertrand, E.; Kiss, T. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J., 2002, 21(11), 2746-2756.
[http://dx.doi.org/10.1093/emboj/21.11.2746] [PMID: 12032087]
[41]
Rebane, A.; Roomere, H.; Metspalu, A. Locations of several novel 2′-O-methylated nucleotides in human 28S rRNA. BMC Mol. Biol., 2002, 3, 1.
[http://dx.doi.org/10.1186/1471-2199-3-1] [PMID: 11897011]
[42]
Dai, Q.; Moshitch-Moshkovitz, S.; Han, D.; Kol, N.; Amariglio, N.; Rechavi, G.; Dominissini, D.; He, C. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods, 2017, 14(7), 695-698.
[http://dx.doi.org/10.1038/nmeth.4294] [PMID: 28504680]
[43]
Furuichi, Y.; Morgan, M.; Shatkin, A.J.; Jelinek, W.; Salditt-Georgieff, M.; Darnell, J.E. Methylated, blocked 5 termini in HeLa cell mRNA. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1904-1908.
[http://dx.doi.org/10.1073/pnas.72.5.1904] [PMID: 1057180]
[44]
Bélanger, F.; Stepinski, J.; Darzynkiewicz, E.; Pelletier, J. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem., 2010, 285(43), 33037-33044.
[http://dx.doi.org/10.1074/jbc.M110.155283] [PMID: 20713356]
[45]
Werner, M.; Purta, E.; Kaminska, K.H.; Cymerman, I.A.; Campbell, D.A.; Mittra, B.; Zamudio, J.R.; Sturm, N.R.; Jaworski, J.; Bujnicki, J.M. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res., 2011, 39(11), 4756-4768.
[http://dx.doi.org/10.1093/nar/gkr038] [PMID: 21310715]
[46]
Banerjee, A.K. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol. Rev., 1980, 44(2), 175-205.
[http://dx.doi.org/10.1128/MR.44.2.175-205.1980] [PMID: 6247631]
[47]
Smietanski, M.; Werner, M.; Purta, E.; Kaminska, K.H.; Stepinski, J.; Darzynkiewicz, E.; Nowotny, M.; Bujnicki, J.M. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat. Commun., 2014, 5, 3004.
[http://dx.doi.org/10.1038/ncomms4004] [PMID: 24402442]
[48]
Daffis, S.; Szretter, K.J.; Schriewer, J.; Li, J.; Youn, S.; Errett, J.; Lin, T.Y.; Schneller, S.; Zust, R.; Dong, H.; Thiel, V.; Sen, G.C.; Fensterl, V.; Klimstra, W.B.; Pierson, T.C.; Buller, R.M.; Gale, M., Jr; Shi, P.Y.; Diamond, M.S. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468(7322), 452-456.
[http://dx.doi.org/10.1038/nature09489] [PMID: 21085181]
[49]
Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B.W.; Ziebuhr, J.; Szretter, K.J.; Baker, S.C.; Barchet, W.; Diamond, M.S.; Siddell, S.G.; Ludewig, B.; Thiel, V. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol., 2011, 12(2), 137-143.
[http://dx.doi.org/10.1038/ni.1979] [PMID: 21217758]
[50]
Schuberth-Wagner, C.; Ludwig, J.; Bruder, A.K.; Herzner, A.M.; Zillinger, T.; Goldeck, M.; Schmidt, T.; Schmid-Burgk, J.L.; Kerber, R.; Wolter, S.; Stümpel, J.P.; Roth, A.; Bartok, E.; Drosten, C.; Coch, C.; Hornung, V.; Barchet, W.; Kümmerer, B.M.; Hartmann, G.; Schlee, M. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA. Immunity, 2015, 43(1), 41-51.
[http://dx.doi.org/10.1016/j.immuni.2015.06.015] [PMID: 26187414]
[51]
Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 596-601.
[http://dx.doi.org/10.1073/pnas.1515152113] [PMID: 26733676]
[52]
Hirose, Y.; Iwamoto, Y.; Sakuraba, K.; Yunokuchi, I.; Harada, F.; Ohkuma, Y. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Biochem. Biophys. Res. Commun., 2008, 369(2), 449-455.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.042] [PMID: 18294453]
[53]
Akichika, S.; Hirano, S.; Shichino, Y.; Suzuki, T.; Nishimasu, H.; Ishitani, R.; Sugita, A.; Hirose, Y.; Iwasaki, S.; Nureki, O.; Suzuki, T. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science, 2019, 363(6423)
[http://dx.doi.org/10.1126/science.aav0080] [PMID: 30467178]
[54]
Sendinc, E. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression. Mol Cell., 2019, 75(3), 620-630.
[http://dx.doi.org/10.1016/j.molcel.2019.05.030]
[55]
Boulias, K. Identification of the m(6)Am Methyltransferase PCIF1 Reveals the Location and Functions of m(6)Am in the Transcriptome. Mol Cell., 2019, 75(3), 631-643.
[56]
Sun, H.; Zhang, M.; Li, K.; Bai, D.; Yi, C. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res., 2019, 29(1), 80-82.
[http://dx.doi.org/10.1038/s41422-018-0117-4] [PMID: 30487554]
[57]
Sachs, A.B. Messenger RNA degradation in eukaryotes. Cell, 1993, 74(3), 413-421.
[http://dx.doi.org/10.1016/0092-8674(93)80043-E] [PMID: 7688664]
[58]
Grudzien-Nogalska, E.; Kiledjian, M. New insights into decapping enzymes and selective mRNA decay. Wiley Interdiscip. Rev. RNA, 2017, 8(1)
[http://dx.doi.org/10.1002/wrna.1379] [PMID: 27425147]
[59]
Julius, C.; Yuzenkova, Y. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate. Wiley Interdiscip. Rev. RNA, 2019, 10(2)
[http://dx.doi.org/10.1002/wrna.1512] [PMID: 30353673]
[60]
Kramer, S.; McLennan, A.G. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. Wiley Interdiscip. Rev. RNA, 2019, 10(1)
[http://dx.doi.org/10.1002/wrna.1511] [PMID: 30345629]
[61]
Fisher, D.I.; Cartwright, J.L.; McLennan, A.G. Characterization of the Mn2+-stimulated (di)adenosine polyphosphate hydrolase encoded by the Deinococcus radiodurans DR2356 nudix gene. Arch. Microbiol., 2006, 186(5), 415-424.
[http://dx.doi.org/10.1007/s00203-006-0155-z] [PMID: 16900379]
[62]
Dunckley, T.; Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J., 1999, 18(19), 5411-5422.
[http://dx.doi.org/10.1093/emboj/18.19.5411] [PMID: 10508173]
[63]
van Dijk, E.; Cougot, N.; Meyer, S.; Babajko, S.; Wahle, E.; Séraphin, B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J., 2002, 21(24), 6915-6924.
[http://dx.doi.org/10.1093/emboj/cdf678] [PMID: 12486012]
[64]
Wang, Z.; Jiao, X.; Carr-Schmid, A.; Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12663-12668.
[http://dx.doi.org/10.1073/pnas.192445599] [PMID: 12218187]
[65]
Jiao, X.; Xiang, S.; Oh, C.; Martin, C.E.; Tong, L.; Kiledjian, M. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 2010, 467(7315), 608-611.
[http://dx.doi.org/10.1038/nature09338] [PMID: 20802481]
[66]
Taylor, M.J.; Peculis, B.A. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res., 2008, 36(18), 6021-6034.
[http://dx.doi.org/10.1093/nar/gkn605] [PMID: 18820299]
[67]
Lu, G.; Zhang, J.; Li, Y.; Li, Z.; Zhang, N.; Xu, X.; Wang, T.; Guan, Z.; Gao, G.F.; Yan, J. hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell, 2011, 2(1), 64-73.
[http://dx.doi.org/10.1007/s13238-011-1009-2] [PMID: 21337011]
[68]
Li, Y.; Song, M.; Kiledjian, M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA, 2011, 17(3), 419-428.
[http://dx.doi.org/10.1261/rna.2439811] [PMID: 21224379]
[69]
Grudzien-Nogalska, E.; Jiao, X.; Song, M.G.; Hart, R.P.; Kiledjian, M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA, 2016, 22(5), 773-781.
[http://dx.doi.org/10.1261/rna.055699.115] [PMID: 26932476]
[70]
Jiao, X.; Chang, J.H.; Kilic, T.; Tong, L.; Kiledjian, M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol. Cell, 2013, 50(1), 104-115.
[http://dx.doi.org/10.1016/j.molcel.2013.02.017] [PMID: 23523372]
[71]
Picard-Jean, F.; Brand, C.; Tremblay-Létourneau, M.; Allaire, A.; Beaudoin, M.C.; Boudreault, S.; Duval, C.; Rainville-Sirois, J.; Robert, F.; Pelletier, J.; Geiss, B.J.; Bisaillon, M. 2′-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO. PLoS One, 2018, 13(3)
[http://dx.doi.org/10.1371/journal.pone.0193804] [PMID: 29601584]
[72]
Doamekpor, S.K.; Gozdek, A.; Kwasnik, A.; Kufel, J.; Tong, L. A novel 5′-hydroxyl dinucleotide hydrolase activity for the DXO/Rai1 family of enzymes. Nucleic Acids Res., 2020, 48(1), 349-358.
[http://dx.doi.org/10.1093/nar/gkz1107] [PMID: 31777937]
[73]
Doma, M.K.; Parker, R. RNA quality control in eukaryotes. Cell, 2007, 131(4), 660-668.
[http://dx.doi.org/10.1016/j.cell.2007.10.041] [PMID: 18022361]
[74]
Kurosaki, T.; Popp, M.W.; Maquat, L.E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 406-420.
[http://dx.doi.org/10.1038/s41580-019-0126-2] [PMID: 30992545]
[75]
Kim, Y.K.; Maquat, L.E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA, 2019, 25(4), 407-422.
[http://dx.doi.org/10.1261/rna.070136.118] [PMID: 30655309]
[76]
Wolin, S.L.; Maquat, L.E. Cellular RNA surveillance in health and disease. Science, 2019, 366(6467), 822-827.
[http://dx.doi.org/10.1126/science.aax2957] [PMID: 31727827]
[77]
Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3971-3975.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[78]
Perry, R.P.; Kelley, D.E.; LaTorre, J. Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J. Mol. Biol., 1974, 82(3), 315-331.
[http://dx.doi.org/10.1016/0022-2836(74)90593-2] [PMID: 4856346]
[79]
Lavi, S.; Shatkin, A.J. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Natl. Acad. Sci. USA, 1975, 72(6), 2012-2016.
[http://dx.doi.org/10.1073/pnas.72.6.2012] [PMID: 166375]
[80]
Narayan, P.; Rottman, F.M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science, 1988, 242(4882), 1159-1162.
[http://dx.doi.org/10.1126/science.3187541] [PMID: 3187541]
[81]
Rottman, F.; Shatkin, A.J.; Perry, R.P. Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell, 1974, 3(3), 197-199.
[http://dx.doi.org/10.1016/0092-8674(74)90131-7] [PMID: 4373171]
[82]
Csepany, T.; Lin, A.; Baldick, C.J., Jr; Beemon, K. Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem., 1990, 265(33), 20117-20122.
[PMID: 2173695]
[83]
Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A.; Haripal, B.; Zucker-Scharff, I.; Moore, M.J.; Park, C.Y.; Vågbø, C.B.; Kusśnierczyk, A.; Klungland, A.; Darnell, J.E., Jr; Darnell, R.B. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 2015, 29(19), 2037-2053.
[http://dx.doi.org/10.1101/gad.269415.115] [PMID: 26404942]
[84]
Bokar, J.A.; Rath-Shambaugh, M.E.; Ludwiczak, R.; Narayan, P.; Rottman, F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem., 1994, 269(26), 17697-17704.
[PMID: 8021282]
[85]
Kane, S.E.; Beemon, K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol., 1985, 5(9), 2298-2306.
[http://dx.doi.org/10.1128/MCB.5.9.2298] [PMID: 3016525]
[86]
Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol., 2017, 18(1), 31-42.
[http://dx.doi.org/10.1038/nrm.2016.132] [PMID: 27808276]
[87]
Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 2014, 10(2), 93-95.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[88]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[89]
Brown, J.A.; Kinzig, C.G.; DeGregorio, S.J.; Steitz, J.A. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. USA, 2016, 113(49), 14013-14018.
[http://dx.doi.org/10.1073/pnas.1614759113] [PMID: 27872311]
[90]
Pendleton, K.E. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell., 2017, 169(5), 824-835.
[91]
Warda, A.S.; Kretschmer, J.; Hackert, P.; Lenz, C.; Urlaub, H.; Höbartner, C.; Sloan, K.E.; Bohnsack, M.T. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep., 2017, 18(11), 2004-2014.
[http://dx.doi.org/10.15252/embr.201744940] [PMID: 29051200]
[92]
Doxtader, K.A. Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Mol Cell., 2018, 71(6), 1001-1011.
[http://dx.doi.org/10.1016/j.molcel.2018.07.025]
[93]
Mendel, M. Methylation of Structured RNA by the m(6)A Writer METTL16 Is Essential for Mouse Embryonic Development. Mol Cell., 2018, 71(6), 986-1000.
[94]
Ruszkowska, A.; Ruszkowski, M.; Dauter, Z.; Brown, J.A. Structural insights into the RNA methyltransferase domain of METTL16. Sci. Rep., 2018, 8(1), 5311.
[http://dx.doi.org/10.1038/s41598-018-23608-8] [PMID: 29593291]
[95]
Nance, D.J.; Satterwhite, E.R.; Bhaskar, B.; Misra, S.; Carraway, K.R.; Mansfield, K.D. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS One, 2020, 15(1)e0227647
[http://dx.doi.org/10.1371/journal.pone.0227647] [PMID: 31940410]
[96]
van Tran, N.; Ernst, F.G.M.; Hawley, B.R.; Zorbas, C.; Ulryck, N.; Hackert, P.; Bohnsack, K.E.; Bohnsack, M.T.; Jaffrey, S.R.; Graille, M.; Lafontaine, D.L.J. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res., 2019, 47(15), 7719-7733.
[http://dx.doi.org/10.1093/nar/gkz619] [PMID: 31328227]
[97]
Ma, H.; Wang, X.; Cai, J.; Dai, Q.; Natchiar, S.K.; Lv, R.; Chen, K.; Lu, Z.; Chen, H.; Shi, Y.G.; Lan, F.; Fan, J.; Klaholz, B.P.; Pan, T.; Shi, Y.; He, C. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol., 2019, 15(1), 88-94.
