Generic placeholder image

当代肿瘤药物靶点

Editor-in-Chief

ISSN (Print): 1568-0096
ISSN (Online): 1873-5576

Review Article

RNA 修饰和 RNA 修饰蛋白在癌症治疗和耐药性中的作用

卷 21, 期 4, 2021

发表于: 26 January, 2021

页: [326 - 352] 页: 27

弟呕挨: 10.2174/1568009621666210127092828

价格: $65

摘要

新的全基因组测序技术的出现发现了多种人类癌症中的异常 RNA 修饰和 RNA 编辑。在过去十年中,脂肪量和肥胖相关蛋白 (FTO) 脱甲基酶发现可逆 RNA N6-甲基腺苷 (RNA: m6A) 已导致关于 m6A 及其相应 RNA 修饰蛋白 (RMP) 的病理生理功能的成倍发表。一些优秀的评论总结了该领域的最新进展。与 RNA: m6A 和 DNA 5-甲基胞嘧啶 (DNA: m5C) 的研究范围相比,对其他 RNA 修饰及其相关 RMP 的了解要少得多,例如 RNA: m5C 及其 RNA 胞嘧啶甲基转移酶 (RCMT) 的作用在癌症治疗和耐药性方面。在这篇综述中,我们将总结围绕几种主要 RNA 修饰的功能、分子内分布和亚细胞定位的最新进展,包括 5'' 帽 N7-甲基鸟苷 (m7G) 和 2''-O-甲基化 (Nm)、m6A、m5C、 A-to-I 编辑,以及相关的 RMP。然后,我们将讨论癌症中这些 RNA 修饰和 RMP 的失调以及它们在癌症治疗和耐药性中的作用。

关键词:

图形摘要

[1]
Roundtree, I.A.; Evans, M.E.; Pan, T.; He, C. Dynamic RNA Modifications in Gene Expression Regulation. Cell, 2017, 169(7), 1187-1200.
[http://dx.doi.org/10.1016/j.cell.2017.05.045] [PMID: 28622506]
[2]
Jiang, Q.; Crews, L.A.; Holm, F.; Jamieson, C.H.M. RNA editing-dependent epitranscriptome diversity in cancer stem cells. Nat. Rev. Cancer, 2017, 17(6), 381-392.
[http://dx.doi.org/10.1038/nrc.2017.23] [PMID: 28416802]
[3]
Zaccara, S.; Ries, R.J.; Jaffrey, S.R. Reading, writing and erasing mRNA methylation. Nat. Rev. Mol. Cell Biol., 2019, 20(10), 608-624.
[http://dx.doi.org/10.1038/s41580-019-0168-5] [PMID: 31520073]
[4]
Barbieri, I.; Kouzarides, T. Role of RNA modifications in cancer. Nat. Rev. Cancer, 2020, 20(6), 303-322.
[http://dx.doi.org/10.1038/s41568-020-0253-2] [PMID: 32300195]
[5]
Schaefer, M.; Kapoor, U.; Jantsch, M.F. Understanding RNA modifications: the promises and technological bottlenecks of the ‘epitranscriptome’. Open Biol., 2017, 7(5)
[http://dx.doi.org/10.1098/rsob.170077] [PMID: 28566301]
[6]
Huang, H.; Weng, H.; Chen, J. m6A Modification in Coding and Non-coding RNAs: Roles and Therapeutic Implications in Cancer. Cancer Cell, 2020, 37(3), 270-288.
[http://dx.doi.org/10.1016/j.ccell.2020.02.004] [PMID: 32183948]
[7]
Frye, M.; Harada, B.T.; Behm, M.; He, C. RNA modifications modulate gene expression during development. Science, 2018, 361(6409), 1346-1349.
[http://dx.doi.org/10.1126/science.aau1646] [PMID: 30262497]
[8]
Uddin, M.B.; Wang, Z.; Yang, C. Dysregulations of Functional RNA Modifications in Cancer, Cancer Stemness and Cancer Therapeutics. Theranostics, 2020, 10(7), 3164-3189.
[http://dx.doi.org/10.7150/thno.41687] [PMID: 32194861]
[9]
Janin, M.; Coll-SanMartin, L.; Esteller, M. Disruption of the RNA modifications that target the ribosome translation machinery in human cancer. Mol. Cancer, 2020, 19(1), 70.
[http://dx.doi.org/10.1186/s12943-020-01192-8] [PMID: 32241281]
[10]
Delaunay, S.; Frye, M. RNA modifications regulating cell fate in cancer. Nat. Cell Biol., 2019, 21(5), 552-559.
[http://dx.doi.org/10.1038/s41556-019-0319-0] [PMID: 31048770]
[11]
Jonkhout, N.; Tran, J.; Smith, M.A.; Schonrock, N.; Mattick, J.S.; Novoa, E.M. The RNA modification landscape in human disease. RNA, 2017, 23(12), 1754-1769.
[http://dx.doi.org/10.1261/rna.063503.117] [PMID: 28855326]
[12]
Shen, L.; Song, C.X.; He, C.; Zhang, Y. Mechanism and function of oxidative reversal of DNA and RNA methylation. Annu. Rev. Biochem., 2014, 83, 585-614.
[http://dx.doi.org/10.1146/annurev-biochem-060713-035513] [PMID: 24905787]
[13]
Chellamuthu, A.; Gray, S.G. The RNA Methyltransferase NSUN2 and Its Potential Roles in Cancer. Cells, 2020, 9(8)
[http://dx.doi.org/10.3390/cells9081758] [PMID: 32708015]
[14]
Xue, C.; Zhao, Y.; Li, L. Advances in RNA cytosine-5 methylation: detection, regulatory mechanisms, biological functions and links to cancer. Biomark. Res., 2020, 8, 43.
[http://dx.doi.org/10.1186/s40364-020-00225-0] [PMID: 32944246]
[15]
Esteve-Puig, R.; Bueno-Costa, A.; Esteller, M. Writers, readers and erasers of RNA modifications in cancer. Cancer Lett., 2020, 474, 127-137.
[http://dx.doi.org/10.1016/j.canlet.2020.01.021] [PMID: 31991154]
[16]
Cheng, J.X.; Chen, L.; Li, Y.; Cloe, A.; Yue, M.; Wei, J.; Watanabe, K.A.; Shammo, J.M.; Anastasi, J.; Shen, Q.J.; Larson, R.A.; He, C.; Le Beau, M.M.; Vardiman, J.W. RNA cytosine methylation and methyltransferases mediate chromatin organization and 5-azacytidine response and resistance in leukaemia. Nat. Commun., 2018, 9(1), 1163.
[http://dx.doi.org/10.1038/s41467-018-03513-4] [PMID: 29563491]
[17]
Boriack-Sjodin, P.A.; Ribich, S.; Copeland, R.A. RNA-modifying proteins as anticancer drug targets. Nat. Rev. Drug Discov., 2018, 17(6), 435-453.
[http://dx.doi.org/10.1038/nrd.2018.71] [PMID: 29773918]
[18]
Werner, F.; Grohmann, D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat. Rev. Microbiol., 2011, 9(2), 85-98.
[http://dx.doi.org/10.1038/nrmicro2507] [PMID: 21233849]
[19]
Meyer, K.D.; Saletore, Y.; Zumbo, P.; Elemento, O.; Mason, C.E.; Jaffrey, S.R. Comprehensive analysis of mRNA methylation reveals enrichment in 3′ UTRs and near stop codons. Cell, 2012, 149(7), 1635-1646.
[http://dx.doi.org/10.1016/j.cell.2012.05.003] [PMID: 22608085]
[20]
Dominissini, D.; Moshitch-Moshkovitz, S.; Schwartz, S.; Salmon-Divon, M.; Ungar, L.; Osenberg, S.; Cesarkas, K.; Jacob-Hirsch, J.; Amariglio, N.; Kupiec, M.; Sorek, R.; Rechavi, G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature, 2012, 485(7397), 201-206.
[http://dx.doi.org/10.1038/nature11112] [PMID: 22575960]
[21]
Squires, J.E.; Patel, H.R.; Nousch, M.; Sibbritt, T.; Humphreys, D.T.; Parker, B.J.; Suter, C.M.; Preiss, T. Widespread occurrence of 5-methylcytosine in human coding and non-coding RNA. Nucleic Acids Res., 2012, 40(11), 5023-5033.
[http://dx.doi.org/10.1093/nar/gks144] [PMID: 22344696]
[22]
Gilbert, W.V.; Bell, T.A.; Schaening, C. Messenger RNA modifications: Form, distribution, and function. Science, 2016, 352(6292), 1408-1412.
[http://dx.doi.org/10.1126/science.aad8711] [PMID: 27313037]
[23]
Rebelo-Guiomar, P.; Powell, C.A.; Van Haute, L.; Minczuk, M. The mammalian mitochondrial epitranscriptome. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 429-446.
[http://dx.doi.org/10.1016/j.bbagrm.2018.11.005] [PMID: 30529456]
[24]
Thapar, R.; Bacolla, A.; Oyeniran, C.; Brickner, J.R.; Chinnam, N.B.; Mosammaparast, N.; Tainer, J.A. RNA Modifications: Reversal Mechanisms and Cancer. Biochemistry, 2019, 58(5), 312-329.
[http://dx.doi.org/10.1021/acs.biochem.8b00949] [PMID: 30346748]
[25]
Tzelepis, K.; Rausch, O.; Kouzarides, T. RNA-modifying enzymes and their function in a chromatin context. Nat. Struct. Mol. Biol., 2019, 26(10), 858-862.
[http://dx.doi.org/10.1038/s41594-019-0312-0] [PMID: 31582848]
[26]
Chen, X.Y.; Zhang, J.; Zhu, J.S. The role of m6A RNA methylation in human cancer. Mol. Cancer, 2019, 18(1), 103.
[http://dx.doi.org/10.1186/s12943-019-1033-z] [PMID: 31142332]
[27]
Huang, Y. Small-Molecule Targeting of Oncogenic FTO Demethylase in Acute Myeloid Leukemia. Cancer Cell., 2019, 35(4), 677-691.
[http://dx.doi.org/10.1016/j.ccell.2019.03.006]
[28]
Hocine, S.; Singer, R.H.; Grünwald, D. RNA processing and export. Cold Spring Harb. Perspect. Biol., 2010, 2(12)
[http://dx.doi.org/10.1101/cshperspect.a000752] [PMID: 20961978]
[29]
Bohnsack, K.E.; Höbartner, C.; Bohnsack, M.T. Eukaryotic 5-methylcytosine (m⁵C) RNA Methyltransferases: Mechanisms, Cellular Functions, and Links to Disease. Genes (Basel), 2019, 10(2)
[http://dx.doi.org/10.3390/genes10020102] [PMID: 30704115]
[30]
Popis, M.C.; Blanco, S.; Frye, M. Posttranscriptional methylation of transfer and ribosomal RNA in stress response pathways, cell differentiation, and cancer. Curr. Opin. Oncol., 2016, 28(1), 65-71.
[http://dx.doi.org/10.1097/CCO.0000000000000252] [PMID: 26599292]
[31]
Schumann, U.; Zhang, H.N.; Sibbritt, T.; Pan, A.; Horvath, A.; Gross, S.; Clark, S.J.; Yang, L.; Preiss, T. Multiple links between 5-methylcytosine content of mRNA and translation. BMC Biol., 2020, 18(1), 40.
[http://dx.doi.org/10.1186/s12915-020-00769-5] [PMID: 32293435]
[32]
Shinoda, S.; Kitagawa, S.; Nakagawa, S.; Wei, F.Y.; Tomizawa, K.; Araki, K.; Araki, M.; Suzuki, T.; Suzuki, T. Mammalian NSUN2 introduces 5-methylcytidines into mitochondrial tRNAs. Nucleic Acids Res., 2019, 47(16), 8734-8745.
[http://dx.doi.org/10.1093/nar/gkz575] [PMID: 31287866]
[33]
Bohnsack, M.T.; Sloan, K.E. The mitochondrial epitranscriptome: the roles of RNA modifications in mitochondrial translation and human disease. Cell. Mol. Life Sci., 2018, 75(2), 241-260.
[http://dx.doi.org/10.1007/s00018-017-2598-6] [PMID: 28752201]
[34]