[http://dx.doi.org/10.1038/s41589-018-0184-3] [PMID: 30531910]
[98]
Harigaya, Y.; Tanaka, H.; Yamanaka, S.; Tanaka, K.; Watanabe, Y.; Tsutsumi, C.; Chikashige, Y.; Hiraoka, Y.; Yamashita, A.; Yamamoto, M. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature, 2006, 442(7098), 45-50.
[http://dx.doi.org/10.1038/nature04881] [PMID: 16823445]
[99]
Zhang, Z.; Theler, D.; Kaminska, K.H.; Hiller, M.; de la Grange, P.; Pudimat, R.; Rafalska, I.; Heinrich, B.; Bujnicki, J.M.; Allain, F.H.; Stamm, S. The YTH domain is a novel RNA binding domain. J. Biol. Chem., 2010, 285(19), 14701-14710.
[http://dx.doi.org/10.1074/jbc.M110.104711] [PMID: 20167602]
[100]
Xu, C.; Wang, X.; Liu, K.; Roundtree, I.A.; Tempel, W.; Li, Y.; Lu, Z.; He, C.; Min, J. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol., 2014, 10(11), 927-929.
[http://dx.doi.org/10.1038/nchembio.1654] [PMID: 25242552]
[101]
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; Wang, X.; Ma, H.L.; Huang, C.M.; Yang, Y.; Huang, N.; Jiang, G.B.; Wang, H.L.; Zhou, Q.; Wang, X.J.; Zhao, Y.L.; Yang, Y.G. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell, 2016, 61(4), 507-519.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012] [PMID: 26876937]
[102]
Li, A.; Chen, Y.S.; Ping, X.L.; Yang, X.; Xiao, W.; Yang, Y.; Sun, H.Y.; Zhu, Q.; Baidya, P.; Wang, X.; Bhattarai, D.P.; Zhao, Y.L.; Sun, B.F.; Yang, Y.G. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res., 2017, 27(3), 444-447.
[http://dx.doi.org/10.1038/cr.2017.10] [PMID: 28106076]
[103]
Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res., 2017, 27(3), 315-328.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[104]
Kretschmer, J.; Rao, H.; Hackert, P.; Sloan, K.E.; Höbartner, C.; Bohnsack, M.T. The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA, 2018, 24(10), 1339-1350.
[http://dx.doi.org/10.1261/rna.064238.117] [PMID: 29970596]
[105]
Tanabe, A.; Tanikawa, K.; Tsunetomi, M.; Takai, K.; Ikeda, H.; Konno, J.; Torigoe, T.; Maeda, H.; Kutomi, G.; Okita, K.; Mori, M.; Sahara, H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett., 2016, 376(1), 34-42.
[http://dx.doi.org/10.1016/j.canlet.2016.02.022] [PMID: 26996300]
[106]
Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun., 2016, 7, 12626.
[http://dx.doi.org/10.1038/ncomms12626] [PMID: 27558897]
[107]
Wojtas, M.N. Regulation of m(6)A Transcripts by the 3'-->5' RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol Cell., 2017, 68(2), 374-387.
[108]
Alarcón, C.R.; Goodarzi, H.; Lee, H.; Liu, X.; Tavazoie, S.; Tavazoie, S.F. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162(6), 1299-1308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[109]
Rajagopalan, D.; Pandey, A.K.; Xiuzhen, M.C.; Lee, K.K.; Hora, S.; Zhang, Y.; Chua, B.H.; Kwok, H.S.; Bhatia, S.S.; Deng, L.W.; Tenen, D.G.; Kappei, D.; Jha, S. TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathog., 2017, 13(10)
[http://dx.doi.org/10.1371/journal.ppat.1006681] [PMID: 29045464]
[110]
Zarnack, K.; König, J.; Tajnik, M.; Martincorena, I.; Eustermann, S.; Stévant, I.; Reyes, A.; Anders, S.; Luscombe, N.M.; Ule, J. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell, 2013, 152(3), 453-466.
[http://dx.doi.org/10.1016/j.cell.2012.12.023] [PMID: 23374342]
[111]
Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 2015, 518(7540), 560-564.
[http://dx.doi.org/10.1038/nature14234] [PMID: 25719671]
[112]
Huang, H.; Weng, H.; Sun, W.; Qin, X.; Shi, H.; Wu, H.; Zhao, B.S.; Mesquita, A.; Liu, C.; Yuan, C.L.; Hu, Y.C.; Hüttelmaier, S.; Skibbe, J.R.; Su, R.; Deng, X.; Dong, L.; Sun, M.; Li, C.; Nachtergaele, S.; Wang, Y.; Hu, C.; Ferchen, K.; Greis, K.D.; Jiang, X.; Wei, M.; Qu, L.; Guan, J.L.; He, C.; Yang, J.; Chen, J. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol., 2018, 20(3), 285-295.
[http://dx.doi.org/10.1038/s41556-018-0045-z] [PMID: 29476152]
[113]
Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci., 2013, 70(15), 2657-2675.
[http://dx.doi.org/10.1007/s00018-012-1186-z] [PMID: 23069990]
[114]
Gerken, T.; Girard, C.A.; Tung, Y.C.; Webby, C.J.; Saudek, V.; Hewitson, K.S.; Yeo, G.S.; McDonough, M.A.; Cunliffe, S.; McNeill, L.A.; Galvanovskis, J.; Rorsman, P.; Robins, P.; Prieur, X.; Coll, A.P.; Ma, M.; Jovanovic, Z.; Farooqi, I.S.; Sedgwick, B.; Barroso, I.; Lindahl, T.; Ponting, C.P.; Ashcroft, F.M.; O’Rahilly, S.; Schofield, C.J. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 2007, 318(5855), 1469-1472.
[http://dx.doi.org/10.1126/science.1151710] [PMID: 17991826]
[115]
Trewick, S.C.; Henshaw, T.F.; Hausinger, R.P.; Lindahl, T.; Sedgwick, B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature, 2002, 419(6903), 174-178.
[http://dx.doi.org/10.1038/nature00908] [PMID: 12226667]
[116]
Falnes, P.O.; Johansen, R.F.; Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature, 2002, 419(6903), 178-182.
[http://dx.doi.org/10.1038/nature01048] [PMID: 12226668]
[117]
Kurowski, M.A.; Bhagwat, A.S.; Papaj, G.; Bujnicki, J.M. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics, 2003, 4(1), 48.
[http://dx.doi.org/10.1186/1471-2164-4-48] [PMID: 14667252]
[118]
Sanchez-Pulido, L.; Andrade-Navarro, M.A. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem., 2007, 8, 23.
[http://dx.doi.org/10.1186/1471-2091-8-23] [PMID: 17996046]
[119]
Jia, G.; Yang, C.G.; Yang, S.; Jian, X.; Yi, C.; Zhou, Z.; He, C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett., 2008, 582(23-24), 3313-3319.
[http://dx.doi.org/10.1016/j.febslet.2008.08.019] [PMID: 18775698]
[120]
Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; He, C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 2011, 7(12), 885-887.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[121]
Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; Lu, Z.; Bosmans, R.P.; Dai, Q.; Hao, Y.J.; Yang, X.; Zhao, W.M.; Tong, W.M.; Wang, X.J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, H.E.; Klungland, A.; Yang, Y.G.; He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 2013, 49(1), 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[122]
Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem., 2002, 71, 817-846.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135501] [PMID: 12045112]
[123]
Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem., 2010, 79, 321-349.
[http://dx.doi.org/10.1146/annurev-biochem-060208-105251] [PMID: 20192758]
[124]
Batzer, M.A.; Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet., 2002, 3(5), 370-379.
[http://dx.doi.org/10.1038/nrg798] [PMID: 11988762]
[125]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[126]
Athanasiadis, A.; Rich, A.; Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol., 2004, 2(12)
[http://dx.doi.org/10.1371/journal.pbio.0020391] [PMID: 15534692]
[127]
Maas, S.; Godfried Sie, C.P.; Stoev, I.; Dupuis, D.E.; Latona, J.; Porman, A.M.; Evans, B.; Rekawek, P.; Kluempers, V.; Mutter, M.; Gommans, W.M.; Lopresti, D. Genome-wide evaluation and discovery of vertebrate A-to-I RNA editing sites. Biochem. Biophys. Res. Commun., 2011, 412(3), 407-412.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.075] [PMID: 21835166]
[128]
Licht, K.; Kapoor, U.; Amman, F.; Picardi, E.; Martin, D.; Bajad, P.; Jantsch, M.F. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res., 2019, 29(9), 1453-1463.
[http://dx.doi.org/10.1101/gr.242636.118] [PMID: 31427386]
[129]
Hsiao, Y.E.; Bahn, J.H.; Yang, Y.; Lin, X.; Tran, S.; Yang, E.W.; Quinones-Valdez, G.; Xiao, X. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res., 2018, 28(6), 812-823.
[http://dx.doi.org/10.1101/gr.231209.117] [PMID: 29724793]
[130]
Hogg, M.; Paro, S.; Keegan, L.P.; O’Connell, M.A. RNA editing by mammalian ADARs. Adv. Genet., 2011, 73, 87-120.
[http://dx.doi.org/10.1016/B978-0-12-380860-8.00003-3] [PMID: 21310295]
[131]
Galipon, J.; Ishii, R.; Suzuki, Y.; Tomita, M.; Ui-Tei, K. Differential Binding of Three Major Human ADAR Isoforms to Coding and Long Non-Coding Transcripts. Genes (Basel), 2017, 8(2), 68.
[http://dx.doi.org/10.3390/genes8020068] [PMID: 28208661]
[132]
Pestal, K.; Funk, C.C.; Snyder, J.M.; Price, N.D.; Treuting, P.M.; Stetson, D.B. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity, 2015, 43(5), 933-944.
[http://dx.doi.org/10.1016/j.immuni.2015.11.001] [PMID: 26588779]
[133]
Mannion, N.M.; Greenwood, S.M.; Young, R.; Cox, S.; Brindle, J.; Read, D.; Nellåker, C.; Vesely, C.; Ponting, C.P.; McLaughlin, P.J.; Jantsch, M.F.; Dorin, J.; Adams, I.R.; Scadden, A.D.; Ohman, M.; Keegan, L.P.; O’Connell, M.A. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep., 2014, 9(4), 1482-1494.
[http://dx.doi.org/10.1016/j.celrep.2014.10.041] [PMID: 25456137]
[134]
Liddicoat, B.J.; Chalk, A.M.; Walkley, C.R. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. Wiley Interdiscip. Rev. RNA, 2016, 7(2), 157-172.
[http://dx.doi.org/10.1002/wrna.1322] [PMID: 26692549]
[135]
Liddicoat, B.J.; Piskol, R.; Chalk, A.M.; Ramaswami, G.; Higuchi, M.; Hartner, J.C.; Li, J.B.; Seeburg, P.H.; Walkley, C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science, 2015, 349(6252), 1115-1120.
[http://dx.doi.org/10.1126/science.aac7049] [PMID: 26275108]
[136]
Eisenberg, E.; Levanon, E.Y. A-to-I RNA editing - immune protector and transcriptome diversifier. Nat. Rev. Genet., 2018, 19(8), 473-490.
[http://dx.doi.org/10.1038/s41576-018-0006-1] [PMID: 29692414]
[137]
Pullirsch, D.; Jantsch, M.F. Proteome diversification by adenosine to inosine RNA editing. RNA Biol., 2010, 7(2), 205-212.
[http://dx.doi.org/10.4161/rna.7.2.11286] [PMID: 20200492]
[138]
Källman, A.M.; Sahlin, M.; Ohman, M. ADAR2 A-->I editing: site selectivity and editing efficiency are separate events. Nucleic Acids Res., 2003, 31(16), 4874-4881.
[http://dx.doi.org/10.1093/nar/gkg681] [PMID: 12907730]
[139]
Higuchi, M.; Maas, S.; Single, F.N.; Hartner, J.; Rozov, A.; Burnashev, N.; Feldmeyer, D.; Sprengel, R.; Seeburg, P.H. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 2000, 406(6791), 78-81.
[http://dx.doi.org/10.1038/35017558] [PMID: 10894545]
[140]
Oakes, E.; Anderson, A.; Cohen-Gadol, A.; Hundley, H.A. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J. Biol. Chem., 2017, 292(10), 4326-4335.
[http://dx.doi.org/10.1074/jbc.M117.779868] [PMID: 28167531]
[141]
Mladenova, D.; Barry, G.; Konen, L.M.; Pineda, S.S.; Guennewig, B.; Avesson, L.; Zinn, R.; Schonrock, N.; Bitar, M.; Jonkhout, N.; Crumlish, L.; Kaczorowski, D.C.; Gong, A.; Pinese, M.; Franco, G.R.; Walkley, C.R.; Vissel, B.; Mattick, J.S. Adar3 Is Involved in Learning and Memory in Mice. Front. Neurosci., 2018, 12, 243.
[http://dx.doi.org/10.3389/fnins.2018.00243] [PMID: 29719497]
[142]
Xiang, J.F. N(6)-Methyladenosines Modulate A-to-I RNA Editing. Mol Cell., 2018, 69(1), 126-135.
[143]
Motorin, Y.; Lyko, F.; Helm, M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res., 2010, 38(5), 1415-1430.
[http://dx.doi.org/10.1093/nar/gkp1117] [PMID: 20007150]
[144]
Trixl, L.; Lusser, A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip. Rev. RNA, 2019, 10(1)
[http://dx.doi.org/10.1002/wrna.1510] [PMID: 30311405]
[145]
Amort, T.; Rieder, D.; Wille, A.; Khokhlova-Cubberley, D.; Riml, C.; Trixl, L.; Jia, X.Y.; Micura, R.; Lusser, A. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol., 2017, 18(1), 1.
[http://dx.doi.org/10.1186/s13059-016-1139-1] [PMID: 28077169]
[146]
Huang, T.; Chen, W.; Liu, J.; Gu, N.; Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol., 2019, 26(5), 380-388.
[http://dx.doi.org/10.1038/s41594-019-0218-x] [PMID: 31061524]
[147]
Schapira, M. Structural Chemistry of Human RNA Methyltransferases. ACS Chem. Biol., 2016, 11(3), 575-582.
[http://dx.doi.org/10.1021/acschembio.5b00781] [PMID: 26566070]
[148]
Wu, P.; Brockenbrough, J.S.; Paddy, M.R.; Aris, J.P. NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae. Gene, 1998, 220(1-2), 109-117.
[http://dx.doi.org/10.1016/S0378-1119(98)00330-8] [PMID: 9767141]
[149]
Fonagy, A.; Henning, D.; Jhiang, S.; Haidar, M.; Busch, R.K.; Larson, R.; Valdez, B.; Busch, H. Cloning of the cDNA and sequence of the human proliferating-cell nucleolar protein P120. Cancer Commun., 1989, 1(4), 243-251.
[PMID: 2576976]
[150]
Freeman, J.W.; Busch, R.K.; Gyorkey, F.; Gyorkey, P.; Ross, B.E.; Busch, H. Identification and characterization of a human proliferation-associated nucleolar antigen with a molecular weight of 120,000 expressed in early G1 phase. Cancer Res., 1988, 48(5), 1244-1251.
[PMID: 3422591]
[151]
Sharma, S.; Yang, J.; Watzinger, P.; Kötter, P.; Entian, K.D. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res., 2013, 41(19), 9062-9076.
[http://dx.doi.org/10.1093/nar/gkt679] [PMID: 23913415]
[152]
Schosserer, M.; Minois, N.; Angerer, T.B.; Amring, M.; Dellago, H.; Harreither, E.; Calle-Perez, A.; Pircher, A.; Gerstl, M.P.; Pfeifenberger, S.; Brandl, C.; Sonntagbauer, M.; Kriegner, A.; Linder, A.; Weinhäusel, A.; Mohr, T.; Steiger, M.; Mattanovich, D.; Rinnerthaler, M.; Karl, T.; Sharma, S.; Entian, K.D.; Kos, M.; Breitenbach, M.; Wilson, I.B.; Polacek, N.; Grillari-Voglauer, R.; Breitenbach-Koller, L.; Grillari, J. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat. Commun., 2015, 6, 6158.
[http://dx.doi.org/10.1038/ncomms7158] [PMID: 25635753]
[153]
Gigova, A.; Duggimpudi, S.; Pollex, T.; Schaefer, M.; Koš, M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA, 2014, 20(10), 1632-1644.
[http://dx.doi.org/10.1261/rna.043398.113] [PMID: 25125595]
[154]
Metodiev, M.D.; Spåhr, H.; Loguercio Polosa, P.; Meharg, C.; Becker, C.; Altmueller, J.; Habermann, B.; Larsson, N.G.; Ruzzenente, B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet., 2014, 10(2)
[http://dx.doi.org/10.1371/journal.pgen.1004110] [PMID: 24516400]
[155]
Hong, B.; Brockenbrough, J.S.; Wu, P.; Aris, J.P. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol. Cell. Biol., 1997, 17(1), 378-388.
[http://dx.doi.org/10.1128/MCB.17.1.378] [PMID: 8972218]
[156]
Motorin, Y.; Grosjean, H. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA, 1999, 5(8), 1105-1118.
[http://dx.doi.org/10.1017/S1355838299982201] [PMID: 10445884]
[157]
Brzezicha, B.; Schmidt, M.; Makalowska, I.; Jarmolowski, A.; Pienkowska, J.; Szweykowska-Kulinska, Z. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res., 2006, 34(20), 6034-6043.
[http://dx.doi.org/10.1093/nar/gkl765] [PMID: 17071714]
[158]
Hussain, S.; Benavente, S.B.; Nascimento, E.; Dragoni, I.; Kurowski, A.; Gillich, A.; Humphreys, P.; Frye, M. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J. Cell Biol., 2009, 186(1), 27-40.
[http://dx.doi.org/10.1083/jcb.200810180] [PMID: 19596847]
[159]
Hussain, S.; Sajini, A.A.; Blanco, S.; Dietmann, S.; Lombard, P.; Sugimoto, Y.; Paramor, M.; Gleeson, J.G.; Odom, D.T.; Ule, J.; Frye, M. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep., 2013, 4(2), 255-261.
[http://dx.doi.org/10.1016/j.celrep.2013.06.029] [PMID: 23871666]
[160]
Yang, X.; Yang, Y.; Sun, B.F.; Chen, Y.S.; Xu, J.W.; Lai, W.Y.; Li, A.; Wang, X.; Bhattarai, D.P.; Xiao, W.; Sun, H.Y.; Zhu, Q.; Ma, H.L.; Adhikari, S.; Sun, M.; Hao, Y.J.; Zhang, B.; Huang, C.M.; Huang, N.; Jiang, G.B.; Zhao, Y.L.; Wang, H.L.; Sun, Y.P.; Yang, Y.G. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res., 2017, 27(5), 606-625.
[http://dx.doi.org/10.1038/cr.2017.55] [PMID: 28418038]
[161]
Tuorto, F.; Liebers, R.; Musch, T.; Schaefer, M.; Hofmann, S.; Kellner, S.; Frye, M.; Helm, M.; Stoecklin, G.; Lyko, F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol., 2012, 19(9), 900-905.
[http://dx.doi.org/10.1038/nsmb.2357] [PMID: 22885326]
[162]
Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C.L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006, 311(5759), 395-398.
[http://dx.doi.org/10.1126/science.1120976] [PMID: 16424344]
[163]
Schaefer, M.; Lyko, F. Solving the Dnmt2 enigma. Chromosoma, 2010, 119(1), 35-40.
[http://dx.doi.org/10.1007/s00412-009-0240-6] [PMID: 19730874]
[164]
Reid, R.; Greene, P.J.; Santi, D.V. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res., 1999, 27(15), 3138-3145.
[http://dx.doi.org/10.1093/nar/27.15.3138] [PMID: 10454610]
[165]
Liu, R.J.; Long, T.; Li, J.; Li, H.; Wang, E.D. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res., 2017, 45(11), 6684-6697.
[http://dx.doi.org/10.1093/nar/gkx473] [PMID: 28531330]
[166]
Haag, S.; Warda, A.S.; Kretschmer, J.; Günnigmann, M.A.; Höbartner, C.; Bohnsack, M.T. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA, 2015, 21(9), 1532-1543.
[http://dx.doi.org/10.1261/rna.051524.115] [PMID: 26160102]
[167]
Shanmugam, R.; Fierer, J.; Kaiser, S.; Helm, M.; Jurkowski, T.P.; Jeltsch, A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov., 2015, 1, 15010.
[http://dx.doi.org/10.1038/celldisc.2015.10] [PMID: 27462411]
[168]
Tuorto, F.; Herbst, F.; Alerasool, N.; Bender, S.; Popp, O.; Federico, G.; Reitter, S.; Liebers, R.; Stoecklin, G.; Gröne, H.J.; Dittmar, G.; Glimm, H.; Lyko, F. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J., 2015, 34(18), 2350-2362.
[http://dx.doi.org/10.15252/embj.201591382] [PMID: 26271101]
[169]
Jeltsch, A.; Ehrenhofer-Murray, A.; Jurkowski, T.P.; Lyko, F.; Reuter, G.; Ankri, S.; Nellen, W.; Schaefer, M.; Helm, M. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol., 2017, 14(9), 1108-1123.
[http://dx.doi.org/10.1080/15476286.2016.1191737] [PMID: 27232191]
[170]
Haag, S.; Sloan, K.E.; Ranjan, N.; Warda, A.S.; Kretschmer, J.; Blessing, C.; Hübner, B.; Seikowski, J.; Dennerlein, S.; Rehling, P.; Rodnina, M.V.; Höbartner, C.; Bohnsack, M.T. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J., 2016, 35(19), 2104-2119.
[http://dx.doi.org/10.15252/embj.201694885] [PMID: 27497299]
[171]
Nakano, S.; Suzuki, T.; Kawarada, L.; Iwata, H.; Asano, K.; Suzuki, T. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat. Chem. Biol., 2016, 12(7), 546-551.
[http://dx.doi.org/10.1038/nchembio.2099] [PMID: 27214402]
[172]
Bilbille, Y.; Gustilo, E.M.; Harris, K.A.; Jones, C.N.; Lusic, H.; Kaiser, R.J.; Delaney, M.O.; Spremulli, L.L.; Deiters, A.; Agris, P.F. The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J. Mol. Biol., 2011, 406(2), 257-274.
[http://dx.doi.org/10.1016/j.jmb.2010.11.042] [PMID: 21168417]
[173]
Cámara, Y.; Asin-Cayuela, J.; Park, C.B.; Metodiev, M.D.; Shi, Y.; Ruzzenente, B.; Kukat, C.; Habermann, B.; Wibom, R.; Hultenby, K.; Franz, T.; Erdjument-Bromage, H.; Tempst, P.; Hallberg, B.M.; Gustafsson, C.M.; Larsson, N.G. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab., 2011, 13(5), 527-539.
[http://dx.doi.org/10.1016/j.cmet.2011.04.002] [PMID: 21531335]
[174]
Aguilo, F.; Li, S.; Balasubramaniyan, N.; Sancho, A.; Benko, S.; Zhang, F.; Vashisht, A.; Rengasamy, M.; Andino, B.; Chen, C.H.; Zhou, F.; Qian, C.; Zhou, M.M.; Wohlschlegel, J.A.; Zhang, W.; Suchy, F.J.; Walsh, M.J. Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α. Cell Rep., 2016, 14(3), 479-492.
[http://dx.doi.org/10.1016/j.celrep.2015.12.043] [PMID: 26774474]
[175]
Dai, X.; Gonzalez, G.; Li, L.; Li, J.; You, C.; Miao, W.; Hu, J.; Fu, L.; Zhao, Y.; Li, R.; Li, L.; Chen, X.; Xu, Y.; Gu, W.; Wang, Y. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal. Chem., 2020, 92(1), 1346-1354.
[http://dx.doi.org/10.1021/acs.analchem.9b04505] [PMID: 31815440]
[176]
Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534.
[http://dx.doi.org/10.1038/nrg.2017.33] [PMID: 28555658]
[177]
Fu, L.; Guerrero, C.R.; Zhong, N.; Amato, N.J.; Liu, Y.; Liu, S.; Cai, Q.; Ji, D.; Jin, S.G.; Niedernhofer, L.J.; Pfeifer, G.P.; Xu, G.L.; Wang, Y. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 2014, 136(33), 11582-11585.
[http://dx.doi.org/10.1021/ja505305z] [PMID: 25073028]
[178]
Traube, F.R.; Carell, T. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol., 2017, 14(9), 1099-1107.
[http://dx.doi.org/10.1080/15476286.2017.1318241] [PMID: 28440690]
[179]
Meyer, N.; Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer, 2008, 8(12), 976-990.
[http://dx.doi.org/10.1038/nrc2231] [PMID: 19029958]
[180]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[181]
Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell, 2017, 168(4), 629-643.
[http://dx.doi.org/10.1016/j.cell.2016.12.013] [PMID: 28187285]
[182]
Wang, Y.; Zhang, T.; Kwiatkowski, N.; Abraham, B.J.; Lee, T.I.; Xie, S.; Yuzugullu, H.; Von, T.; Li, H.; Lin, Z.; Stover, D.G.; Lim, E.; Wang, Z.C.; Iglehart, J.D.; Young, R.A.; Gray, N.S.; Zhao, J.J. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell, 2015, 163(1), 174-186.
[http://dx.doi.org/10.1016/j.cell.2015.08.063] [PMID: 26406377]
[183]
Sengupta, S.; George, R.E. Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer, 2017, 3(4), 269-281.
[http://dx.doi.org/10.1016/j.trecan.2017.03.006] [PMID: 28718439]
[184]
Gabay, M.; Li, Y.; Felsher, D.W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med., 2014, 4(6)
[http://dx.doi.org/10.1101/cshperspect.a014241] [PMID: 24890832]
[185]
Dunn, S.; Cowling, V.H. Myc and mRNA capping. Biochim. Biophys. Acta, 2015, 1849(5), 501-505.
[http://dx.doi.org/10.1016/j.bbagrm.2014.03.007] [PMID: 24681440]
[186]
Fernandez-Sanchez, M.E.; Gonatopoulos-Pournatzis, T.; Preston, G.; Lawlor, M.A.; Cowling, V.H. S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation. Mol. Cell. Biol., 2009, 29(23), 6182-6191.
[http://dx.doi.org/10.1128/MCB.00973-09] [PMID: 19805518]
[187]
Aregger, M.; Cowling, V.H. Regulation of mRNA capping in the cell cycle. RNA Biol., 2017, 14(1), 11-14.
[http://dx.doi.org/10.1080/15476286.2016.1251540] [PMID: 27791484]
[188]
Aregger, M.; Cowling, V.H. Human cap methyltransferase (RNMT) N-terminal non-catalytic domain mediates recruitment to transcription initiation sites. Biochem. J., 2013, 455(1), 67-73.
[http://dx.doi.org/10.1042/BJ20130378] [PMID: 23863084]
[189]
Dunn, S.; Lombardi, O.; Lukoszek, R.; Cowling, V.H. Oncogenic PIK3CA mutations increase dependency on the mRNA cap methyltransferase, RNMT, in breast cancer cells. Open Biol., 2019, 9(4)
[http://dx.doi.org/10.1098/rsob.190052] [PMID: 30991934]
[190]
Varshney, D.; Lombardi, O.; Schweikert, G.; Dunn, S.; Suska, O.; Cowling, V.H. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription. Cell Rep., 2018, 23(5), 1530-1542.
[http://dx.doi.org/10.1016/j.celrep.2018.04.004] [PMID: 29719263]
[191]
Posternak, V.; Ung, M.H.; Cheng, C.; Cole, M.D. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-Catenin Signaling Transcripts By Recruiting CDK7 and RNA Methyltransferase. Mol. Cancer Res., 2017, 15(2), 213-224.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0247] [PMID: 27899423]
[192]
Cowling, V.H. Myc up-regulates formation of the mRNA methyl cap. Biochem. Soc. Trans., 2010, 38(6), 1598-1601.
[http://dx.doi.org/10.1042/BST0381598] [PMID: 21118133]
[193]
Galloway, A.; Cowling, V.H. mRNA cap regulation in mammalian cell function and fate. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 270-279.
[http://dx.doi.org/10.1016/j.bbagrm.2018.09.011] [PMID: 30312682]
[194]
Dunn, S.; Lombardi, O.; Cowling, V.H. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production. Biochem. J., 2017, 474(3), 377-384.
[http://dx.doi.org/10.1042/BCJ20160930] [PMID: 27934633]
[195]
Poortinga, G.; Hannan, K.M.; Snelling, H.; Walkley, C.R.; Jenkins, A.; Sharkey, K.; Wall, M.; Brandenburger, Y.; Palatsides, M.; Pearson, R.B.; McArthur, G.A.; Hannan, R.D. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J., 2004, 23(16), 3325-3335.
[http://dx.doi.org/10.1038/sj.emboj.7600335] [PMID: 15282543]
[196]
Grandori, C.; Robinson, K.L.; Galloway, D.A.; Swisshelm, K. Functional link between Myc and the Werner gene in tumorigenesis. Cell Cycle, 2004, 3(1), 22-25.