Shatkin, A.J. Capping of eucaryotic mRNAs. Cell, 1976, 9(4 PT 2), 645-653.
[http://dx.doi.org/10.1016/0092-8674(76)90128-8] [PMID: 1017010]
[35]
Ramanathan, A.; Robb, G.B.; Chan, S.H. mRNA capping: biological functions and applications. Nucleic Acids Res., 2016, 44(16), 7511-7526.
[http://dx.doi.org/10.1093/nar/gkw551] [PMID: 27317694]
[36]
Shuman, S. What messenger RNA capping tells us about eukaryotic evolution. Nat. Rev. Mol. Cell Biol., 2002, 3(8), 619-625.
[http://dx.doi.org/10.1038/nrm880] [PMID: 12154373]
[37]
Fabrega, C.; Hausmann, S.; Shen, V.; Shuman, S.; Lima, C.D. Structure and mechanism of mRNA cap (guanine-N7) methyltransferase. Mol. Cell, 2004, 13(1), 77-89.
[http://dx.doi.org/10.1016/S1097-2765(03)00522-7] [PMID: 14731396]
[38]
Moteki, S.; Price, D. Functional coupling of capping and transcription of mRNA. Mol. Cell, 2002, 10(3), 599-609.
[http://dx.doi.org/10.1016/S1097-2765(02)00660-3] [PMID: 12408827]
[39]
Dimitrova, D.G.; Teysset, L.; Carré, C. RNA 2′-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel), 2019, 10(2), 117.
[http://dx.doi.org/10.3390/genes10020117] [PMID: 30764532]
[40]
Darzacq, X.; Jády, B.E.; Verheggen, C.; Kiss, A.M.; Bertrand, E.; Kiss, T. Cajal body-specific small nuclear RNAs: a novel class of 2′-O-methylation and pseudouridylation guide RNAs. EMBO J., 2002, 21(11), 2746-2756.
[http://dx.doi.org/10.1093/emboj/21.11.2746] [PMID: 12032087]
[41]
Rebane, A.; Roomere, H.; Metspalu, A. Locations of several novel 2′-O-methylated nucleotides in human 28S rRNA. BMC Mol. Biol., 2002, 3, 1.
[http://dx.doi.org/10.1186/1471-2199-3-1] [PMID: 11897011]
[42]
Dai, Q.; Moshitch-Moshkovitz, S.; Han, D.; Kol, N.; Amariglio, N.; Rechavi, G.; Dominissini, D.; He, C. Nm-seq maps 2′-O-methylation sites in human mRNA with base precision. Nat. Methods, 2017, 14(7), 695-698.
[http://dx.doi.org/10.1038/nmeth.4294] [PMID: 28504680]
[43]
Furuichi, Y.; Morgan, M.; Shatkin, A.J.; Jelinek, W.; Salditt-Georgieff, M.; Darnell, J.E. Methylated, blocked 5 termini in HeLa cell mRNA. Proc. Natl. Acad. Sci. USA, 1975, 72(5), 1904-1908.
[http://dx.doi.org/10.1073/pnas.72.5.1904] [PMID: 1057180]
[44]
Bélanger, F.; Stepinski, J.; Darzynkiewicz, E.; Pelletier, J. Characterization of hMTr1, a human Cap1 2′-O-ribose methyltransferase. J. Biol. Chem., 2010, 285(43), 33037-33044.
[http://dx.doi.org/10.1074/jbc.M110.155283] [PMID: 20713356]
[45]
Werner, M.; Purta, E.; Kaminska, K.H.; Cymerman, I.A.; Campbell, D.A.; Mittra, B.; Zamudio, J.R.; Sturm, N.R.; Jaworski, J.; Bujnicki, J.M. 2′-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res., 2011, 39(11), 4756-4768.
[http://dx.doi.org/10.1093/nar/gkr038] [PMID: 21310715]
[46]
Banerjee, A.K. 5′-terminal cap structure in eucaryotic messenger ribonucleic acids. Microbiol. Rev., 1980, 44(2), 175-205.
[http://dx.doi.org/10.1128/MR.44.2.175-205.1980] [PMID: 6247631]
[47]
Smietanski, M.; Werner, M.; Purta, E.; Kaminska, K.H.; Stepinski, J.; Darzynkiewicz, E.; Nowotny, M.; Bujnicki, J.M. Structural analysis of human 2′-O-ribose methyltransferases involved in mRNA cap structure formation. Nat. Commun., 2014, 5, 3004.
[http://dx.doi.org/10.1038/ncomms4004] [PMID: 24402442]
[48]
Daffis, S.; Szretter, K.J.; Schriewer, J.; Li, J.; Youn, S.; Errett, J.; Lin, T.Y.; Schneller, S.; Zust, R.; Dong, H.; Thiel, V.; Sen, G.C.; Fensterl, V.; Klimstra, W.B.; Pierson, T.C.; Buller, R.M.; Gale, M., Jr; Shi, P.Y.; Diamond, M.S. 2′-O methylation of the viral mRNA cap evades host restriction by IFIT family members. Nature, 2010, 468(7322), 452-456.
[http://dx.doi.org/10.1038/nature09489] [PMID: 21085181]
[49]
Züst, R.; Cervantes-Barragan, L.; Habjan, M.; Maier, R.; Neuman, B.W.; Ziebuhr, J.; Szretter, K.J.; Baker, S.C.; Barchet, W.; Diamond, M.S.; Siddell, S.G.; Ludewig, B.; Thiel, V. Ribose 2′-O-methylation provides a molecular signature for the distinction of self and non-self mRNA dependent on the RNA sensor Mda5. Nat. Immunol., 2011, 12(2), 137-143.
[http://dx.doi.org/10.1038/ni.1979] [PMID: 21217758]
[50]
Schuberth-Wagner, C.; Ludwig, J.; Bruder, A.K.; Herzner, A.M.; Zillinger, T.; Goldeck, M.; Schmidt, T.; Schmid-Burgk, J.L.; Kerber, R.; Wolter, S.; Stümpel, J.P.; Roth, A.; Bartok, E.; Drosten, C.; Coch, C.; Hornung, V.; Barchet, W.; Kümmerer, B.M.; Hartmann, G.; Schlee, M. A Conserved Histidine in the RNA Sensor RIG-I Controls Immune Tolerance to N1-2'O-Methylated Self RNA. Immunity, 2015, 43(1), 41-51.
[http://dx.doi.org/10.1016/j.immuni.2015.06.015] [PMID: 26187414]
[51]
Devarkar, S.C.; Wang, C.; Miller, M.T.; Ramanathan, A.; Jiang, F.; Khan, A.G.; Patel, S.S.; Marcotrigiano, J. Structural basis for m7G recognition and 2′-O-methyl discrimination in capped RNAs by the innate immune receptor RIG-I. Proc. Natl. Acad. Sci. USA, 2016, 113(3), 596-601.
[http://dx.doi.org/10.1073/pnas.1515152113] [PMID: 26733676]
[52]
Hirose, Y.; Iwamoto, Y.; Sakuraba, K.; Yunokuchi, I.; Harada, F.; Ohkuma, Y. Human phosphorylated CTD-interacting protein, PCIF1, negatively modulates gene expression by RNA polymerase II. Biochem. Biophys. Res. Commun., 2008, 369(2), 449-455.
[http://dx.doi.org/10.1016/j.bbrc.2008.02.042] [PMID: 18294453]
[53]
Akichika, S.; Hirano, S.; Shichino, Y.; Suzuki, T.; Nishimasu, H.; Ishitani, R.; Sugita, A.; Hirose, Y.; Iwasaki, S.; Nureki, O.; Suzuki, T. Cap-specific terminal N6-methylation of RNA by an RNA polymerase II-associated methyltransferase. Science, 2019, 363(6423)
[http://dx.doi.org/10.1126/science.aav0080] [PMID: 30467178]
[54]
Sendinc, E. PCIF1 Catalyzes m6Am mRNA Methylation to Regulate Gene Expression. Mol Cell., 2019, 75(3), 620-630.
[http://dx.doi.org/10.1016/j.molcel.2019.05.030]
[55]
Boulias, K. Identification of the m(6)Am Methyltransferase PCIF1 Reveals the Location and Functions of m(6)Am in the Transcriptome. Mol Cell., 2019, 75(3), 631-643.
[56]
Sun, H.; Zhang, M.; Li, K.; Bai, D.; Yi, C. Cap-specific, terminal N6-methylation by a mammalian m6Am methyltransferase. Cell Res., 2019, 29(1), 80-82.
[http://dx.doi.org/10.1038/s41422-018-0117-4] [PMID: 30487554]
[57]
Sachs, A.B. Messenger RNA degradation in eukaryotes. Cell, 1993, 74(3), 413-421.
[http://dx.doi.org/10.1016/0092-8674(93)80043-E] [PMID: 7688664]
[58]
Grudzien-Nogalska, E.; Kiledjian, M. New insights into decapping enzymes and selective mRNA decay. Wiley Interdiscip. Rev. RNA, 2017, 8(1)
[http://dx.doi.org/10.1002/wrna.1379] [PMID: 27425147]
[59]
Julius, C.; Yuzenkova, Y. Noncanonical RNA-capping: Discovery, mechanism, and physiological role debate. Wiley Interdiscip. Rev. RNA, 2019, 10(2)
[http://dx.doi.org/10.1002/wrna.1512] [PMID: 30353673]
[60]
Kramer, S.; McLennan, A.G. The complex enzymology of mRNA decapping: Enzymes of four classes cleave pyrophosphate bonds. Wiley Interdiscip. Rev. RNA, 2019, 10(1)
[http://dx.doi.org/10.1002/wrna.1511] [PMID: 30345629]
[61]
Fisher, D.I.; Cartwright, J.L.; McLennan, A.G. Characterization of the Mn2+-stimulated (di)adenosine polyphosphate hydrolase encoded by the Deinococcus radiodurans DR2356 nudix gene. Arch. Microbiol., 2006, 186(5), 415-424.
[http://dx.doi.org/10.1007/s00203-006-0155-z] [PMID: 16900379]
[62]
Dunckley, T.; Parker, R. The DCP2 protein is required for mRNA decapping in Saccharomyces cerevisiae and contains a functional MutT motif. EMBO J., 1999, 18(19), 5411-5422.
[http://dx.doi.org/10.1093/emboj/18.19.5411] [PMID: 10508173]
[63]
van Dijk, E.; Cougot, N.; Meyer, S.; Babajko, S.; Wahle, E.; Séraphin, B. Human Dcp2: a catalytically active mRNA decapping enzyme located in specific cytoplasmic structures. EMBO J., 2002, 21(24), 6915-6924.
[http://dx.doi.org/10.1093/emboj/cdf678] [PMID: 12486012]
[64]
Wang, Z.; Jiao, X.; Carr-Schmid, A.; Kiledjian, M. The hDcp2 protein is a mammalian mRNA decapping enzyme. Proc. Natl. Acad. Sci. USA, 2002, 99(20), 12663-12668.