[http://dx.doi.org/10.4161/cc.3.1.630] [PMID: 14657658]
[197]
Poortinga, G.; Wall, M.; Sanij, E.; Siwicki, K.; Ellul, J.; Brown, D.; Holloway, T.P.; Hannan, R.D.; McArthur, G.A. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res., 2011, 39(8), 3267-3281.
[http://dx.doi.org/10.1093/nar/gkq1205] [PMID: 21177653]
[198]
Rahl, P.B.; Lin, C.Y.; Seila, A.C.; Flynn, R.A.; McCuine, S.; Burge, C.B.; Sharp, P.A.; Young, R.A. c-Myc regulates transcriptional pause release. Cell, 2010, 141(3), 432-445.
[http://dx.doi.org/10.1016/j.cell.2010.03.030] [PMID: 20434984]
[199]
Eberhardy, S.R.; Farnham, P.J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem., 2002, 277(42), 40156-40162.
[http://dx.doi.org/10.1074/jbc.M207441200] [PMID: 12177005]
[200]
Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther., 2018, 3, 5.
[http://dx.doi.org/10.1038/s41392-018-0008-7] [PMID: 29527331]
[201]
Manning, M.; Jiang, Y.; Wang, R.; Liu, L.; Rode, S.; Bonahoom, M.; Kim, S.; Yang, Z.Q. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biol., 2020, 17(4), 474-486.
[http://dx.doi.org/10.1080/15476286.2019.1708549] [PMID: 31957540]
[202]
Zhang, J.; Zheng, Y.G. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases. ACS Chem. Biol., 2016, 11(3), 583-597.
[http://dx.doi.org/10.1021/acschembio.5b00812] [PMID: 26540123]
[203]
Schubert, H.L.; Blumenthal, R.M.; Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci., 2003, 28(6), 329-335.
[http://dx.doi.org/10.1016/S0968-0004(03)00090-2] [PMID: 12826405]
[204]
Copeland, R.A. Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1748), 373.
[http://dx.doi.org/10.1098/rstb.2017.0080] [PMID: 29685962]
[205]
Morera, L.; Lübbert, M.; Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics, 2016, 8, 57.
[http://dx.doi.org/10.1186/s13148-016-0223-4] [PMID: 27222667]
[206]
Zhou, Z.; Li, H.Q.; Liu, F. DNA Methyltransferase Inhibitors and their Therapeutic Potential. Curr. Top. Med. Chem., 2018, 18(28), 2448-2457.
[http://dx.doi.org/10.2174/1568026619666181120150122] [PMID: 30465505]
[207]
Kloor, D.; Osswald, H. S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol. Sci., 2004, 25(6), 294-297.
[http://dx.doi.org/10.1016/j.tips.2004.04.004] [PMID: 15165742]
[208]
Poortinga, G.; Quinn, L.M.; Hannan, R.D. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene, 2015, 34(4), 403-412.
[http://dx.doi.org/10.1038/onc.2014.13] [PMID: 24608428]
[209]
Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.; Siddiqui-Jain, A.; Streiner, N.; Quin, J.E.; Sanij, E.; Bywater, M.J.; Hannan, R.D.; Ryckman, D.; Anderes, K.; Rice, W.G. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res., 2011, 71(4), 1418-1430.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1728] [PMID: 21159662]
[210]
Khot, A.; Brajanovski, N.; Cameron, D.P.; Hein, N.; Maclachlan, K.H.; Sanij, E.; Lim, J.; Soong, J.; Link, E.; Blombery, P.; Thompson, E.R.; Fellowes, A.; Sheppard, K.E.; McArthur, G.A.; Pearson, R.B.; Hannan, R.D.; Poortinga, G.; Harrison, S.J. First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discov., 2019, 9(8), 1036-1049.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1455] [PMID: 31092402]
[211]
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem., 2000, 267(21), 6321-6330.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01719.x] [PMID: 11029573]
[212]
Iadevaia, V.; Caldarola, S.; Tino, E.; Amaldi, F.; Loreni, F. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5′-terminal oligopyrimidine (TOP) mRNAs. RNA, 2008, 14(9), 1730-1736.
[http://dx.doi.org/10.1261/rna.1037108] [PMID: 18658124]
[213]
Izaurralde, E.; McGuigan, C.; Mattaj, I.W. Nuclear localization of a cap-binding protein complex. Cold Spring Harb. Symp. Quant. Biol., 1995, 60, 669-675.
[http://dx.doi.org/10.1101/SQB.1995.060.01.072] [PMID: 8824441]
[214]
Maniatis, T.; Reed, R. An extensive network of coupling among gene expression machines. Nature, 2002, 416(6880), 499-506.
[http://dx.doi.org/10.1038/416499a] [PMID: 11932736]
[215]
Topisirovic, I.; Siddiqui, N.; Lapointe, V.L.; Trost, M.; Thibault, P.; Bangeranye, C.; Piñol-Roma, S.; Borden, K.L. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J., 2009, 28(8), 1087-1098.
[http://dx.doi.org/10.1038/emboj.2009.53] [PMID: 19262567]
[216]
Topisirovic, I.; Svitkin, Y.V.; Sonenberg, N.; Shatkin, A.J. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA, 2011, 2(2), 277-298.
[http://dx.doi.org/10.1002/wrna.52] [PMID: 21957010]
[217]
Gross, J.D.; Moerke, N.J.; von der Haar, T.; Lugovskoy, A.A.; Sachs, A.B.; McCarthy, J.E.; Wagner, G. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell, 2003, 115(6), 739-750.
[http://dx.doi.org/10.1016/S0092-8674(03)00975-9] [PMID: 14675538]
[218]
Aitken, C.E.; Lorsch, J.R. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol., 2012, 19(6), 568-576.
[http://dx.doi.org/10.1038/nsmb.2303] [PMID: 22664984]
[219]
Modrak-Wojcik, A.; Gorka, M.; Niedzwiecka, K.; Zdanowski, K.; Zuberek, J.; Niedzwiecka, A.; Stolarski, R. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5′ cap. FEBS Lett., 2013, 587(24), 3928-3934.
[http://dx.doi.org/10.1016/j.febslet.2013.10.043] [PMID: 24211447]
[220]
Filipowicz, W.; Furuichi, Y.; Sierra, J.M.; Muthukrishnan, S.; Shatkin, A.J.; Ochoa, S. A protein binding the methylated 5′-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl. Acad. Sci. USA, 1976, 73(5), 1559-1563.
[http://dx.doi.org/10.1073/pnas.73.5.1559] [PMID: 1064023]
[221]
Borden, K.L. The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions. Translation (Austin), 2016, 4(2)
[http://dx.doi.org/10.1080/21690731.2016.1220899] [PMID: 28090419]
[222]
Gingras, A.C.; Gygi, S.P.; Raught, B.; Polakiewicz, R.D.; Abraham, R.T.; Hoekstra, M.F.; Aebersold, R.; Sonenberg, N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev., 1999, 13(11), 1422-1437.
[http://dx.doi.org/10.1101/gad.13.11.1422] [PMID: 10364159]
[223]
She, Q.B.; Halilovic, E.; Ye, Q.; Zhen, W.; Shirasawa, S.; Sasazuki, T.; Solit, D.B.; Rosen, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell, 2010, 18(1), 39-51.
[http://dx.doi.org/10.1016/j.ccr.2010.05.023] [PMID: 20609351]
[224]
Tcherkezian, J.; Cargnello, M.; Romeo, Y.; Huttlin, E.L.; Lavoie, G.; Gygi, S.P.; Roux, P.P. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation. Genes Dev., 2014, 28(4), 357-371.
[http://dx.doi.org/10.1101/gad.231407.113] [PMID: 24532714]
[225]
Fonseca, B.D.; Zakaria, C.; Jia, J.J.; Graber, T.E.; Svitkin, Y.; Tahmasebi, S.; Healy, D.; Hoang, H.D.; Jensen, J.M.; Diao, I.T.; Lussier, A.; Dajadian, C.; Padmanabhan, N.; Wang, W.; Matta-Camacho, E.; Hearnden, J.; Smith, E.M.; Tsukumo, Y.; Yanagiya, A.; Morita, M.; Petroulakis, E.; González, J.L.; Hernández, G.; Alain, T.; Damgaard, C.K. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J. Biol. Chem., 2015, 290(26), 15996-16020.
[http://dx.doi.org/10.1074/jbc.M114.621730] [PMID: 25940091]
[226]
Lahr, R.M.; Fonseca, B.D.; Ciotti, G.E.; Al-Ashtal, H.A.; Jia, J.J.; Niklaus, M.R.; Blagden, S.P.; Alain, T.; Berman, A.J. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.24146] [PMID: 28379136]
[227]
Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017, 169(2), 361-371.
[http://dx.doi.org/10.1016/j.cell.2017.03.035] [PMID: 28388417]
[228]
Thoreen, C.C. The molecular basis of mTORC1-regulated translation. Biochem. Soc. Trans., 2017, 45(1), 213-221.
[http://dx.doi.org/10.1042/BST20160072] [PMID: 28202675]
[229]
Philippe, L.; Vasseur, J.J.; Debart, F.; Thoreen, C.C. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Res., 2018, 46(3), 1457-1469.
[http://dx.doi.org/10.1093/nar/gkx1237] [PMID: 29244122]
[230]
Siddiqui, N.; Sonenberg, N. Signalling to eIF4E in cancer. Biochem. Soc. Trans., 2015, 43(5), 763-772.
[http://dx.doi.org/10.1042/BST20150126] [PMID: 26517881]
[231]
Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer, 2018, 18(12), 744-757.
[http://dx.doi.org/10.1038/s41568-018-0074-8] [PMID: 30425336]
[232]
Carroll, M.; Borden, K.L. The oncogene eIF4E: using biochemical insights to target cancer. J. Interferon Cytokine Res., 2013, 33(5), 227-238.
[http://dx.doi.org/10.1089/jir.2012.0142] [PMID: 23472659]
[233]
Wendel, H.G.; Silva, R.L.; Malina, A.; Mills, J.R.; Zhu, H.; Ueda, T.; Watanabe-Fukunaga, R.; Fukunaga, R.; Teruya-Feldstein, J.; Pelletier, J.; Lowe, S.W. Dissecting eIF4E action in tumorigenesis. Genes Dev., 2007, 21(24), 3232-3237.
[http://dx.doi.org/10.1101/gad.1604407] [PMID: 18055695]
[234]
Mamane, Y.; Petroulakis, E.; Rong, L.; Yoshida, K.; Ler, L.W.; Sonenberg, N. eIF4E--from translation to transformation. Oncogene, 2004, 23(18), 3172-3179.
[http://dx.doi.org/10.1038/sj.onc.1207549] [PMID: 15094766]
[235]
Proud, C.G. Mnks, eIF4E phosphorylation and cancer. Biochim. Biophys. Acta, 2015, 1849(7), 766-773.
[http://dx.doi.org/10.1016/j.bbagrm.2014.10.003] [PMID: 25450520]
[236]
Jia, Y.; Polunovsky, V.; Bitterman, P.B.; Wagner, C.R. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med. Res. Rev., 2012, 32(4), 786-814.
[http://dx.doi.org/10.1002/med.21260] [PMID: 22495651]
[237]
Piserà, A.; Campo, A.; Campo, S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J. Genet. Genomics, 2018, 45(1), 13-24.
[http://dx.doi.org/10.1016/j.jgg.2018.01.003] [PMID: 29396141]
[238]
Bhat, M.; Robichaud, N.; Hulea, L.; Sonenberg, N.; Pelletier, J.; Topisirovic, I. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov., 2015, 14(4), 261-278.
[http://dx.doi.org/10.1038/nrd4505] [PMID: 25743081]
[239]
Graff, J.R.; Konicek, B.W.; Vincent, T.M.; Lynch, R.L.; Monteith, D.; Weir, S.N.; Schwier, P.; Capen, A.; Goode, R.L.; Dowless, M.S.; Chen, Y.; Zhang, H.; Sissons, S.; Cox, K.; McNulty, A.M.; Parsons, S.H.; Wang, T.; Sams, L.; Geeganage, S.; Douglass, L.E.; Neubauer, B.L.; Dean, N.M.; Blanchard, K.; Shou, J.; Stancato, L.F.; Carter, J.H.; Marcusson, E.G. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest., 2007, 117(9), 2638-2648.
[http://dx.doi.org/10.1172/JCI32044] [PMID: 17786246]
[240]
Wendel, H.G.; De Stanchina, E.; Fridman, J.S.; Malina, A.; Ray, S.; Kogan, S.; Cordon-Cardo, C.; Pelletier, J.; Lowe, S.W. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004, 428(6980), 332-337.
[http://dx.doi.org/10.1038/nature02369] [PMID: 15029198]
[241]
Li, S.; Jia, Y.; Jacobson, B.; McCauley, J.; Kratzke, R.; Bitterman, P.B.; Wagner, C.R. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol. Pharm., 2013, 10(2), 523-531.
[http://dx.doi.org/10.1021/mp300699d] [PMID: 23289910]
[242]
Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem., 2016, 124, 200-217.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.047] [PMID: 27592390]
[243]
Kaur, T.; Menon, A.; Garner, A.L. Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. Eur. J. Med. Chem., 2019, 166, 339-350.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.080] [PMID: 30735900]
[244]
Karaki, S.; Andrieu, C.; Ziouziou, H.; Rocchi, P. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. Adv. Protein Chem. Struct. Biol., 2015, 101, 1-26.
[http://dx.doi.org/10.1016/bs.apcsb.2015.09.001] [PMID: 26572974]
[245]
Witkowski, J.T.; Robins, R.K.; Sidwell, R.W.; Simon, L.N. Design, synthesis, and broad spectrum antiviral activity of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem., 1972, 15(11), 1150-1154.
[http://dx.doi.org/10.1021/jm00281a014] [PMID: 4347550]
[246]
Assouline, S.; Culjkovic, B.; Cocolakis, E.; Rousseau, C.; Beslu, N.; Amri, A.; Caplan, S.; Leber, B.; Roy, D.C.; Miller, W.H., Jr; Borden, K.L. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood, 2009, 114(2), 257-260.