[http://dx.doi.org/10.1073/pnas.192445599] [PMID: 12218187]
[65]
Jiao, X.; Xiang, S.; Oh, C.; Martin, C.E.; Tong, L.; Kiledjian, M. Identification of a quality-control mechanism for mRNA 5′-end capping. Nature, 2010, 467(7315), 608-611.
[http://dx.doi.org/10.1038/nature09338] [PMID: 20802481]
[66]
Taylor, M.J.; Peculis, B.A. Evolutionary conservation supports ancient origin for Nudt16, a nuclear-localized, RNA-binding, RNA-decapping enzyme. Nucleic Acids Res., 2008, 36(18), 6021-6034.
[http://dx.doi.org/10.1093/nar/gkn605] [PMID: 18820299]
[67]
Lu, G.; Zhang, J.; Li, Y.; Li, Z.; Zhang, N.; Xu, X.; Wang, T.; Guan, Z.; Gao, G.F.; Yan, J. hNUDT16: a universal decapping enzyme for small nucleolar RNA and cytoplasmic mRNA. Protein Cell, 2011, 2(1), 64-73.
[http://dx.doi.org/10.1007/s13238-011-1009-2] [PMID: 21337011]
[68]
Li, Y.; Song, M.; Kiledjian, M. Differential utilization of decapping enzymes in mammalian mRNA decay pathways. RNA, 2011, 17(3), 419-428.
[http://dx.doi.org/10.1261/rna.2439811] [PMID: 21224379]
[69]
Grudzien-Nogalska, E.; Jiao, X.; Song, M.G.; Hart, R.P.; Kiledjian, M. Nudt3 is an mRNA decapping enzyme that modulates cell migration. RNA, 2016, 22(5), 773-781.
[http://dx.doi.org/10.1261/rna.055699.115] [PMID: 26932476]
[70]
Jiao, X.; Chang, J.H.; Kilic, T.; Tong, L.; Kiledjian, M. A mammalian pre-mRNA 5′ end capping quality control mechanism and an unexpected link of capping to pre-mRNA processing. Mol. Cell, 2013, 50(1), 104-115.
[http://dx.doi.org/10.1016/j.molcel.2013.02.017] [PMID: 23523372]
[71]
Picard-Jean, F.; Brand, C.; Tremblay-Létourneau, M.; Allaire, A.; Beaudoin, M.C.; Boudreault, S.; Duval, C.; Rainville-Sirois, J.; Robert, F.; Pelletier, J.; Geiss, B.J.; Bisaillon, M. 2′-O-methylation of the mRNA cap protects RNAs from decapping and degradation by DXO. PLoS One, 2018, 13(3)
[http://dx.doi.org/10.1371/journal.pone.0193804] [PMID: 29601584]
[72]
Doamekpor, S.K.; Gozdek, A.; Kwasnik, A.; Kufel, J.; Tong, L. A novel 5′-hydroxyl dinucleotide hydrolase activity for the DXO/Rai1 family of enzymes. Nucleic Acids Res., 2020, 48(1), 349-358.
[http://dx.doi.org/10.1093/nar/gkz1107] [PMID: 31777937]
[73]
Doma, M.K.; Parker, R. RNA quality control in eukaryotes. Cell, 2007, 131(4), 660-668.
[http://dx.doi.org/10.1016/j.cell.2007.10.041] [PMID: 18022361]
[74]
Kurosaki, T.; Popp, M.W.; Maquat, L.E. Quality and quantity control of gene expression by nonsense-mediated mRNA decay. Nat. Rev. Mol. Cell Biol., 2019, 20(7), 406-420.
[http://dx.doi.org/10.1038/s41580-019-0126-2] [PMID: 30992545]
[75]
Kim, Y.K.; Maquat, L.E. UPFront and center in RNA decay: UPF1 in nonsense-mediated mRNA decay and beyond. RNA, 2019, 25(4), 407-422.
[http://dx.doi.org/10.1261/rna.070136.118] [PMID: 30655309]
[76]
Wolin, S.L.; Maquat, L.E. Cellular RNA surveillance in health and disease. Science, 2019, 366(6467), 822-827.
[http://dx.doi.org/10.1126/science.aax2957] [PMID: 31727827]
[77]
Desrosiers, R.; Friderici, K.; Rottman, F. Identification of methylated nucleosides in messenger RNA from Novikoff hepatoma cells. Proc. Natl. Acad. Sci. USA, 1974, 71(10), 3971-3975.
[http://dx.doi.org/10.1073/pnas.71.10.3971] [PMID: 4372599]
[78]
Perry, R.P.; Kelley, D.E.; LaTorre, J. Synthesis and turnover of nuclear and cytoplasmic polyadenylic acid in mouse L cells. J. Mol. Biol., 1974, 82(3), 315-331.
[http://dx.doi.org/10.1016/0022-2836(74)90593-2] [PMID: 4856346]
[79]
Lavi, S.; Shatkin, A.J. Methylated simian virus 40-specific RNA from nuclei and cytoplasm of infected BSC-1 cells. Proc. Natl. Acad. Sci. USA, 1975, 72(6), 2012-2016.
[http://dx.doi.org/10.1073/pnas.72.6.2012] [PMID: 166375]
[80]
Narayan, P.; Rottman, F.M. An in vitro system for accurate methylation of internal adenosine residues in messenger RNA. Science, 1988, 242(4882), 1159-1162.
[http://dx.doi.org/10.1126/science.3187541] [PMID: 3187541]
[81]
Rottman, F.; Shatkin, A.J.; Perry, R.P. Sequences containing methylated nucleotides at the 5′ termini of messenger RNAs: possible implications for processing. Cell, 1974, 3(3), 197-199.
[http://dx.doi.org/10.1016/0092-8674(74)90131-7] [PMID: 4373171]
[82]
Csepany, T.; Lin, A.; Baldick, C.J., Jr; Beemon, K. Sequence specificity of mRNA N6-adenosine methyltransferase. J. Biol. Chem., 1990, 265(33), 20117-20122.
[PMID: 2173695]
[83]
Ke, S.; Alemu, E.A.; Mertens, C.; Gantman, E.C.; Fak, J.J.; Mele, A.; Haripal, B.; Zucker-Scharff, I.; Moore, M.J.; Park, C.Y.; Vågbø, C.B.; Kusśnierczyk, A.; Klungland, A.; Darnell, J.E., Jr; Darnell, R.B. A majority of m6A residues are in the last exons, allowing the potential for 3′ UTR regulation. Genes Dev., 2015, 29(19), 2037-2053.
[http://dx.doi.org/10.1101/gad.269415.115] [PMID: 26404942]
[84]
Bokar, J.A.; Rath-Shambaugh, M.E.; Ludwiczak, R.; Narayan, P.; Rottman, F. Characterization and partial purification of mRNA N6-adenosine methyltransferase from HeLa cell nuclei. Internal mRNA methylation requires a multisubunit complex. J. Biol. Chem., 1994, 269(26), 17697-17704.
[PMID: 8021282]
[85]
Kane, S.E.; Beemon, K. Precise localization of m6A in Rous sarcoma virus RNA reveals clustering of methylation sites: implications for RNA processing. Mol. Cell. Biol., 1985, 5(9), 2298-2306.
[http://dx.doi.org/10.1128/MCB.5.9.2298] [PMID: 3016525]
[86]
Zhao, B.S.; Roundtree, I.A.; He, C. Post-transcriptional gene regulation by mRNA modifications. Nat. Rev. Mol. Cell Biol., 2017, 18(1), 31-42.
[http://dx.doi.org/10.1038/nrm.2016.132] [PMID: 27808276]
[87]
Liu, J.; Yue, Y.; Han, D.; Wang, X.; Fu, Y.; Zhang, L.; Jia, G.; Yu, M.; Lu, Z.; Deng, X.; Dai, Q.; Chen, W.; He, C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat. Chem. Biol., 2014, 10(2), 93-95.
[http://dx.doi.org/10.1038/nchembio.1432] [PMID: 24316715]
[88]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[89]
Brown, J.A.; Kinzig, C.G.; DeGregorio, S.J.; Steitz, J.A. Methyltransferase-like protein 16 binds the 3′-terminal triple helix of MALAT1 long noncoding RNA. Proc. Natl. Acad. Sci. USA, 2016, 113(49), 14013-14018.
[http://dx.doi.org/10.1073/pnas.1614759113] [PMID: 27872311]
[90]
Pendleton, K.E. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell., 2017, 169(5), 824-835.
[91]
Warda, A.S.; Kretschmer, J.; Hackert, P.; Lenz, C.; Urlaub, H.; Höbartner, C.; Sloan, K.E.; Bohnsack, M.T. Human METTL16 is a N6-methyladenosine (m6A) methyltransferase that targets pre-mRNAs and various non-coding RNAs. EMBO Rep., 2017, 18(11), 2004-2014.
[http://dx.doi.org/10.15252/embr.201744940] [PMID: 29051200]
[92]
Doxtader, K.A. Structural Basis for Regulation of METTL16, an S-Adenosylmethionine Homeostasis Factor. Mol Cell., 2018, 71(6), 1001-1011.
[http://dx.doi.org/10.1016/j.molcel.2018.07.025]
[93]
Mendel, M. Methylation of Structured RNA by the m(6)A Writer METTL16 Is Essential for Mouse Embryonic Development. Mol Cell., 2018, 71(6), 986-1000.
[94]
Ruszkowska, A.; Ruszkowski, M.; Dauter, Z.; Brown, J.A. Structural insights into the RNA methyltransferase domain of METTL16. Sci. Rep., 2018, 8(1), 5311.
[http://dx.doi.org/10.1038/s41598-018-23608-8] [PMID: 29593291]
[95]
Nance, D.J.; Satterwhite, E.R.; Bhaskar, B.; Misra, S.; Carraway, K.R.; Mansfield, K.D. Characterization of METTL16 as a cytoplasmic RNA binding protein. PLoS One, 2020, 15(1)e0227647
[http://dx.doi.org/10.1371/journal.pone.0227647] [PMID: 31940410]
[96]
van Tran, N.; Ernst, F.G.M.; Hawley, B.R.; Zorbas, C.; Ulryck, N.; Hackert, P.; Bohnsack, K.E.; Bohnsack, M.T.; Jaffrey, S.R.; Graille, M.; Lafontaine, D.L.J. The human 18S rRNA m6A methyltransferase METTL5 is stabilized by TRMT112. Nucleic Acids Res., 2019, 47(15), 7719-7733.
[http://dx.doi.org/10.1093/nar/gkz619] [PMID: 31328227]
[97]
Ma, H.; Wang, X.; Cai, J.; Dai, Q.; Natchiar, S.K.; Lv, R.; Chen, K.; Lu, Z.; Chen, H.; Shi, Y.G.; Lan, F.; Fan, J.; Klaholz, B.P.; Pan, T.; Shi, Y.; He, C. N6-Methyladenosine methyltransferase ZCCHC4 mediates ribosomal RNA methylation. Nat. Chem. Biol., 2019, 15(1), 88-94.
[http://dx.doi.org/10.1038/s41589-018-0184-3] [PMID: 30531910]
[98]
Harigaya, Y.; Tanaka, H.; Yamanaka, S.; Tanaka, K.; Watanabe, Y.; Tsutsumi, C.; Chikashige, Y.; Hiraoka, Y.; Yamashita, A.; Yamamoto, M. Selective elimination of messenger RNA prevents an incidence of untimely meiosis. Nature, 2006, 442(7098), 45-50.
[http://dx.doi.org/10.1038/nature04881] [PMID: 16823445]
[99]
Zhang, Z.; Theler, D.; Kaminska, K.H.; Hiller, M.; de la Grange, P.; Pudimat, R.; Rafalska, I.; Heinrich, B.; Bujnicki, J.M.; Allain, F.H.; Stamm, S. The YTH domain is a novel RNA binding domain. J. Biol. Chem., 2010, 285(19), 14701-14710.
[http://dx.doi.org/10.1074/jbc.M110.104711] [PMID: 20167602]
[100]
Xu, C.; Wang, X.; Liu, K.; Roundtree, I.A.; Tempel, W.; Li, Y.; Lu, Z.; He, C.; Min, J. Structural basis for selective binding of m6A RNA by the YTHDC1 YTH domain. Nat. Chem. Biol., 2014, 10(11), 927-929.
[http://dx.doi.org/10.1038/nchembio.1654] [PMID: 25242552]
[101]
Xiao, W.; Adhikari, S.; Dahal, U.; Chen, Y.S.; Hao, Y.J.; Sun, B.F.; Sun, H.Y.; Li, A.; Ping, X.L.; Lai, W.Y.; Wang, X.; Ma, H.L.; Huang, C.M.; Yang, Y.; Huang, N.; Jiang, G.B.; Wang, H.L.; Zhou, Q.; Wang, X.J.; Zhao, Y.L.; Yang, Y.G. Nuclear m(6)A Reader YTHDC1 Regulates mRNA Splicing. Mol. Cell, 2016, 61(4), 507-519.
[http://dx.doi.org/10.1016/j.molcel.2016.01.012] [PMID: 26876937]
[102]
Li, A.; Chen, Y.S.; Ping, X.L.; Yang, X.; Xiao, W.; Yang, Y.; Sun, H.Y.; Zhu, Q.; Baidya, P.; Wang, X.; Bhattarai, D.P.; Zhao, Y.L.; Sun, B.F.; Yang, Y.G. Cytoplasmic m6A reader YTHDF3 promotes mRNA translation. Cell Res., 2017, 27(3), 444-447.
[http://dx.doi.org/10.1038/cr.2017.10] [PMID: 28106076]
[103]
Shi, H.; Wang, X.; Lu, Z.; Zhao, B.S.; Ma, H.; Hsu, P.J.; Liu, C.; He, C. YTHDF3 facilitates translation and decay of N6-methyladenosine-modified RNA. Cell Res., 2017, 27(3), 315-328.
[http://dx.doi.org/10.1038/cr.2017.15] [PMID: 28106072]
[104]
Kretschmer, J.; Rao, H.; Hackert, P.; Sloan, K.E.; Höbartner, C.; Bohnsack, M.T. The m6A reader protein YTHDC2 interacts with the small ribosomal subunit and the 5′-3′ exoribonuclease XRN1. RNA, 2018, 24(10), 1339-1350.
[http://dx.doi.org/10.1261/rna.064238.117] [PMID: 29970596]
[105]
Tanabe, A.; Tanikawa, K.; Tsunetomi, M.; Takai, K.; Ikeda, H.; Konno, J.; Torigoe, T.; Maeda, H.; Kutomi, G.; Okita, K.; Mori, M.; Sahara, H. RNA helicase YTHDC2 promotes cancer metastasis via the enhancement of the efficiency by which HIF-1α mRNA is translated. Cancer Lett., 2016, 376(1), 34-42.
[http://dx.doi.org/10.1016/j.canlet.2016.02.022] [PMID: 26996300]
[106]
Du, H.; Zhao, Y.; He, J.; Zhang, Y.; Xi, H.; Liu, M.; Ma, J.; Wu, L. YTHDF2 destabilizes m(6)A-containing RNA through direct recruitment of the CCR4-NOT deadenylase complex. Nat. Commun., 2016, 7, 12626.
[http://dx.doi.org/10.1038/ncomms12626] [PMID: 27558897]
[107]
Wojtas, M.N. Regulation of m(6)A Transcripts by the 3'-->5' RNA Helicase YTHDC2 Is Essential for a Successful Meiotic Program in the Mammalian Germline. Mol Cell., 2017, 68(2), 374-387.
[108]
Alarcón, C.R.; Goodarzi, H.; Lee, H.; Liu, X.; Tavazoie, S.; Tavazoie, S.F. HNRNPA2B1 Is a Mediator of m(6)A-Dependent Nuclear RNA Processing Events. Cell, 2015, 162(6), 1299-1308.
[http://dx.doi.org/10.1016/j.cell.2015.08.011] [PMID: 26321680]
[109]
Rajagopalan, D.; Pandey, A.K.; Xiuzhen, M.C.; Lee, K.K.; Hora, S.; Zhang, Y.; Chua, B.H.; Kwok, H.S.; Bhatia, S.S.; Deng, L.W.; Tenen, D.G.; Kappei, D.; Jha, S. TIP60 represses telomerase expression by inhibiting Sp1 binding to the TERT promoter. PLoS Pathog., 2017, 13(10)
[http://dx.doi.org/10.1371/journal.ppat.1006681] [PMID: 29045464]
[110]
Zarnack, K.; König, J.; Tajnik, M.; Martincorena, I.; Eustermann, S.; Stévant, I.; Reyes, A.; Anders, S.; Luscombe, N.M.; Ule, J. Direct competition between hnRNP C and U2AF65 protects the transcriptome from the exonization of Alu elements. Cell, 2013, 152(3), 453-466.
[http://dx.doi.org/10.1016/j.cell.2012.12.023] [PMID: 23374342]
[111]
Liu, N.; Dai, Q.; Zheng, G.; He, C.; Parisien, M.; Pan, T. N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature, 2015, 518(7540), 560-564.
[http://dx.doi.org/10.1038/nature14234] [PMID: 25719671]
[112]
Huang, H.; Weng, H.; Sun, W.; Qin, X.; Shi, H.; Wu, H.; Zhao, B.S.; Mesquita, A.; Liu, C.; Yuan, C.L.; Hu, Y.C.; Hüttelmaier, S.; Skibbe, J.R.; Su, R.; Deng, X.; Dong, L.; Sun, M.; Li, C.; Nachtergaele, S.; Wang, Y.; Hu, C.; Ferchen, K.; Greis, K.D.; Jiang, X.; Wei, M.; Qu, L.; Guan, J.L.; He, C.; Yang, J.; Chen, J. Recognition of RNA N6-methyladenosine by IGF2BP proteins enhances mRNA stability and translation. Nat. Cell Biol., 2018, 20(3), 285-295.
[http://dx.doi.org/10.1038/s41556-018-0045-z] [PMID: 29476152]
[113]
Bell, J.L.; Wächter, K.; Mühleck, B.; Pazaitis, N.; Köhn, M.; Lederer, M.; Hüttelmaier, S. Insulin-like growth factor 2 mRNA-binding proteins (IGF2BPs): post-transcriptional drivers of cancer progression? Cell. Mol. Life Sci., 2013, 70(15), 2657-2675.
[http://dx.doi.org/10.1007/s00018-012-1186-z] [PMID: 23069990]
[114]
Gerken, T.; Girard, C.A.; Tung, Y.C.; Webby, C.J.; Saudek, V.; Hewitson, K.S.; Yeo, G.S.; McDonough, M.A.; Cunliffe, S.; McNeill, L.A.; Galvanovskis, J.; Rorsman, P.; Robins, P.; Prieur, X.; Coll, A.P.; Ma, M.; Jovanovic, Z.; Farooqi, I.S.; Sedgwick, B.; Barroso, I.; Lindahl, T.; Ponting, C.P.; Ashcroft, F.M.; O’Rahilly, S.; Schofield, C.J. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science, 2007, 318(5855), 1469-1472.
[http://dx.doi.org/10.1126/science.1151710] [PMID: 17991826]
[115]
Trewick, S.C.; Henshaw, T.F.; Hausinger, R.P.; Lindahl, T.; Sedgwick, B. Oxidative demethylation by Escherichia coli AlkB directly reverts DNA base damage. Nature, 2002, 419(6903), 174-178.
[http://dx.doi.org/10.1038/nature00908] [PMID: 12226667]
[116]
Falnes, P.O.; Johansen, R.F.; Seeberg, E. AlkB-mediated oxidative demethylation reverses DNA damage in Escherichia coli. Nature, 2002, 419(6903), 178-182.
[http://dx.doi.org/10.1038/nature01048] [PMID: 12226668]
[117]
Kurowski, M.A.; Bhagwat, A.S.; Papaj, G.; Bujnicki, J.M. Phylogenomic identification of five new human homologs of the DNA repair enzyme AlkB. BMC Genomics, 2003, 4(1), 48.
[http://dx.doi.org/10.1186/1471-2164-4-48] [PMID: 14667252]
[118]
Sanchez-Pulido, L.; Andrade-Navarro, M.A. The FTO (fat mass and obesity associated) gene codes for a novel member of the non-heme dioxygenase superfamily. BMC Biochem., 2007, 8, 23.
[http://dx.doi.org/10.1186/1471-2091-8-23] [PMID: 17996046]
[119]
Jia, G.; Yang, C.G.; Yang, S.; Jian, X.; Yi, C.; Zhou, Z.; He, C. Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett., 2008, 582(23-24), 3313-3319.
[http://dx.doi.org/10.1016/j.febslet.2008.08.019] [PMID: 18775698]
[120]
Jia, G.; Fu, Y.; Zhao, X.; Dai, Q.; Zheng, G.; Yang, Y.; Yi, C.; Lindahl, T.; Pan, T.; Yang, Y.G.; He, C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol., 2011, 7(12), 885-887.
[http://dx.doi.org/10.1038/nchembio.687] [PMID: 22002720]
[121]
Zheng, G.; Dahl, J.A.; Niu, Y.; Fedorcsak, P.; Huang, C.M.; Li, C.J.; Vågbø, C.B.; Shi, Y.; Wang, W.L.; Song, S.H.; Lu, Z.; Bosmans, R.P.; Dai, Q.; Hao, Y.J.; Yang, X.; Zhao, W.M.; Tong, W.M.; Wang, X.J.; Bogdan, F.; Furu, K.; Fu, Y.; Jia, G.; Zhao, X.; Liu, J.; Krokan, H.E.; Klungland, A.; Yang, Y.G.; He, C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol. Cell, 2013, 49(1), 18-29.
[http://dx.doi.org/10.1016/j.molcel.2012.10.015] [PMID: 23177736]
[122]
Bass, B.L. RNA editing by adenosine deaminases that act on RNA. Annu. Rev. Biochem., 2002, 71, 817-846.