[http://dx.doi.org/10.1182/blood-2009-02-205153] [PMID: 19433856]
[247]
Casaos, J.; Gorelick, N.L.; Huq, S.; Choi, J.; Xia, Y.; Serra, R.; Felder, R.; Lott, T.; Kast, R.E.; Suk, I.; Brem, H.; Tyler, B.; Skuli, N. The Use of Ribavirin as an Anticancer Therapeutic: Will It Go Viral? Mol. Cancer Ther., 2019, 18(7), 1185-1194.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0666] [PMID: 31263027]
[248]
Heinzen, D.; Divé, I.; Lorenz, N.I.; Luger, A.L.; Steinbach, J.P.; Ronellenfitsch, M.W. Second Generation mTOR Inhibitors as a Double-Edged Sword in Malignant Glioma Treatment. Int. J. Mol. Sci., 2019, 20(18)
[http://dx.doi.org/10.3390/ijms20184474] [PMID: 31510109]
[249]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[250]
Roper, J.; Richardson, M.P.; Wang, W.V.; Richard, L.G.; Chen, W.; Coffee, E.M.; Sinnamon, M.J.; Lee, L.; Chen, P.C.; Bronson, R.T.; Martin, E.S.; Hung, K.E. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS One, 2011, 6(9)
[http://dx.doi.org/10.1371/journal.pone.0025132] [PMID: 21966435]
[251]
Shaik, A.; Kirubakaran, S. Evolution of PIKK family kinase inhibitors: A new age cancer therapeutics. Front. Biosci., 2020, 25, 1510-1537.
[http://dx.doi.org/10.2741/4866] [PMID: 32114443]
[252]
Shi, F.; Zhang, J.; Liu, H.; Wu, L.; Jiang, H.; Wu, Q.; Liu, T.; Lou, M.; Wu, H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget, 2017, 9(1), 706-717.
[http://dx.doi.org/10.18632/oncotarget.23091] [PMID: 29416647]
[253]
Sznol, J.A.; Jilaveanu, L.B.; Kluger, H.M. Studies of NVP-BEZ235 in melanoma. Curr. Cancer Drug Targets, 2013, 13(2), 165-174.
[http://dx.doi.org/10.2174/1568009611313020006] [PMID: 23215722]
[254]
Xu, C.X.; Li, Y.; Yue, P.; Owonikoko, T.K.; Ramalingam, S.S.; Khuri, F.R.; Sun, S.Y. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One, 2011, 6(6)
[http://dx.doi.org/10.1371/journal.pone.0020899] [PMID: 21695126]
[255]
Rodon, J.; Pérez-Fidalgo, A.; Krop, I.E.; Burris, H.; Guerrero-Zotano, A.; Britten, C.D.; Becerra, C.; Schellens, J.; Richards, D.A.; Schuler, M.; Abu-Khalaf, M.; Johnson, F.M.; Ranson, M.; Edenfield, J.; Silva, A.P.; Hackl, W.; Quadt, C.; Demanse, D.; Duval, V.; Baselga, J. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother. Pharmacol., 2018, 82(2), 285-298.
[http://dx.doi.org/10.1007/s00280-018-3610-z] [PMID: 29882016]
[256]
Dowling, R.J.; Topisirovic, I.; Fonseca, B.D.; Sonenberg, N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys. Acta, 2010, 1804(3), 433-439.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.001] [PMID: 20005306]
[257]
Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; Kessler, M.; Serra, A.L.; Hofbauer, G.F.; Pouteil-Noble, C.; Campistol, J.M.; Kanitakis, J.; Roux, A.S.; Decullier, E.; Dantal, J. TUMORAPA Study Group. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med., 2012, 367(4), 329-339.
[http://dx.doi.org/10.1056/NEJMoa1204166] [PMID: 22830463]
[258]
Rössler, J.; Geiger, J.; Földi, E.; Adams, D.M.; Niemeyer, C.M. Sirolimus is highly effective for lymph leakage in microcystic lymphatic malformations with skin involvement. Int. J. Dermatol., 2017, 56(4), e72-e75.
[http://dx.doi.org/10.1111/ijd.13419] [PMID: 27706796]
[259]
Knoll, G.A.; Kokolo, M.B.; Mallick, R.; Beck, A.; Buenaventura, C.D.; Ducharme, R.; Barsoum, R.; Bernasconi, C.; Blydt-Hansen, T.D.; Ekberg, H.; Felipe, C.R.; Firth, J.; Gallon, L.; Gelens, M.; Glotz, D.; Gossmann, J.; Guba, M.; Morsy, A.A.; Salgo, R.; Scheuermann, E.H.; Tedesco-Silva, H.; Vitko, S.; Watson, C.; Fergusson, D.A. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ, 2014, 349, g6679.
[http://dx.doi.org/10.1136/bmj.g6679] [PMID: 25422259]
[260]
Perl, A.E.; Kasner, M.T.; Shank, D.; Luger, S.M.; Carroll, M. Single-cell pharmacodynamic monitoring of S6 ribosomal protein phosphorylation in AML blasts during a clinical trial combining the mTOR inhibitor sirolimus and intensive chemotherapy. Clin. Cancer Res., 2012, 18(6), 1716-1725.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2346] [PMID: 22167413]
[261]
Cope, C.L.; Gilley, R.; Balmanno, K.; Sale, M.J.; Howarth, K.D.; Hampson, M.; Smith, P.D.; Guichard, S.M.; Cook, S.J. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J. Cell Sci., 2014, 127(Pt 4), 788-800.
[http://dx.doi.org/10.1242/jcs.137588] [PMID: 24363449]
[262]
Kauffman, E.C.; Lang, M.; Rais-Bahrami, S.; Gupta, G.N.; Wei, D.; Yang, Y.; Sourbier, C.; Srinivasan, R. Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion. BMC Cancer, 2019, 19(1), 917.
[http://dx.doi.org/10.1186/s12885-019-6096-0] [PMID: 31519159]
[263]
Naing, A.; Aghajanian, C.; Raymond, E.; Olmos, D.; Schwartz, G.; Oelmann, E.; Grinsted, L.; Burke, W.; Taylor, R.; Kaye, S.; Kurzrock, R.; Banerji, U. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br. J. Cancer, 2012, 107(7), 1093-1099.
[http://dx.doi.org/10.1038/bjc.2012.368] [PMID: 22935583]
[264]
Shao, H.; Gao, C.; Tang, H.; Zhang, H.; Roberts, L.R.; Hylander, B.L.; Repasky, E.A.; Ma, W.W.; Qiu, J.; Adjei, A.A.; Dy, G.K.; Yu, C. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J. Hepatol., 2012, 56(1), 176-183.
[http://dx.doi.org/10.1016/j.jhep.2011.07.013] [PMID: 21835141]
[265]
Willems, L.; Chapuis, N.; Puissant, A.; Maciel, T.T.; Green, A.S.; Jacque, N.; Vignon, C.; Park, S.; Guichard, S.; Herault, O.; Fricot, A.; Hermine, O.; Moura, I.C.; Auberger, P.; Ifrah, N.; Dreyfus, F.; Bonnet, D.; Lacombe, C.; Mayeux, P.; Bouscary, D.; Tamburini, J. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia, 2012, 26(6), 1195-1202.
[http://dx.doi.org/10.1038/leu.2011.339] [PMID: 22143671]
[266]
Hou, J.; Lam, F.; Proud, C.; Wang, S. Targeting Mnks for cancer therapy. Oncotarget, 2012, 3(2), 118-131.
[http://dx.doi.org/10.18632/oncotarget.453] [PMID: 22392765]
[267]
Prabhu, S.A.; Moussa, O.; Miller, W.H., Jr; Del Rincón, S.V. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int. J. Mol. Sci., 2020, 21(11)4055
[http://dx.doi.org/10.3390/ijms21114055] [PMID: 32517051]
[268]
Dreas, A.; Mikulski, M.; Milik, M.; Fabritius, C.H.; Brzózka, K.; Rzymski, T. Mitogen-activated Protein Kinase (MAPK) Interacting Kinases 1 and 2 (MNK1 and MNK2) as Targets for Cancer Therapy: Recent Progress in the Development of MNK Inhibitors. Curr. Med. Chem., 2017, 24(28), 3025-3053.
[http://dx.doi.org/10.2174/0929867324666170203123427] [PMID: 28164761]
[269]
Salgo, R.; Gossmann, J.; Schöfer, H.; Kachel, H.G.; Kuck, J.; Geiger, H.; Kaufmann, R.; Scheuermann, E.H. Switch to a sirolimus-based immunosuppression in long-term renal transplant recipients: reduced rate of (pre-)malignancies and nonmelanoma skin cancer in a prospective, randomized, assessor-blinded, controlled clinical trial. Am. J. Transplant., 2010, 10(6), 1385-1393.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02997.x] [PMID: 20121752]
[270]
Dong, Z.; Cui, H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel), 2020, 12(3)736
[http://dx.doi.org/10.3390/cancers12030736] [PMID: 32244981]
[271]
Yuan, Y.; Du, Y.; Wang, L.; Liu, X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J. Cancer, 2020, 11(12), 3588-3595.
[http://dx.doi.org/10.7150/jca.42338] [PMID: 32284755]
[272]
Cai, J.; Yang, F.; Zhan, H.; Situ, J.; Li, W.; Mao, Y.; Luo, Y. RNA m6A Methyltransferase METTL3 Promotes The Growth Of Prostate Cancer By Regulating Hedgehog Pathway. OncoTargets Ther., 2019, 12, 9143-9152.
[http://dx.doi.org/10.2147/OTT.S226796] [PMID: 31806999]
[273]
Zhuang, Z.; Chen, L.; Mao, Y.; Zheng, Q.; Li, H.; Huang, Y.; Hu, Z.; Jin, Y. Diagnostic, progressive and prognostic performance of m6A methylation RNA regulators in lung adenocarcinoma. Int. J. Biol. Sci., 2020, 16(11), 1785-1797.
[http://dx.doi.org/10.7150/ijbs.39046] [PMID: 32398949]
[274]
Wang, Q.; Chen, C.; Ding, Q.; Zhao, Y.; Wang, Z.; Chen, J.; Jiang, Z.; Zhang, Y.; Xu, G.; Zhang, J.; Zhou, J.; Sun, B.; Zou, X.; Wang, S. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut, 2020, 69(7), 1193-1205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639] [PMID: 31582403]
[275]
Geng, Y.; Guan, R.; Hong, W.; Huang, B.; Liu, P.; Guo, X.; Hu, S.; Yu, M.; Hou, B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann. Transl. Med., 2020, 8(6), 387.
[http://dx.doi.org/10.21037/atm.2020.03.98] [PMID: 32355831]
[276]
Xia, T.; Wu, X.; Cao, M.; Zhang, P.; Shi, G.; Zhang, J.; Lu, Z.; Wu, P.; Cai, B.; Miao, Y.; Jiang, K. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol. Res. Pract., 2019, 215(11)
[http://dx.doi.org/10.1016/j.prp.2019.152666] [PMID: 31606241]
[277]
Chen, M.; Wong, C.M. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol. Cancer, 2020, 19(1), 44.
[http://dx.doi.org/10.1186/s12943-020-01172-y] [PMID: 32111216]
[278]
Chen, R.X.; Chen, X.; Xia, L.P.; Zhang, J.X.; Pan, Z.Z.; Ma, X.D.; Han, K.; Chen, J.W.; Judde, J.G.; Deas, O.; Wang, F.; Ma, N.F.; Guan, X.; Yun, J.P.; Wang, F.W.; Xu, R.H.; Dan Xie, N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun., 2019, 10(1), 4695.
[http://dx.doi.org/10.1038/s41467-019-12651-2] [PMID: 31619685]
[279]
Wang, X.; Fu, X.; Zhang, J.; Xiong, C.; Zhang, S.; Lv, Y. Identification and validation of m6A RNA methylation regulators with clinical prognostic value in Papillary thyroid cancer. Cancer Cell Int., 2020, 20, 203.
[http://dx.doi.org/10.1186/s12935-020-01283-y] [PMID: 32514248]
[280]
Gao, Q.; Zheng, J.; Ni, Z.; Sun, P.; Yang, C.; Cheng, M.; Wu, M.; Zhang, X.; Yuan, L.; Zhang, Y.; Li, Y. The m6A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int., 2020, 2020
[http://dx.doi.org/10.1155/2020/8849218] [PMID: 32676121]
[281]
Wang, J.; Zhang, C.; He, W.; Gou, X. Effect of m6A RNA Methylation Regulators on Malignant Progression and Prognosis in Renal Clear Cell Carcinoma. Front. Oncol., 2020, 10, 3.
[http://dx.doi.org/10.3389/fonc.2020.00003] [PMID: 32038982]
[282]
Zhuang, C.; Zhuang, C.; Luo, X.; Huang, X.; Yao, L.; Li, J.; Li, Y.; Xiong, T.; Ye, J.; Zhang, F.; Gui, Y. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J. Cell. Mol. Med., 2019, 23(3), 2163-2173.
[http://dx.doi.org/10.1111/jcmm.14128] [PMID: 30648791]
[283]
Shen, C.; Xuan, B.; Yan, T.; Ma, Y.; Xu, P.; Tian, X.; Zhang, X.; Cao, Y.; Ma, D.; Zhu, X.; Zhang, Y.; Fang, J.Y.; Chen, H.; Hong, J. m6A-dependent glycolysis enhances colorectal cancer progression. Mol. Cancer, 2020, 19(1), 72.
[http://dx.doi.org/10.1186/s12943-020-01190-w] [PMID: 32245489]
[284]
Zhang, J.; Cheng, X.; Wang, J.; Huang, Y.; Yuan, J.; Guo, D. Gene signature and prognostic merit of M6a regulators in colorectal cancer. Exp. Biol. Med. (Maywood), 2020, 245(15), 1344-1354.
[http://dx.doi.org/10.1177/1535370220936145] [PMID: 32605475]
[285]
Sun, T. LNC942 promoting METTL14-mediated m(6)A methylation in breast cancer cell proliferation and progression. Oncogene, 2020.
[http://dx.doi.org/10.1038/s41388-020-1338-9]
[286]
Liu, S.; Li, Q.; Chen, K.; Zhang, Q.; Li, G.; Zhuo, L.; Zhai, B.; Sui, X.; Hu, X.; Xie, T. The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression. Biomed. Pharmacother., 2020, 127
[http://dx.doi.org/10.1016/j.biopha.2020.110098] [PMID: 32299028]
[287]
Ianniello, Z.; Paiardini, A.; Fatica, A. N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Front. Oncol., 2019, 9, 251.
[http://dx.doi.org/10.3389/fonc.2019.00251] [PMID: 31024852]
[288]
Zhang, W.; He, X.; Hu, J.; Yang, P.; Liu, C.; Wang, J.; An, R.; Zhen, J.; Pang, M.; Hu, K.; Ke, X.; Zhang, X.; Jing, H. Dysregulation of N6-methyladenosine regulators predicts poor patient survival in mantle cell lymphoma. Oncol. Lett., 2019, 18(4), 3682-3690.