[http://dx.doi.org/10.1146/annurev.biochem.71.110601.135501] [PMID: 12045112]
[123]
Nishikura, K. Functions and regulation of RNA editing by ADAR deaminases. Annu. Rev. Biochem., 2010, 79, 321-349.
[http://dx.doi.org/10.1146/annurev-biochem-060208-105251] [PMID: 20192758]
[124]
Batzer, M.A.; Deininger, P.L. Alu repeats and human genomic diversity. Nat. Rev. Genet., 2002, 3(5), 370-379.
[http://dx.doi.org/10.1038/nrg798] [PMID: 11988762]
[125]
Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C.; Zody, M.C.; Baldwin, J.; Devon, K.; Dewar, K.; Doyle, M.; FitzHugh, W.; Funke, R.; Gage, D.; Harris, K.; Heaford, A.; Howland, J.; Kann, L.; Lehoczky, J.; LeVine, R.; McEwan, P.; McKernan, K.; Meldrim, J.; Mesirov, J.P.; Miranda, C.; Morris, W.; Naylor, J.; Raymond, C.; Rosetti, M.; Santos, R.; Sheridan, A.; Sougnez, C.; Stange-Thomann, Y.; Stojanovic, N.; Subramanian, A.; Wyman, D.; Rogers, J.; Sulston, J.; Ainscough, R.; Beck, S.; Bentley, D.; Burton, J.; Clee, C.; Carter, N.; Coulson, A.; Deadman, R.; Deloukas, P.; Dunham, A.; Dunham, I.; Durbin, R.; French, L.; Grafham, D.; Gregory, S.; Hubbard, T.; Humphray, S.; Hunt, A.; Jones, M.; Lloyd, C.; McMurray, A.; Matthews, L.; Mercer, S.; Milne, S.; Mullikin, J.C.; Mungall, A.; Plumb, R.; Ross, M.; Shownkeen, R.; Sims, S.; Waterston, R.H.; Wilson, R.K.; Hillier, L.W.; McPherson, J.D.; Marra, M.A.; Mardis, E.R.; Fulton, L.A.; Chinwalla, A.T.; Pepin, K.H.; Gish, W.R.; Chissoe, S.L.; Wendl, M.C.; Delehaunty, K.D.; Miner, T.L.; Delehaunty, A.; Kramer, J.B.; Cook, L.L.; Fulton, R.S.; Johnson, D.L.; Minx, P.J.; Clifton, S.W.; Hawkins, T.; Branscomb, E.; Predki, P.; Richardson, P.; Wenning, S.; Slezak, T.; Doggett, N.; Cheng, J.F.; Olsen, A.; Lucas, S.; Elkin, C.; Uberbacher, E.; Frazier, M.; Gibbs, R.A.; Muzny, D.M.; Scherer, S.E.; Bouck, J.B.; Sodergren, E.J.; Worley, K.C.; Rives, C.M.; Gorrell, J.H.; Metzker, M.L.; Naylor, S.L.; Kucherlapati, R.S.; Nelson, D.L.; Weinstock, G.M.; Sakaki, Y.; Fujiyama, A.; Hattori, M.; Yada, T.; Toyoda, A.; Itoh, T.; Kawagoe, C.; Watanabe, H.; Totoki, Y.; Taylor, T.; Weissenbach, J.; Heilig, R.; Saurin, W.; Artiguenave, F.; Brottier, P.; Bruls, T.; Pelletier, E.; Robert, C.; Wincker, P.; Smith, D.R.; Doucette-Stamm, L.; Rubenfield, M.; Weinstock, K.; Lee, H.M.; Dubois, J.; Rosenthal, A.; Platzer, M.; Nyakatura, G.; Taudien, S.; Rump, A.; Yang, H.; Yu, J.; Wang, J.; Huang, G.; Gu, J.; Hood, L.; Rowen, L.; Madan, A.; Qin, S.; Davis, R.W.; Federspiel, N.A.; Abola, A.P.; Proctor, M.J.; Myers, R.M.; Schmutz, J.; Dickson, M.; Grimwood, J.; Cox, D.R.; Olson, M.V.; Kaul, R.; Raymond, C.; Shimizu, N.; Kawasaki, K.; Minoshima, S.; Evans, G.A.; Athanasiou, M.; Schultz, R.; Roe, B.A.; Chen, F.; Pan, H.; Ramser, J.; Lehrach, H.; Reinhardt, R.; McCombie, W.R.; de la Bastide, M.; Dedhia, N.; Blöcker, H.; Hornischer, K.; Nordsiek, G.; Agarwala, R.; Aravind, L.; Bailey, J.A.; Bateman, A.; Batzoglou, S.; Birney, E.; Bork, P.; Brown, D.G.; Burge, C.B.; Cerutti, L.; Chen, H.C.; Church, D.; Clamp, M.; Copley, R.R.; Doerks, T.; Eddy, S.R.; Eichler, E.E.; Furey, T.S.; Galagan, J.; Gilbert, J.G.; Harmon, C.; Hayashizaki, Y.; Haussler, D.; Hermjakob, H.; Hokamp, K.; Jang, W.; Johnson, L.S.; Jones, T.A.; Kasif, S.; Kaspryzk, A.; Kennedy, S.; Kent, W.J.; Kitts, P.; Koonin, E.V.; Korf, I.; Kulp, D.; Lancet, D.; Lowe, T.M.; McLysaght, A.; Mikkelsen, T.; Moran, J.V.; Mulder, N.; Pollara, V.J.; Ponting, C.P.; Schuler, G.; Schultz, J.; Slater, G.; Smit, A.F.; Stupka, E.; Szustakowki, J.; Thierry-Mieg, D.; Thierry-Mieg, J.; Wagner, L.; Wallis, J.; Wheeler, R.; Williams, A.; Wolf, Y.I.; Wolfe, K.H.; Yang, S.P.; Yeh, R.F.; Collins, F.; Guyer, M.S.; Peterson, J.; Felsenfeld, A.; Wetterstrand, K.A.; Patrinos, A.; Morgan, M.J.; de Jong, P.; Catanese, J.J.; Osoegawa, K.; Shizuya, H.; Choi, S.; Chen, Y.J.; Szustakowki, J. International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature, 2001, 409(6822), 860-921.
[http://dx.doi.org/10.1038/35057062] [PMID: 11237011]
[126]
Athanasiadis, A.; Rich, A.; Maas, S. Widespread A-to-I RNA editing of Alu-containing mRNAs in the human transcriptome. PLoS Biol., 2004, 2(12)
[http://dx.doi.org/10.1371/journal.pbio.0020391] [PMID: 15534692]
[127]
Maas, S.; Godfried Sie, C.P.; Stoev, I.; Dupuis, D.E.; Latona, J.; Porman, A.M.; Evans, B.; Rekawek, P.; Kluempers, V.; Mutter, M.; Gommans, W.M.; Lopresti, D. Genome-wide evaluation and discovery of vertebrate A-to-I RNA editing sites. Biochem. Biophys. Res. Commun., 2011, 412(3), 407-412.
[http://dx.doi.org/10.1016/j.bbrc.2011.07.075] [PMID: 21835166]
[128]
Licht, K.; Kapoor, U.; Amman, F.; Picardi, E.; Martin, D.; Bajad, P.; Jantsch, M.F. A high resolution A-to-I editing map in the mouse identifies editing events controlled by pre-mRNA splicing. Genome Res., 2019, 29(9), 1453-1463.
[http://dx.doi.org/10.1101/gr.242636.118] [PMID: 31427386]
[129]
Hsiao, Y.E.; Bahn, J.H.; Yang, Y.; Lin, X.; Tran, S.; Yang, E.W.; Quinones-Valdez, G.; Xiao, X. RNA editing in nascent RNA affects pre-mRNA splicing. Genome Res., 2018, 28(6), 812-823.
[http://dx.doi.org/10.1101/gr.231209.117] [PMID: 29724793]
[130]
Hogg, M.; Paro, S.; Keegan, L.P.; O’Connell, M.A. RNA editing by mammalian ADARs. Adv. Genet., 2011, 73, 87-120.
[http://dx.doi.org/10.1016/B978-0-12-380860-8.00003-3] [PMID: 21310295]
[131]
Galipon, J.; Ishii, R.; Suzuki, Y.; Tomita, M.; Ui-Tei, K. Differential Binding of Three Major Human ADAR Isoforms to Coding and Long Non-Coding Transcripts. Genes (Basel), 2017, 8(2), 68.
[http://dx.doi.org/10.3390/genes8020068] [PMID: 28208661]
[132]
Pestal, K.; Funk, C.C.; Snyder, J.M.; Price, N.D.; Treuting, P.M.; Stetson, D.B. Isoforms of RNA-Editing Enzyme ADAR1 Independently Control Nucleic Acid Sensor MDA5-Driven Autoimmunity and Multi-organ Development. Immunity, 2015, 43(5), 933-944.
[http://dx.doi.org/10.1016/j.immuni.2015.11.001] [PMID: 26588779]
[133]
Mannion, N.M.; Greenwood, S.M.; Young, R.; Cox, S.; Brindle, J.; Read, D.; Nellåker, C.; Vesely, C.; Ponting, C.P.; McLaughlin, P.J.; Jantsch, M.F.; Dorin, J.; Adams, I.R.; Scadden, A.D.; Ohman, M.; Keegan, L.P.; O’Connell, M.A. The RNA-editing enzyme ADAR1 controls innate immune responses to RNA. Cell Rep., 2014, 9(4), 1482-1494.
[http://dx.doi.org/10.1016/j.celrep.2014.10.041] [PMID: 25456137]
[134]
Liddicoat, B.J.; Chalk, A.M.; Walkley, C.R. ADAR1, inosine and the immune sensing system: distinguishing self from non-self. Wiley Interdiscip. Rev. RNA, 2016, 7(2), 157-172.
[http://dx.doi.org/10.1002/wrna.1322] [PMID: 26692549]
[135]
Liddicoat, B.J.; Piskol, R.; Chalk, A.M.; Ramaswami, G.; Higuchi, M.; Hartner, J.C.; Li, J.B.; Seeburg, P.H.; Walkley, C.R. RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself. Science, 2015, 349(6252), 1115-1120.
[http://dx.doi.org/10.1126/science.aac7049] [PMID: 26275108]
[136]
Eisenberg, E.; Levanon, E.Y. A-to-I RNA editing - immune protector and transcriptome diversifier. Nat. Rev. Genet., 2018, 19(8), 473-490.
[http://dx.doi.org/10.1038/s41576-018-0006-1] [PMID: 29692414]
[137]
Pullirsch, D.; Jantsch, M.F. Proteome diversification by adenosine to inosine RNA editing. RNA Biol., 2010, 7(2), 205-212.
[http://dx.doi.org/10.4161/rna.7.2.11286] [PMID: 20200492]
[138]
Källman, A.M.; Sahlin, M.; Ohman, M. ADAR2 A-->I editing: site selectivity and editing efficiency are separate events. Nucleic Acids Res., 2003, 31(16), 4874-4881.
[http://dx.doi.org/10.1093/nar/gkg681] [PMID: 12907730]
[139]
Higuchi, M.; Maas, S.; Single, F.N.; Hartner, J.; Rozov, A.; Burnashev, N.; Feldmeyer, D.; Sprengel, R.; Seeburg, P.H. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature, 2000, 406(6791), 78-81.
[http://dx.doi.org/10.1038/35017558] [PMID: 10894545]
[140]