[http://dx.doi.org/10.3892/ol.2019.10708] [PMID: 31516580]
[289]
Wen, L.; Pan, X.; Yu, Y.; Yang, B. Down-regulation of FTO promotes proliferation and migration, and protects bladder cancer cells from cisplatin-induced cytotoxicity. BMC Urol., 2020, 20(1), 39.
[http://dx.doi.org/10.1186/s12894-020-00612-7] [PMID: 32299393]
[290]
Rong, Z.X.; Li, Z.; He, J.J.; Liu, L.Y.; Ren, X.X.; Gao, J.; Mu, Y.; Guan, Y.D.; Duan, Y.M.; Zhang, X.P.; Zhang, D.X.; Li, N.; Deng, Y.Z.; Sun, L.Q. Downregulation of Fat Mass and Obesity Associated (FTO) Promotes the Progression of Intrahepatic Cholangiocarcinoma. Front. Oncol., 2019, 9, 369.
[http://dx.doi.org/10.3389/fonc.2019.00369] [PMID: 31143705]
[291]
Li, X.; Tang, J.; Huang, W.; Wang, F.; Li, P.; Qin, C.; Qin, Z.; Zou, Q.; Wei, J.; Hua, L.; Yang, H.; Wang, Z. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget, 2017, 8(56), 96103-96116.
[http://dx.doi.org/10.18632/oncotarget.21726] [PMID: 29221190]
[292]
Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G.; Sun, G.; Lu, Z.; Huang, Y.; Yang, C.G.; Riggs, A.D.; He, C.; Shi, Y. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep., 2017, 18(11), 2622-2634.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[293]
Li, J.; Han, Y.; Zhang, H.; Qian, Z.; Jia, W.; Gao, Y.; Zheng, H.; Li, B. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem. Biophys. Res. Commun., 2019, 512(3), 479-485.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.093] [PMID: 30905413]
[294]
Yang, S.; Wei, J.; Cui, Y.H.; Park, G.; Shah, P.; Deng, Y.; Aplin, A.E.; Lu, Z.; Hwang, S.; He, C.; He, Y.Y. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun., 2019, 10(1), 2782.
[http://dx.doi.org/10.1038/s41467-019-10669-0] [PMID: 31239444]
[295]
Xu, D.; Shao, W.; Jiang, Y.; Wang, X.; Liu, Y.; Liu, X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol. Rep., 2017, 38(4), 2285-2292.
[http://dx.doi.org/10.3892/or.2017.5904] [PMID: 28849183]
[296]
Akbari, M.E.; Gholamalizadeh, M.; Doaei, S.; Mirsafa, F. FTO Gene Affects Obesity and Breast Cancer Through Similar Mechanisms: A New Insight into the Molecular Therapeutic Targets. Nutr. Cancer, 2018, 70(1), 30-36.
[http://dx.doi.org/10.1080/01635581.2018.1397709] [PMID: 29220587]
[297]
Liu, Y.; Wang, R.; Zhang, L.; Li, J.; Lou, K.; Shi, B. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol. Lett., 2017, 13(6), 4685-4690.
[http://dx.doi.org/10.3892/ol.2017.6038] [PMID: 28599470]
[298]
Li, Z.; Weng, H.; Su, R.; Weng, X.; Zuo, Z.; Li, C.; Huang, H.; Nachtergaele, S.; Dong, L.; Hu, C.; Qin, X.; Tang, L.; Wang, Y.; Hong, G.M.; Huang, H.; Wang, X.; Chen, P.; Gurbuxani, S.; Arnovitz, S.; Li, Y.; Li, S.; Strong, J.; Neilly, M.B.; Larson, R.A.; Jiang, X.; Zhang, P.; Jin, J.; He, C.; Chen, J. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31(1), 127-141.
[http://dx.doi.org/10.1016/j.ccell.2016.11.017] [PMID: 28017614]
[299]
Su, R. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell., 2018, 172(1-2), 90-105.
[300]
Weng, H. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell., 2018, 22(2), 191-205.
[301]
Bansal, H.; Yihua, Q.; Iyer, S.P.; Ganapathy, S.; Proia, D.A.; Penalva, L.O.; Uren, P.J.; Suresh, U.; Carew, J.S.; Karnad, A.B.; Weitman, S.; Tomlinson, G.E.; Rao, M.K.; Kornblau, S.M.; Bansal, S. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia, 2014, 28(5), 1171-1174.
[http://dx.doi.org/10.1038/leu.2014.16] [PMID: 24413322]
[302]
Vu, L.P.; Pickering, B.F.; Cheng, Y.; Zaccara, S.; Nguyen, D.; Minuesa, G.; Chou, T.; Chow, A.; Saletore, Y.; MacKay, M.; Schulman, J.; Famulare, C.; Patel, M.; Klimek, V.M.; Garrett-Bakelman, F.E.; Melnick, A.; Carroll, M.; Mason, C.E.; Jaffrey, S.R.; Kharas, M.G. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med., 2017, 23(11), 1369-1376.
[http://dx.doi.org/10.1038/nm.4416] [PMID: 28920958]
[303]
Han, L.; Diao, L.; Yu, S.; Xu, X.; Li, J.; Zhang, R.; Yang, Y.; Werner, H.M.J.; Eterovic, A.K.; Yuan, Y.; Li, J.; Nair, N.; Minelli, R.; Tsang, Y.H.; Cheung, L.W.T.; Jeong, K.J.; Roszik, J.; Ju, Z.; Woodman, S.E.; Lu, Y.; Scott, K.L.; Li, J.B.; Mills, G.B.; Liang, H. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell, 2015, 28(4), 515-528.
[http://dx.doi.org/10.1016/j.ccell.2015.08.013] [PMID: 26439496]
[304]
Paz-Yaacov, N.; Bazak, L.; Buchumenski, I.; Porath, H.T.; Danan-Gotthold, M.; Knisbacher, B.A.; Eisenberg, E.; Levanon, E.Y. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. Cell Rep., 2015, 13(2), 267-276.
[http://dx.doi.org/10.1016/j.celrep.2015.08.080] [PMID: 26440895]
[305]
Zipeto, M.A.; Court, A.C.; Sadarangani, A.; Delos Santos, N.P.; Balaian, L.; Chun, H.J.; Pineda, G.; Morris, S.R.; Mason, C.N.; Geron, I.; Barrett, C.; Goff, D.J.; Wall, R.; Pellecchia, M.; Minden, M.; Frazer, K.A.; Marra, M.A.; Crews, L.A.; Jiang, Q.; Jamieson, C.H.M. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell, 2016, 19(2), 177-191.
[http://dx.doi.org/10.1016/j.stem.2016.05.004] [PMID: 27292188]
[306]
Jiang, Q. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. Cancer Cell., 2019, 35(1), 81-94.
[http://dx.doi.org/10.1016/j.ccell.2018.11.017]
[307]
Zhang, W.C.; Slack, F.J. ADARs Edit MicroRNAs to Promote Leukemic Stem Cell Activity. Cell Stem Cell, 2016, 19(2), 141-142.
[http://dx.doi.org/10.1016/j.stem.2016.07.012] [PMID: 27494666]
[308]
Cenci, C.; Barzotti, R.; Galeano, F.; Corbelli, S.; Rota, R.; Massimi, L.; Di Rocco, C.; O’Connell, M.A.; Gallo, A. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J. Biol. Chem., 2008, 283(11), 7251-7260.
[http://dx.doi.org/10.1074/jbc.M708316200] [PMID: 18178553]
[309]
Chen, Y.B.; Liao, X.Y.; Zhang, J.B.; Wang, F.; Qin, H.D.; Zhang, L.; Shugart, Y.Y.; Zeng, Y.X.; Jia, W.H. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int. J. Oncol., 2017, 50(2), 622-630.
[http://dx.doi.org/10.3892/ijo.2016.3823] [PMID: 28035363]
[310]
Shimokawa, T.; Rahman, M.F.; Tostar, U.; Sonkoly, E.; Ståhle, M.; Pivarcsi, A.; Palaniswamy, R.; Zaphiropoulos, P.G. RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol., 2013, 10(2), 321-333.
[http://dx.doi.org/10.4161/rna.23343] [PMID: 23324600]
[311]
Bedi, R.K.; Huang, D.; Wiedmer, L.; Li, Y.; Dolbois, A.; Wojdyla, J.A.; Sharpe, M.E.; Caflisch, A.; Sledz, P. Selectively Disrupting m6A-Dependent Protein-RNA Interactions with Fragments. ACS Chem. Biol., 2020, 15(3), 618-625.
[http://dx.doi.org/10.1021/acschembio.9b00894] [PMID: 32101404]
[312]
Selberg, S. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep., 2019, 26(13), 3762-3771.
[http://dx.doi.org/10.1016/j.celrep.2019.02.100]
[313]
Huang, Y.; Yan, J.; Li, Q.; Li, J.; Gong, S.; Zhou, H.; Gan, J.; Jiang, H.; Jia, G.F.; Luo, C.; Yang, C.G. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res., 2015, 43(1), 373-384.
[http://dx.doi.org/10.1093/nar/gku1276] [PMID: 25452335]
[314]
Das, M.; Yang, T.; Dong, J.; Prasetya, F.; Xie, Y.; Wong, K.H.Q.; Cheong, A.; Woon, E.C.Y. Multiprotein Dynamic Combinatorial Chemistry: A Strategy for the Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3. Chem. Asian J., 2018, 13(19), 2854-2867.
[http://dx.doi.org/10.1002/asia.201800729] [PMID: 29917331]
[315]
Busch, H.; Busch, R.K.; Freeman, J.W.; Perlaky, L. Nucleolar protein P120 and its targeting for cancer chemotherapy. Boll. Soc. Ital. Biol. Sper., 1991, 67(8), 739-750.
[PMID: 1809302]
[316]
Hilbe, W.; Gächter, A.; Duba, H.C.; Dirnhofer, S.; Eisterer, W.; Schmid, T.; Mildner, A.; Bodner, J.; Wöll, E. Comparison of automated cellular imaging system and manual microscopy for immunohistochemically stained cryostat sections of lung cancer specimens applying p53, ki-67 and p120. Oncol. Rep., 2003, 10(1), 15-20.
[http://dx.doi.org/10.3892/or.10.1.15] [PMID: 12469137]
[317]
Kosi, N.; Alić, I.; Kolačević, M.; Vrsaljko, N.; Jovanov Milošević, N.; Sobol, M.; Philimonenko, A.; Hozák, P.; Gajović, S.; Pochet, R.; Mitrečić, D. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain. Brain Res., 2015, 1597, 65-76.
[http://dx.doi.org/10.1016/j.brainres.2014.11.040] [PMID: 25481415]
[318]
Hong, J.; Lee, J.H.; Chung, I.K. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J. Cell Sci., 2016, 129(8), 1566-1579.
[http://dx.doi.org/10.1242/jcs.181040] [PMID: 26906424]
[319]
Bourgeois, G.; Ney, M.; Gaspar, I.; Aigueperse, C.; Schaefer, M.; Kellner, S.; Helm, M.; Motorin, Y. Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120. PLoS One, 2015, 10(7)e0133321
[http://dx.doi.org/10.1371/journal.pone.0133321] [PMID: 26196125]
[320]
Zhong, C.H.; Prima, V.; Liang, X.; Frye, C.; McGavran, L.; Meltesen, L.; Wei, Q.; Boomer, T.; Varella-Garcia, M.; Gump, J.; Hunger, S.P. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia, 2008, 22(4), 723-729.
[http://dx.doi.org/10.1038/sj.leu.2405084] [PMID: 18185522]
[321]
Letessier, A.; Sircoulomb, F.; Ginestier, C.; Cervera, N.; Monville, F.; Gelsi-Boyer, V.; Esterni, B.; Geneix, J.; Finetti, P.; Zemmour, C.; Viens, P.; Charafe-Jauffret, E.; Jacquemier, J.; Birnbaum, D.; Chaffanet, M. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer, 2006, 6, 245.
[http://dx.doi.org/10.1186/1471-2407-6-245] [PMID: 17040570]
[322]
Mei, L.; Shen, C.; Miao, R.; Wang, J.Z.; Cao, M.D.; Zhang, Y.S.; Shi, L.H.; Zhao, G.H.; Wang, M.H.; Wu, L.S.; Wei, J.F. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57Kip2 by an m5C-dependent manner. Cell Death Dis., 2020, 11(4), 270.
[http://dx.doi.org/10.1038/s41419-020-2487-z] [PMID: 32332707]
[323]
Gao, Y.; Wang, Z.; Zhu, Y.; Zhu, Q.; Yang, Y.; Jin, Y.; Zhang, F.; Jiang, L.; Ye, Y.; Li, H.; Zhang, Y.; Liang, H.; Xiang, S.; Miao, H.; Liu, Y.; Hao, Y. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci., 2019, 110(11), 3510-3519.
[http://dx.doi.org/10.1111/cas.14190] [PMID: 31487418]
[324]
Gkatza, N.A.; Castro, C.; Harvey, R.F.; Heiß, M.; Popis, M.C.; Blanco, S.; Bornelöv, S.; Sajini, A.A.; Gleeson, J.G.; Griffin, J.L.; West, J.A.; Kellner, S.; Willis, A.E.; Dietmann, S.; Frye, M. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol., 2019, 17(6)
[http://dx.doi.org/10.1371/journal.pbio.3000297] [PMID: 31199786]
[325]
Sajini, A.A.; Choudhury, N.R.; Wagner, R.E.; Bornelöv, S.; Selmi, T.; Spanos, C.; Dietmann, S.; Rappsilber, J.; Michlewski, G.; Frye, M. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat. Commun., 2019, 10(1), 2550.
[http://dx.doi.org/10.1038/s41467-019-10020-7] [PMID: 31186410]
[326]
Lu, L.; Gaffney, S.G.; Cannataro, V.L.; Townsend, J. Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the effect of T cell activation score on patient survival in head and neck squamous carcinoma. Oral Oncol., 2020, 101
[http://dx.doi.org/10.1016/j.oraloncology.2019.104554] [PMID: 31887619]
[327]
Genenncher, B.; Durdevic, Z.; Hanna, K.; Zinkl, D.; Mobin, M.B.; Senturk, N.; Da Silva, B.; Legrand, C.; Carré, C.; Lyko, F.; Schaefer, M. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats. Cell Rep., 2018, 22(7), 1861-1874.