Oakes, E.; Anderson, A.; Cohen-Gadol, A.; Hundley, H.A. Adenosine Deaminase That Acts on RNA 3 (ADAR3) Binding to Glutamate Receptor Subunit B Pre-mRNA Inhibits RNA Editing in Glioblastoma. J. Biol. Chem., 2017, 292(10), 4326-4335.
[http://dx.doi.org/10.1074/jbc.M117.779868] [PMID: 28167531]
[141]
Mladenova, D.; Barry, G.; Konen, L.M.; Pineda, S.S.; Guennewig, B.; Avesson, L.; Zinn, R.; Schonrock, N.; Bitar, M.; Jonkhout, N.; Crumlish, L.; Kaczorowski, D.C.; Gong, A.; Pinese, M.; Franco, G.R.; Walkley, C.R.; Vissel, B.; Mattick, J.S. Adar3 Is Involved in Learning and Memory in Mice. Front. Neurosci., 2018, 12, 243.
[http://dx.doi.org/10.3389/fnins.2018.00243] [PMID: 29719497]
[142]
Xiang, J.F. N(6)-Methyladenosines Modulate A-to-I RNA Editing. Mol Cell., 2018, 69(1), 126-135.
[143]
Motorin, Y.; Lyko, F.; Helm, M. 5-methylcytosine in RNA: detection, enzymatic formation and biological functions. Nucleic Acids Res., 2010, 38(5), 1415-1430.
[http://dx.doi.org/10.1093/nar/gkp1117] [PMID: 20007150]
[144]
Trixl, L.; Lusser, A. The dynamic RNA modification 5-methylcytosine and its emerging role as an epitranscriptomic mark. Wiley Interdiscip. Rev. RNA, 2019, 10(1)
[http://dx.doi.org/10.1002/wrna.1510] [PMID: 30311405]
[145]
Amort, T.; Rieder, D.; Wille, A.; Khokhlova-Cubberley, D.; Riml, C.; Trixl, L.; Jia, X.Y.; Micura, R.; Lusser, A. Distinct 5-methylcytosine profiles in poly(A) RNA from mouse embryonic stem cells and brain. Genome Biol., 2017, 18(1), 1.
[http://dx.doi.org/10.1186/s13059-016-1139-1] [PMID: 28077169]
[146]
Huang, T.; Chen, W.; Liu, J.; Gu, N.; Zhang, R. Genome-wide identification of mRNA 5-methylcytosine in mammals. Nat. Struct. Mol. Biol., 2019, 26(5), 380-388.
[http://dx.doi.org/10.1038/s41594-019-0218-x] [PMID: 31061524]
[147]
Schapira, M. Structural Chemistry of Human RNA Methyltransferases. ACS Chem. Biol., 2016, 11(3), 575-582.
[http://dx.doi.org/10.1021/acschembio.5b00781] [PMID: 26566070]
[148]
Wu, P.; Brockenbrough, J.S.; Paddy, M.R.; Aris, J.P. NCL1, a novel gene for a non-essential nuclear protein in Saccharomyces cerevisiae. Gene, 1998, 220(1-2), 109-117.
[http://dx.doi.org/10.1016/S0378-1119(98)00330-8] [PMID: 9767141]
[149]
Fonagy, A.; Henning, D.; Jhiang, S.; Haidar, M.; Busch, R.K.; Larson, R.; Valdez, B.; Busch, H. Cloning of the cDNA and sequence of the human proliferating-cell nucleolar protein P120. Cancer Commun., 1989, 1(4), 243-251.
[PMID: 2576976]
[150]
Freeman, J.W.; Busch, R.K.; Gyorkey, F.; Gyorkey, P.; Ross, B.E.; Busch, H. Identification and characterization of a human proliferation-associated nucleolar antigen with a molecular weight of 120,000 expressed in early G1 phase. Cancer Res., 1988, 48(5), 1244-1251.
[PMID: 3422591]
[151]
Sharma, S.; Yang, J.; Watzinger, P.; Kötter, P.; Entian, K.D. Yeast Nop2 and Rcm1 methylate C2870 and C2278 of the 25S rRNA, respectively. Nucleic Acids Res., 2013, 41(19), 9062-9076.
[http://dx.doi.org/10.1093/nar/gkt679] [PMID: 23913415]
[152]
Schosserer, M.; Minois, N.; Angerer, T.B.; Amring, M.; Dellago, H.; Harreither, E.; Calle-Perez, A.; Pircher, A.; Gerstl, M.P.; Pfeifenberger, S.; Brandl, C.; Sonntagbauer, M.; Kriegner, A.; Linder, A.; Weinhäusel, A.; Mohr, T.; Steiger, M.; Mattanovich, D.; Rinnerthaler, M.; Karl, T.; Sharma, S.; Entian, K.D.; Kos, M.; Breitenbach, M.; Wilson, I.B.; Polacek, N.; Grillari-Voglauer, R.; Breitenbach-Koller, L.; Grillari, J. Methylation of ribosomal RNA by NSUN5 is a conserved mechanism modulating organismal lifespan. Nat. Commun., 2015, 6, 6158.
[http://dx.doi.org/10.1038/ncomms7158] [PMID: 25635753]
[153]
Gigova, A.; Duggimpudi, S.; Pollex, T.; Schaefer, M.; Koš, M. A cluster of methylations in the domain IV of 25S rRNA is required for ribosome stability. RNA, 2014, 20(10), 1632-1644.
[http://dx.doi.org/10.1261/rna.043398.113] [PMID: 25125595]
[154]
Metodiev, M.D.; Spåhr, H.; Loguercio Polosa, P.; Meharg, C.; Becker, C.; Altmueller, J.; Habermann, B.; Larsson, N.G.; Ruzzenente, B. NSUN4 is a dual function mitochondrial protein required for both methylation of 12S rRNA and coordination of mitoribosomal assembly. PLoS Genet., 2014, 10(2)
[http://dx.doi.org/10.1371/journal.pgen.1004110] [PMID: 24516400]
[155]
Hong, B.; Brockenbrough, J.S.; Wu, P.; Aris, J.P. Nop2p is required for pre-rRNA processing and 60S ribosome subunit synthesis in yeast. Mol. Cell. Biol., 1997, 17(1), 378-388.
[http://dx.doi.org/10.1128/MCB.17.1.378] [PMID: 8972218]
[156]
Motorin, Y.; Grosjean, H. Multisite-specific tRNA:m5C-methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA, 1999, 5(8), 1105-1118.
[http://dx.doi.org/10.1017/S1355838299982201] [PMID: 10445884]
[157]
Brzezicha, B.; Schmidt, M.; Makalowska, I.; Jarmolowski, A.; Pienkowska, J.; Szweykowska-Kulinska, Z. Identification of human tRNA:m5C methyltransferase catalysing intron-dependent m5C formation in the first position of the anticodon of the pre-tRNA Leu (CAA). Nucleic Acids Res., 2006, 34(20), 6034-6043.
[http://dx.doi.org/10.1093/nar/gkl765] [PMID: 17071714]
[158]
Hussain, S.; Benavente, S.B.; Nascimento, E.; Dragoni, I.; Kurowski, A.; Gillich, A.; Humphreys, P.; Frye, M. The nucleolar RNA methyltransferase Misu (NSun2) is required for mitotic spindle stability. J. Cell Biol., 2009, 186(1), 27-40.
[http://dx.doi.org/10.1083/jcb.200810180] [PMID: 19596847]
[159]
Hussain, S.; Sajini, A.A.; Blanco, S.; Dietmann, S.; Lombard, P.; Sugimoto, Y.; Paramor, M.; Gleeson, J.G.; Odom, D.T.; Ule, J.; Frye, M. NSun2-mediated cytosine-5 methylation of vault noncoding RNA determines its processing into regulatory small RNAs. Cell Rep., 2013, 4(2), 255-261.
[http://dx.doi.org/10.1016/j.celrep.2013.06.029] [PMID: 23871666]
[160]
Yang, X.; Yang, Y.; Sun, B.F.; Chen, Y.S.; Xu, J.W.; Lai, W.Y.; Li, A.; Wang, X.; Bhattarai, D.P.; Xiao, W.; Sun, H.Y.; Zhu, Q.; Ma, H.L.; Adhikari, S.; Sun, M.; Hao, Y.J.; Zhang, B.; Huang, C.M.; Huang, N.; Jiang, G.B.; Zhao, Y.L.; Wang, H.L.; Sun, Y.P.; Yang, Y.G. 5-methylcytosine promotes mRNA export - NSUN2 as the methyltransferase and ALYREF as an m5C reader. Cell Res., 2017, 27(5), 606-625.
[http://dx.doi.org/10.1038/cr.2017.55] [PMID: 28418038]
[161]
Tuorto, F.; Liebers, R.; Musch, T.; Schaefer, M.; Hofmann, S.; Kellner, S.; Frye, M.; Helm, M.; Stoecklin, G.; Lyko, F. RNA cytosine methylation by Dnmt2 and NSun2 promotes tRNA stability and protein synthesis. Nat. Struct. Mol. Biol., 2012, 19(9), 900-905.
[http://dx.doi.org/10.1038/nsmb.2357] [PMID: 22885326]
[162]
Goll, M.G.; Kirpekar, F.; Maggert, K.A.; Yoder, J.A.; Hsieh, C.L.; Zhang, X.; Golic, K.G.; Jacobsen, S.E.; Bestor, T.H. Methylation of tRNAAsp by the DNA methyltransferase homolog Dnmt2. Science, 2006, 311(5759), 395-398.
[http://dx.doi.org/10.1126/science.1120976] [PMID: 16424344]
[163]
Schaefer, M.; Lyko, F. Solving the Dnmt2 enigma. Chromosoma, 2010, 119(1), 35-40.
[http://dx.doi.org/10.1007/s00412-009-0240-6] [PMID: 19730874]
[164]
Reid, R.; Greene, P.J.; Santi, D.V. Exposition of a family of RNA m(5)C methyltransferases from searching genomic and proteomic sequences. Nucleic Acids Res., 1999, 27(15), 3138-3145.
[http://dx.doi.org/10.1093/nar/27.15.3138] [PMID: 10454610]
[165]
Liu, R.J.; Long, T.; Li, J.; Li, H.; Wang, E.D. Structural basis for substrate binding and catalytic mechanism of a human RNA:m5C methyltransferase NSun6. Nucleic Acids Res., 2017, 45(11), 6684-6697.
[http://dx.doi.org/10.1093/nar/gkx473] [PMID: 28531330]
[166]
Haag, S.; Warda, A.S.; Kretschmer, J.; Günnigmann, M.A.; Höbartner, C.; Bohnsack, M.T. NSUN6 is a human RNA methyltransferase that catalyzes formation of m5C72 in specific tRNAs. RNA, 2015, 21(9), 1532-1543.
[http://dx.doi.org/10.1261/rna.051524.115] [PMID: 26160102]
[167]
Shanmugam, R.; Fierer, J.; Kaiser, S.; Helm, M.; Jurkowski, T.P.; Jeltsch, A. Cytosine methylation of tRNA-Asp by DNMT2 has a role in translation of proteins containing poly-Asp sequences. Cell Discov., 2015, 1, 15010.
[http://dx.doi.org/10.1038/celldisc.2015.10] [PMID: 27462411]
[168]
Tuorto, F.; Herbst, F.; Alerasool, N.; Bender, S.; Popp, O.; Federico, G.; Reitter, S.; Liebers, R.; Stoecklin, G.; Gröne, H.J.; Dittmar, G.; Glimm, H.; Lyko, F. The tRNA methyltransferase Dnmt2 is required for accurate polypeptide synthesis during haematopoiesis. EMBO J., 2015, 34(18), 2350-2362.
[http://dx.doi.org/10.15252/embj.201591382] [PMID: 26271101]
[169]
Jeltsch, A.; Ehrenhofer-Murray, A.; Jurkowski, T.P.; Lyko, F.; Reuter, G.; Ankri, S.; Nellen, W.; Schaefer, M.; Helm, M. Mechanism and biological role of Dnmt2 in Nucleic Acid Methylation. RNA Biol., 2017, 14(9), 1108-1123.
[http://dx.doi.org/10.1080/15476286.2016.1191737] [PMID: 27232191]
[170]
Haag, S.; Sloan, K.E.; Ranjan, N.; Warda, A.S.; Kretschmer, J.; Blessing, C.; Hübner, B.; Seikowski, J.; Dennerlein, S.; Rehling, P.; Rodnina, M.V.; Höbartner, C.; Bohnsack, M.T. NSUN3 and ABH1 modify the wobble position of mt-tRNAMet to expand codon recognition in mitochondrial translation. EMBO J., 2016, 35(19), 2104-2119.
[http://dx.doi.org/10.15252/embj.201694885] [PMID: 27497299]
[171]
Nakano, S.; Suzuki, T.; Kawarada, L.; Iwata, H.; Asano, K.; Suzuki, T. NSUN3 methylase initiates 5-formylcytidine biogenesis in human mitochondrial tRNA(Met). Nat. Chem. Biol., 2016, 12(7), 546-551.
[http://dx.doi.org/10.1038/nchembio.2099] [PMID: 27214402]
[172]
Bilbille, Y.; Gustilo, E.M.; Harris, K.A.; Jones, C.N.; Lusic, H.; Kaiser, R.J.; Delaney, M.O.; Spremulli, L.L.; Deiters, A.; Agris, P.F. The human mitochondrial tRNAMet: structure/function relationship of a unique modification in the decoding of unconventional codons. J. Mol. Biol., 2011, 406(2), 257-274.
[http://dx.doi.org/10.1016/j.jmb.2010.11.042] [PMID: 21168417]
[173]
Cámara, Y.; Asin-Cayuela, J.; Park, C.B.; Metodiev, M.D.; Shi, Y.; Ruzzenente, B.; Kukat, C.; Habermann, B.; Wibom, R.; Hultenby, K.; Franz, T.; Erdjument-Bromage, H.; Tempst, P.; Hallberg, B.M.; Gustafsson, C.M.; Larsson, N.G. MTERF4 regulates translation by targeting the methyltransferase NSUN4 to the mammalian mitochondrial ribosome. Cell Metab., 2011, 13(5), 527-539.
[http://dx.doi.org/10.1016/j.cmet.2011.04.002] [PMID: 21531335]
[174]
Aguilo, F.; Li, S.; Balasubramaniyan, N.; Sancho, A.; Benko, S.; Zhang, F.; Vashisht, A.; Rengasamy, M.; Andino, B.; Chen, C.H.; Zhou, F.; Qian, C.; Zhou, M.M.; Wohlschlegel, J.A.; Zhang, W.; Suchy, F.J.; Walsh, M.J. Deposition of 5-Methylcytosine on Enhancer RNAs Enables the Coactivator Function of PGC-1α. Cell Rep., 2016, 14(3), 479-492.
[http://dx.doi.org/10.1016/j.celrep.2015.12.043] [PMID: 26774474]
[175]
Dai, X.; Gonzalez, G.; Li, L.; Li, J.; You, C.; Miao, W.; Hu, J.; Fu, L.; Zhao, Y.; Li, R.; Li, L.; Chen, X.; Xu, Y.; Gu, W.; Wang, Y. YTHDF2 Binds to 5-Methylcytosine in RNA and Modulates the Maturation of Ribosomal RNA. Anal. Chem., 2020, 92(1), 1346-1354.
[http://dx.doi.org/10.1021/acs.analchem.9b04505] [PMID: 31815440]
[176]
Wu, X.; Zhang, Y. TET-mediated active DNA demethylation: mechanism, function and beyond. Nat. Rev. Genet., 2017, 18(9), 517-534.
[http://dx.doi.org/10.1038/nrg.2017.33] [PMID: 28555658]
[177]
Fu, L.; Guerrero, C.R.; Zhong, N.; Amato, N.J.; Liu, Y.; Liu, S.; Cai, Q.; Ji, D.; Jin, S.G.; Niedernhofer, L.J.; Pfeifer, G.P.; Xu, G.L.; Wang, Y. Tet-mediated formation of 5-hydroxymethylcytosine in RNA. J. Am. Chem. Soc., 2014, 136(33), 11582-11585.
[http://dx.doi.org/10.1021/ja505305z] [PMID: 25073028]
[178]
Traube, F.R.; Carell, T. The chemistries and consequences of DNA and RNA methylation and demethylation. RNA Biol., 2017, 14(9), 1099-1107.
[http://dx.doi.org/10.1080/15476286.2017.1318241] [PMID: 28440690]
[179]
Meyer, N.; Penn, L.Z. Reflecting on 25 years with MYC. Nat. Rev. Cancer, 2008, 8(12), 976-990.
[http://dx.doi.org/10.1038/nrc2231] [PMID: 19029958]
[180]
Dang, C.V. MYC on the path to cancer. Cell, 2012, 149(1), 22-35.
[http://dx.doi.org/10.1016/j.cell.2012.03.003] [PMID: 22464321]
[181]
Bradner, J.E.; Hnisz, D.; Young, R.A. Transcriptional Addiction in Cancer. Cell, 2017, 168(4), 629-643.
[http://dx.doi.org/10.1016/j.cell.2016.12.013] [PMID: 28187285]
[182]
Wang, Y.; Zhang, T.; Kwiatkowski, N.; Abraham, B.J.; Lee, T.I.; Xie, S.; Yuzugullu, H.; Von, T.; Li, H.; Lin, Z.; Stover, D.G.; Lim, E.; Wang, Z.C.; Iglehart, J.D.; Young, R.A.; Gray, N.S.; Zhao, J.J. CDK7-dependent transcriptional addiction in triple-negative breast cancer. Cell, 2015, 163(1), 174-186.
[http://dx.doi.org/10.1016/j.cell.2015.08.063] [PMID: 26406377]
[183]
Sengupta, S.; George, R.E. Super-Enhancer-Driven Transcriptional Dependencies in Cancer. Trends Cancer, 2017, 3(4), 269-281.
[http://dx.doi.org/10.1016/j.trecan.2017.03.006] [PMID: 28718439]
[184]
Gabay, M.; Li, Y.; Felsher, D.W. MYC activation is a hallmark of cancer initiation and maintenance. Cold Spring Harb. Perspect. Med., 2014, 4(6)
[http://dx.doi.org/10.1101/cshperspect.a014241] [PMID: 24890832]
[185]
Dunn, S.; Cowling, V.H. Myc and mRNA capping. Biochim. Biophys. Acta, 2015, 1849(5), 501-505.
[http://dx.doi.org/10.1016/j.bbagrm.2014.03.007] [PMID: 24681440]
[186]
Fernandez-Sanchez, M.E.; Gonatopoulos-Pournatzis, T.; Preston, G.; Lawlor, M.A.; Cowling, V.H. S-adenosyl homocysteine hydrolase is required for Myc-induced mRNA cap methylation, protein synthesis, and cell proliferation. Mol. Cell. Biol., 2009, 29(23), 6182-6191.
[http://dx.doi.org/10.1128/MCB.00973-09] [PMID: 19805518]
[187]
Aregger, M.; Cowling, V.H. Regulation of mRNA capping in the cell cycle. RNA Biol., 2017, 14(1), 11-14.
[http://dx.doi.org/10.1080/15476286.2016.1251540] [PMID: 27791484]
[188]
Aregger, M.; Cowling, V.H. Human cap methyltransferase (RNMT) N-terminal non-catalytic domain mediates recruitment to transcription initiation sites. Biochem. J., 2013, 455(1), 67-73.
[http://dx.doi.org/10.1042/BJ20130378] [PMID: 23863084]
[189]
Dunn, S.; Lombardi, O.; Lukoszek, R.; Cowling, V.H. Oncogenic PIK3CA mutations increase dependency on the mRNA cap methyltransferase, RNMT, in breast cancer cells. Open Biol., 2019, 9(4)
[http://dx.doi.org/10.1098/rsob.190052] [PMID: 30991934]
[190]
Varshney, D.; Lombardi, O.; Schweikert, G.; Dunn, S.; Suska, O.; Cowling, V.H. mRNA Cap Methyltransferase, RNMT-RAM, Promotes RNA Pol II-Dependent Transcription. Cell Rep., 2018, 23(5), 1530-1542.
[http://dx.doi.org/10.1016/j.celrep.2018.04.004] [PMID: 29719263]
[191]
Posternak, V.; Ung, M.H.; Cheng, C.; Cole, M.D. MYC Mediates mRNA Cap Methylation of Canonical Wnt/β-Catenin Signaling Transcripts By Recruiting CDK7 and RNA Methyltransferase. Mol. Cancer Res., 2017, 15(2), 213-224.
[http://dx.doi.org/10.1158/1541-7786.MCR-16-0247] [PMID: 27899423]
[192]
Cowling, V.H. Myc up-regulates formation of the mRNA methyl cap. Biochem. Soc. Trans., 2010, 38(6), 1598-1601.
[http://dx.doi.org/10.1042/BST0381598] [PMID: 21118133]
[193]
Galloway, A.; Cowling, V.H. mRNA cap regulation in mammalian cell function and fate. Biochim. Biophys. Acta. Gene Regul. Mech., 2019, 1862(3), 270-279.
[http://dx.doi.org/10.1016/j.bbagrm.2018.09.011] [PMID: 30312682]
[194]
Dunn, S.; Lombardi, O.; Cowling, V.H. c-Myc co-ordinates mRNA cap methylation and ribosomal RNA production. Biochem. J., 2017, 474(3), 377-384.
[http://dx.doi.org/10.1042/BCJ20160930] [PMID: 27934633]
[195]
Poortinga, G.; Hannan, K.M.; Snelling, H.; Walkley, C.R.; Jenkins, A.; Sharkey, K.; Wall, M.; Brandenburger, Y.; Palatsides, M.; Pearson, R.B.; McArthur, G.A.; Hannan, R.D. MAD1 and c-MYC regulate UBF and rDNA transcription during granulocyte differentiation. EMBO J., 2004, 23(16), 3325-3335.
[http://dx.doi.org/10.1038/sj.emboj.7600335] [PMID: 15282543]
[196]