[http://dx.doi.org/10.1016/j.celrep.2018.01.061] [PMID: 29444437]
[328]
Flores, J.V.; Cordero-Espinoza, L.; Oeztuerk-Winder, F.; Andersson-Rolf, A.; Selmi, T.; Blanco, S.; Tailor, J.; Dietmann, S.; Frye, M. Cytosine-5 RNA Methylation Regulates Neural Stem Cell Differentiation and Motility. Stem Cell Reports, 2017, 8(1), 112-124.
[http://dx.doi.org/10.1016/j.stemcr.2016.11.014] [PMID: 28041877]
[329]
Yi, J.; Gao, R.; Chen, Y.; Yang, Z.; Han, P.; Zhang, H.; Dou, Y.; Liu, W.; Wang, W.; Du, G.; Xu, Y.; Wang, J. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget, 2017, 8(13), 20751-20765.
[http://dx.doi.org/10.18632/oncotarget.10612] [PMID: 27447970]
[330]
Alshaker, H.; Wang, Q.; Brewer, D.; Pchejetski, D. Transcriptome-Wide Effects of Sphingosine Kinases Knockdown in Metastatic Prostate and Breast Cancer Cells: Implications for Therapeutic Targeting. Front. Pharmacol., 2019, 10, 303.
[http://dx.doi.org/10.3389/fphar.2019.00303] [PMID: 30971929]
[331]
Trixl, L.; Amort, T.; Wille, A.; Zinni, M.; Ebner, S.; Hechenberger, C.; Eichin, F.; Gabriel, H.; Schoberleitner, I.; Huang, A.; Piatti, P.; Nat, R.; Troppmair, J.; Lusser, A. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell. Mol. Life Sci., 2018, 75(8), 1483-1497.
[http://dx.doi.org/10.1007/s00018-017-2700-0] [PMID: 29103146]
[332]
He, Y.; Yu, X.; Li, J.; Zhang, Q.; Zheng, Q.; Guo, W. Role of m5C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma. Am. J. Transl. Res., 2020, 12(3), 912-922.
[PMID: 32269723]
[333]
Kar, S.P.; Beesley, J.; Amin Al Olama, A.; Michailidou, K.; Tyrer, J.; Kote-Jarai, Z.; Lawrenson, K.; Lindstrom, S.; Ramus, S.J.; Thompson, D.J.; Kibel, A.S.; Dansonka-Mieszkowska, A.; Michael, A.; Dieffenbach, A.K.; Gentry-Maharaj, A.; Whittemore, A.S.; Wolk, A.; Monteiro, A.; Peixoto, A.; Kierzek, A.; Cox, A.; Rudolph, A.; Gonzalez-Neira, A.; Wu, A.H.; Lindblom, A.; Swerdlow, A.; Ziogas, A.; Ekici, A.B.; Burwinkel, B.; Karlan, B.Y.; Nordestgaard, B.G.; Blomqvist, C.; Phelan, C.; McLean, C.; Pearce, C.L.; Vachon, C.; Cybulski, C.; Slavov, C.; Stegmaier, C.; Maier, C.; Ambrosone, C.B.; Høgdall, C.K.; Teerlink, C.C.; Kang, D.; Tessier, D.C.; Schaid, D.J.; Stram, D.O.; Cramer, D.W.; Neal, D.E.; Eccles, D.; Flesch-Janys, D.; Edwards, D.R.; Wokozorczyk, D.; Levine, D.A.; Yannoukakos, D.; Sawyer, E.J.; Bandera, E.V.; Poole, E.M.; Goode, E.L.; Khusnutdinova, E.; Høgdall, E.; Song, F.; Bruinsma, F.; Heitz, F.; Modugno, F.; Hamdy, F.C.; Wiklund, F.; Giles, G.G.; Olsson, H.; Wildiers, H.; Ulmer, H.U.; Pandha, H.; Risch, H.A.; Darabi, H.; Salvesen, H.B.; Nevanlinna, H.; Gronberg, H.; Brenner, H.; Brauch, H.; Anton-Culver, H.; Song, H.; Lim, H.Y.; McNeish, I.; Campbell, I.; Vergote, I.; Gronwald, J.; Lubiński, J.; Stanford, J.L.; Benítez, J.; Doherty, J.A.; Permuth, J.B.; Chang-Claude, J.; Donovan, J.L.; Dennis, J.; Schildkraut, J.M.; Schleutker, J.; Hopper, J.L.; Kupryjanczyk, J.; Park, J.Y.; Figueroa, J.; Clements, J.A.; Knight, J.A.; Peto, J.; Cunningham, J.M.; Pow-Sang, J.; Batra, J.; Czene, K.; Lu, K.H.; Herkommer, K.; Khaw, K.T.; Matsuo, K.; Muir, K.; Offitt, K.; Chen, K.; Moysich, K.B.; Aittomäki, K.; Odunsi, K.; Kiemeney, L.A.; Massuger, L.F.; Fitzgerald, L.M.; Cook, L.S.; Cannon-Albright, L.; Hooning, M.J.; Pike, M.C.; Bolla, M.K.; Luedeke, M.; Teixeira, M.R.; Goodman, M.T.; Schmidt, M.K.; Riggan, M.; Aly, M.; Rossing, M.A.; Beckmann, M.W.; Moisse, M.; Sanderson, M.; Southey, M.C.; Jones, M.; Lush, M.; Hildebrandt, M.A.; Hou, M.F.; Schoemaker, M.J.; Garcia-Closas, M.; Bogdanova, N.; Rahman, N.; Le, N.D.; Orr, N.; Wentzensen, N.; Pashayan, N.; Peterlongo, P.; Guénel, P.; Brennan, P.; Paulo, P.; Webb, P.M.; Broberg, P.; Fasching, P.A.; Devilee, P.; Wang, Q.; Cai, Q.; Li, Q.; Kaneva, R.; Butzow, R.; Kopperud, R.K.; Schmutzler, R.K.; Stephenson, R.A.; MacInnis, R.J.; Hoover, R.N.; Winqvist, R.; Ness, R.; Milne, R.L.; Travis, R.C.; Benlloch, S.; Olson, S.H.; McDonnell, S.K.; Tworoger, S.S.; Maia, S.; Berndt, S.; Lee, S.C.; Teo, S.H.; Thibodeau, S.N.; Bojesen, S.E.; Gapstur, S.M.; Kjær, S.K.; Pejovic, T.; Tammela, T.L.; Dörk, T.; Brüning, T.; Wahlfors, T.; Key, T.J.; Edwards, T.L.; Menon, U.; Hamann, U.; Mitev, V.; Kosma, V.M.; Setiawan, V.W.; Kristensen, V.; Arndt, V.; Vogel, W.; Zheng, W.; Sieh, W.; Blot, W.J.; Kluzniak, W.; Shu, X.O.; Gao, Y.T.; Schumacher, F.; Freedman, M.L.; Berchuck, A.; Dunning, A.M.; Simard, J.; Haiman, C.A.; Spurdle, A.; Sellers, T.A.; Hunter, D.J.; Henderson, B.E.; Kraft, P.; Chanock, S.J.; Couch, F.J.; Hall, P.; Gayther, S.A.; Easton, D.F.; Chenevix-Trench, G.; Eeles, R.; Pharoah, P.D.; Lambrechts, D. ABCTB Investigators; AOCS Study Group & Australian Cancer Study (Ovarian Cancer); APCB BioResource; kConFab Investigators; NBCS Investigators; GENICA Network; PRACTICAL consortium. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov., 2016, 6(9), 1052-1067.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1227] [PMID: 27432226]
[334]
Heissenberger, C.; Liendl, L.; Nagelreiter, F.; Gonskikh, Y.; Yang, G.; Stelzer, E.M.; Krammer, T.L.; Micutkova, L.; Vogt, S.; Kreil, D.P.; Sekot, G.; Siena, E.; Poser, I.; Harreither, E.; Linder, A.; Ehret, V.; Helbich, T.H.; Grillari-Voglauer, R.; Jansen-Dürr, P.; Koš, M.; Polacek, N.; Grillari, J.; Schosserer, M. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res., 2019, 47(22), 11807-11825.
[http://dx.doi.org/10.1093/nar/gkz1043] [PMID: 31722427]
[335]
Janin, M.; Ortiz-Barahona, V.; de Moura, M.C.; Martínez-Cardús, A.; Llinàs-Arias, P.; Soler, M.; Nachmani, D.; Pelletier, J.; Schumann, U.; Calleja-Cervantes, M.E.; Moran, S.; Guil, S.; Bueno-Costa, A.; Piñeyro, D.; Perez-Salvia, M.; Rosselló-Tortella, M.; Piqué, L.; Bech-Serra, J.J.; De La Torre, C.; Vidal, A.; Martínez-Iniesta, M.; Martín-Tejera, J.F.; Villanueva, A.; Arias, A.; Cuartas, I.; Aransay, A.M.; La Madrid, A.M.; Carcaboso, A.M.; Santa-Maria, V.; Mora, J.; Fernandez, A.F.; Fraga, M.F.; Aldecoa, I.; Pedrosa, L.; Graus, F.; Vidal, N.; Martínez-Soler, F.; Tortosa, A.; Carrato, C.; Balañá, C.; Boudreau, M.W.; Hergenrother, P.J.; Kötter, P.; Entian, K.D.; Hench, J.; Frank, S.; Mansouri, S.; Zadeh, G.; Dans, P.D.; Orozco, M.; Thomas, G.; Blanco, S.; Seoane, J.; Preiss, T.; Pandolfi, P.P.; Esteller, M. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol., 2019, 138(6), 1053-1074.
[http://dx.doi.org/10.1007/s00401-019-02062-4] [PMID: 31428936]
[336]
Elhardt, W.; Shanmugam, R.; Jurkowski, T.P.; Jeltsch, A. Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie, 2015, 112, 66-72.
[http://dx.doi.org/10.1016/j.biochi.2015.02.022] [PMID: 25747896]
[337]
Lewinska, A.; Klukowska-Rötzler, J.; Deregowska, A.; Adamczyk-Grochala, J.; Wnuk, M. c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biol., 2019, 24
[http://dx.doi.org/10.1016/j.redox.2019.101163] [PMID: 30901604]
[338]
Schaefer, M.; Hagemann, S.; Hanna, K.; Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res., 2009, 69(20), 8127-8132.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0458] [PMID: 19808971]
[339]
Annereau, M.; Willekens, C.; El Halabi, L.; Chahine, C.; Saada, V.; Auger, N.; Danu, A.; Bermudez, E.; Lazarovici, J.; Ghez, D.; Leary, A.; Pistilli, B.; Lemare, F.; Solary, E.; de Botton, S.; Desmaris, R.P.; Micol, J.B. Use of 5-azacitidine for therapy-related myeloid neoplasms in patients with concomitant active neoplastic disease. Leuk. Res., 2017, 55, 58-64.
[http://dx.doi.org/10.1016/j.leukres.2017.01.024] [PMID: 28131982]
[340]
Daver, N.; Boddu, P.; Garcia-Manero, G.; Yadav, S.S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia, 2018, 32(5), 1094-1105.
[http://dx.doi.org/10.1038/s41375-018-0070-8] [PMID: 29487386]
[341]
Li, L.H.; Olin, E.J.; Buskirk, H.H.; Reineke, L.M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res., 1970, 30(11), 2760-2769.
[PMID: 5487063]
[342]
Sala, L.; Franco-Valls, H.; Stanisavljevic, J.; Curto, J.; Vergés, J.; Peña, R.; Duch, P.; Alcaraz, J.; García de Herreros, A.; Baulida, J. Abrogation of myofibroblast activities in metastasis and fibrosis by methyltransferase inhibition. Int. J. Cancer, 2019, 145(11), 3064-3077.
[http://dx.doi.org/10.1002/ijc.32376] [PMID: 31032902]
[343]
Stevens, A.P.; Spangler, B.; Wallner, S.; Kreutz, M.; Dettmer, K.; Oefner, P.J.; Bosserhoff, A.K. Direct and tumor microenvironment mediated influences of 5′-deoxy-5′-(methylthio)adenosine on tumor progression of malignant melanoma. J. Cell. Biochem., 2009, 106(2), 210-219.
[http://dx.doi.org/10.1002/jcb.21984] [PMID: 19097084]
[344]
Borden, K.L.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk. Lymphoma, 2010, 51(10), 1805-1815.
[http://dx.doi.org/10.3109/10428194.2010.496506] [PMID: 20629523]
[345]
Kosciuczuk, E.M.; Saleiro, D.; Platanias, L.C. Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine, 2017, 89, 116-121.
[http://dx.doi.org/10.1016/j.cyto.2016.01.024] [PMID: 27094611]
[346]
Schiff, D.; Jaeckle, K.A.; Anderson, S.K.; Galanis, E.; Giannini, C.; Buckner, J.C.; Stella, P.; Flynn, P.J.; Erickson, B.J.; Schwerkoske, J.F.; Kaluza, V.; Twohy, E.; Dancey, J.; Wright, J.; Sarkaria, J.N. Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer, 2018, 124(7), 1455-1463.
[http://dx.doi.org/10.1002/cncr.31219] [PMID: 29313954]
[347]
Grignani, G.; Palmerini, E.; Ferraresi, V.; D’Ambrosio, L.; Bertulli, R.; Asaftei, S.D.; Tamburini, A.; Pignochino, Y.; Sangiolo, D.; Marchesi, E.; Capozzi, F.; Biagini, R.; Gambarotti, M.; Fagioli, F.; Casali, P.G.; Picci, P.; Ferrari, S.; Aglietta, M. Italian Sarcoma Group. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol., 2015, 16(1), 98-107.
[http://dx.doi.org/10.1016/S1470-2045(14)71136-2] [PMID: 25498219]
[348]
Wataya-Kaneda, M.; Nakamura, A.; Tanaka, M.; Hayashi, M.; Matsumoto, S.; Yamamoto, K.; Katayama, I. Efficacy and Safety of Topical Sirolimus Therapy for Facial Angiofibromas in the Tuberous Sclerosis Complex : A Randomized Clinical Trial. JAMA Dermatol., 2017, 153(1), 39-48.
[http://dx.doi.org/10.1001/jamadermatol.2016.3545] [PMID: 27837201]
[349]
Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; Tomassetti, P.; Pavel, M.E.; Hoosen, S.; Haas, T.; Lincy, J.; Lebwohl, D.; Öberg, K. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med., 2011, 364(6), 514-523.
[http://dx.doi.org/10.1056/NEJMoa1009290] [PMID: 21306238]
[350]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[351]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[352]
Brown, R.; Curry, E.; Magnani, L.; Wilhelm-Benartzi, C.S.; Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer, 2014, 14(11), 747-753.
[http://dx.doi.org/10.1038/nrc3819] [PMID: 25253389]
[353]
Wendel, H.G.; Lowe, S.W. Reversing drug resistance in vivo. Cell Cycle, 2004, 3(7), 847-849.
[http://dx.doi.org/10.4161/cc.3.7.976] [PMID: 15190216]
[354]
Cao, J.; Sun, X.; Zhang, X.; Chen, D. Inhibition of eIF4E cooperates with chemotherapy and immunotherapy in renal cell carcinoma. Clin. Transl. Oncol., 2018, 20(6), 761-767.
[http://dx.doi.org/10.1007/s12094-017-1786-z] [PMID: 29086249]
[355]
Boussemart, L.; Malka-Mahieu, H.; Girault, I.; Allard, D.; Hemmingsson, O.; Tomasic, G.; Thomas, M.; Basmadjian, C.; Ribeiro, N.; Thuaud, F.; Mateus, C.; Routier, E.; Kamsu-Kom, N.; Agoussi, S.; Eggermont, A.M.; Désaubry, L.; Robert, C.; Vagner, S. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 2014, 513(7516), 105-109.
[http://dx.doi.org/10.1038/nature13572] [PMID: 25079330]
[356]
Ilic, N.; Utermark, T.; Widlund, H.R.; Roberts, T.M. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc. Natl. Acad. Sci. USA, 2011, 108(37), E699-E708.
[http://dx.doi.org/10.1073/pnas.1108237108] [PMID: 21876152]
[357]
Katsha, A.; Wang, L.; Arras, J.; Omar, O.M.; Ecsedy, J.; Belkhiri, A.; El-Rifai, W. Activation of EIF4E by Aurora Kinase A Depicts a Novel Druggable Axis in Everolimus-Resistant Cancer Cells. Clin. Cancer Res., 2017, 23(14), 3756-3768.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2141] [PMID: 28073841]
[358]
Xi, C.; Wang, L.; Yu, J.; Ye, H.; Cao, L.; Gong, Z. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem. Biophys. Res. Commun., 2018, 503(4), 2286-2292.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.150] [PMID: 29959920]
[359]
Matsumoto, M.; Seike, M.; Noro, R.; Soeno, C.; Sugano, T.; Takeuchi, S.; Miyanaga, A.; Kitamura, K.; Kubota, K.; Gemma, A. Control of the MYC-eIF4E axis plus mTOR inhibitor treatment in small cell lung cancer. BMC Cancer, 2015, 15, 241.
[http://dx.doi.org/10.1186/s12885-015-1202-4] [PMID: 25884680]
[360]
Patel, M.R.; Jay-Dixon, J.; Sadiq, A.A.; Jacobson, B.A.; Kratzke, R.A. Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J. Thorac. Oncol., 2013, 8(9), 1142-1147.
[http://dx.doi.org/10.1097/JTO.0b013e31829ce963] [PMID: 23883783]
[361]
Zhan, Y.; Dahabieh, M.S.; Rajakumar, A.; Dobocan, M.C.; M’Boutchou, M.N.; Goncalves, C.; Lucy, S.L.; Pettersson, F.; Topisirovic, I.; van Kempen, L.; Del Rincón, S.V.; Miller, W.H., Jr The role of eIF4E in response and acquired resistance to vemurafenib in melanoma. J. Invest. Dermatol., 2015, 135(5), 1368-1376.
[http://dx.doi.org/10.1038/jid.2015.11] [PMID: 25615552]
[362]
Andrieu, C.; Taieb, D.; Baylot, V.; Ettinger, S.; Soubeyran, P.; De-Thonel, A.; Nelson, C.; Garrido, C.; So, A.; Fazli, L.; Bladou, F.; Gleave, M.; Iovanna, J.L.; Rocchi, P. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene, 2010, 29(13), 1883-1896.
[http://dx.doi.org/10.1038/onc.2009.479] [PMID: 20101233]
[363]
Gong, C.; Tsoi, H.; Mok, K.C.; Cheung, J.; Man, E.P.S.; Fujino, K.; Wong, A.; Lam, E.W.F.; Khoo, U.S. Phosphorylation independent eIF4E translational reprogramming of selective mRNAs determines tamoxifen resistance in breast cancer. Oncogene, 2020, 39(15), 3206-3217.
[http://dx.doi.org/10.1038/s41388-020-1210-y] [PMID: 32066877]
[364]
Wang, D.; Ma, J.; Ji, X.; Xu, F.; Wei, Y. miR-141 regulation of EIF4E expression affects docetaxel chemoresistance of non-small cell lung cancer. Oncol. Rep., 2017, 37(1), 608-616.
[http://dx.doi.org/10.3892/or.2016.5214] [PMID: 27840955]
[365]
Garrido, M.F.; Martin, N.J.; Bertrand, M.; Gaudin, C.; Commo, F.; El Kalaany, N.; Al Nakouzi, N.; Fazli, L.; Del Nery, E.; Camonis, J.; Perez, F.; Lerondel, S.; Le Pape, A.; Compagno, D.; Gleave, M.; Loriot, Y.; Désaubry, L.; Vagner, S.; Fizazi, K.; Chauchereau, A. Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer. Clin. Cancer Res., 2019, 25(2), 710-723.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0704] [PMID: 30322877]
[366]
Cerezo, M.; Guemiri, R.; Druillennec, S.; Girault, I.; Malka-Mahieu, H.; Shen, S.; Allard, D.; Martineau, S.; Welsch, C.; Agoussi, S.; Estrada, C.; Adam, J.; Libenciuc, C.; Routier, E.; Roy, S.; Désaubry, L.; Eggermont, A.M.; Sonenberg, N.; Scoazec, J.Y.; Eychène, A.; Vagner, S.; Robert, C. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat. Med., 2018, 24(12), 1877-1886.
[http://dx.doi.org/10.1038/s41591-018-0217-1] [PMID: 30374200]
[367]
Taketo, K.; Konno, M.; Asai, A.; Koseki, J.; Toratani, M.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Ogawa, K. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol., 2018, 52(2), 621-629.
[PMID: 29345285]
[368]
Lin, Z.; Niu, Y.; Wan, A.; Chen, D.; Liang, H.; Chen, X.; Sun, L.; Zhan, S.; Chen, L.; Cheng, C.; Zhang, X.; Bu, X.; He, W.; Wan, G. RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J., 2020, 39(12)e103181
[http://dx.doi.org/10.15252/embj.2019103181] [PMID: 32368828]
[369]
Zhu, L.; Zhu, Y.; Han, S.; Chen, M.; Song, P.; Dai, D.; Xu, W.; Jiang, T.; Feng, L.; Shin, V.Y.; Wang, X.; Jin, H. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis., 2019, 10(6), 383.
[http://dx.doi.org/10.1038/s41419-019-1585-2] [PMID: 31097692]
[370]
Jin, D.; Guo, J.; Wu, Y.; Du, J.; Yang, L.; Wang, X.; Di, W.; Hu, B.; An, J.; Kong, L.; Pan, L.; Su, G. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J. Hematol. Oncol., 2019, 12(1), 135.
[http://dx.doi.org/10.1186/s13045-019-0830-6] [PMID: 31818312]
[371]
Uddin, M.B.; Roy, K.R.; Hosain, S.B.; Khiste, S.K.; Hill, R.A.; Jois, S.D.; Zhao, Y.; Tackett, A.J.; Liu, Y.Y. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem. Pharmacol., 2019, 160, 134-145.
[http://dx.doi.org/10.1016/j.bcp.2018.12.014] [PMID: 30578766]
[372]
Fukumoto, T.; Zhu, H.; Nacarelli, T.; Karakashev, S.; Fatkhutdinov, N.; Wu, S.; Liu, P.; Kossenkov, A.V.; Showe, L.C.; Jean, S.; Zhang, L.; Zhang, R. N6-Methylation of Adenosine of FZD10 mRNA Contributes to PARP Inhibitor Resistance. Cancer Res., 2019, 79(11), 2812-2820.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3592] [PMID: 30967398]
[373]
Meng, Q.; Wang, S.; Zhou, S.; Liu, H.; Ma, X.; Zhou, X.; Liu, H.; Xu, C.; Jiang, W. Dissecting the m6A methylation affection on afatinib resistance in non-small cell lung cancer. Pharmacogenomics J., 2020, 20(2), 227-234.
[http://dx.doi.org/10.1038/s41397-019-0110-4] [PMID: 31624334]
[374]
Yan, F.; Al-Kali, A.; Zhang, Z.; Liu, J.; Pang, J.; Zhao, N.; He, C.; Litzow, M.R.; Liu, S. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res., 2018, 28(11), 1062-1076.
[http://dx.doi.org/10.1038/s41422-018-0097-4] [PMID: 30297871]
[375]
Gannon, H.S.; Zou, T.; Kiessling, M.K.; Gao, G.F.; Cai, D.; Choi, P.S.; Ivan, A.P.; Buchumenski, I.; Berger, A.C.; Goldstein, J.T.; Cherniack, A.D.; Vazquez, F.; Tsherniak, A.; Levanon, E.Y.; Hahn, W.C.; Meyerson, M. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun., 2018, 9(1), 5450.
[http://dx.doi.org/10.1038/s41467-018-07824-4] [PMID: 30575730]
[376]
Ishizuka, J.J.; Manguso, R.T.; Cheruiyot, C.K.; Bi, K.; Panda, A.; Iracheta-Vellve, A.; Miller, B.C.; Du, P.P.; Yates, K.B.; Dubrot, J.; Buchumenski, I.; Comstock, D.E.; Brown, F.D.; Ayer, A.; Kohnle, I.C.; Pope, H.W.; Zimmer, M.D.; Sen, D.R.; Lane-Reticker, S.K.; Robitschek, E.J.; Griffin, G.K.; Collins, N.B.; Long, A.H.; Doench, J.G.; Kozono, D.; Levanon, E.Y.; Haining, W.N. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature, 2019, 565(7737), 43-48.
[http://dx.doi.org/10.1038/s41586-018-0768-9] [PMID: 30559380]
[377]
Patel, S.J.; Sanjana, N.E.; Kishton, R.J.; Eidizadeh, A.; Vodnala, S.K.; Cam, M.; Gartner, J.J.; Jia, L.; Steinberg, S.M.; Yamamoto, T.N.; Merchant, A.S.; Mehta, G.U.; Chichura, A.; Shalem, O.; Tran, E.; Eil, R.; Sukumar, M.; Guijarro, E.P.; Day, C.P.; Robbins, P.; Feldman, S.; Merlino, G.; Zhang, F.; Restifo, N.P. Identification of essential genes for cancer immunotherapy. Nature, 2017, 548(7669), 537-542.
[http://dx.doi.org/10.1038/nature23477] [PMID: 28783722]
[378]
Frye, M.; Watt, F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol., 2006, 16(10), 971-981.
[http://dx.doi.org/10.1016/j.cub.2006.04.027] [PMID: 16713953]
[379]
Soucek, L.; Whitfield, J.; Martins, C.P.; Finch, A.J.; Murphy, D.J.; Sodir, N.M.; Karnezis, A.N.; Swigart, L.B.; Nasi, S.; Evan, G.I. Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455(7213), 679-683.
[http://dx.doi.org/10.1038/nature07260] [PMID: 18716624]
[380]
Lee, K.M. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab., 2017, 26(4), 633-647.
[http://dx.doi.org/10.1016/j.cmet.2017.09.009]
[381]
Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging Roles of C-Myc in Cancer Stem Cell-Related Signaling and Resistance to Cancer Chemotherapy: A Potential Therapeutic Target Against Colorectal Cancer. Int. J. Mol. Sci., 2019, 20(9)
[http://dx.doi.org/10.3390/ijms20092340] [PMID: 31083525]
[382]
Lu, L.; Zhu, G.; Zeng, H.; Xu, Q.; Holzmann, K. High tRNA Transferase NSUN2 Gene Expression is Associated with Poor Prognosis in Head and Neck Squamous Carcinoma. Cancer Invest., 2018, 36(4), 246-253.
[http://dx.doi.org/10.1080/07357907.2018.1466896] [PMID: 29775108]
[383]
Li, Y.; Li, J.; Luo, M.; Zhou, C.; Shi, X.; Yang, W.; Lu, Z.; Chen, Z.; Sun, N.; He, J. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett., 2018, 430, 57-66.
[http://dx.doi.org/10.1016/j.canlet.2018.05.013] [PMID: 29763634]
[384]
Bhawe, K.; Felty, Q.; Yoo, C.; Ehtesham, N.Z.; Hasnain, S.E.; Singh, V.P.; Mohapatra, I.; Roy, D. Nuclear Respiratory Factor 1 (NRF1) Transcriptional Activity-Driven Gene Signature Association with Severity of Astrocytoma and Poor Prognosis of Glioblastoma. Mol. Neurobiol., 2020, 57(9), 3827-3845.
[http://dx.doi.org/10.1007/s12035-020-01979-2] [PMID: 32594352]
[385]
Okamoto, M.; Fujiwara, M.; Hori, M.; Okada, K.; Yazama, F.; Konishi, H.; Xiao, Y.; Qi, G.; Shimamoto, F.; Ota, T.; Temme, A.; Tatsuka, M. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet., 2014, 10(9)
[http://dx.doi.org/10.1371/journal.pgen.1004639] [PMID: 25233213]
[386]
Martinez, N.M.; Gilbert, W.V. Pre-mRNA modifications and their role in nuclear processing. Quant. Biol., 2018, 6(3), 210-227.
[http://dx.doi.org/10.1007/s40484-018-0147-4] [PMID: 30533247]
[387]
Nachtergaele, S.; He, C. Chemical Modifications in the Life of an mRNA Transcript. Annu. Rev. Genet., 2018, 52, 349-372.
[http://dx.doi.org/10.1146/annurev-genet-120417-031522] [PMID: 30230927]
[388]
Boo, S.H.; Kim, Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med., 2020, 52(3), 400-408.
[http://dx.doi.org/10.1038/s12276-020-0407-z] [PMID: 32210357]
[389]
Sloan, K.E.; Warda, A.S.; Sharma, S.; Entian, K.D.; Lafontaine, D.L.J.; Bohnsack, M.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol., 2017, 14(9), 1138-1152.
[http://dx.doi.org/10.1080/15476286.2016.1259781] [PMID: 27911188]
[390]
Meyer, R.; Faesen, A.; Vogel, K.; Jeganathan, S.; Musacchio, A.; Niemeyer, C.M. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes. Small, 2015, 11(22), 2669-2674.
[http://dx.doi.org/10.1002/smll.201403544] [PMID: 25649737]
[391]
Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161(6), 1388-1399.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy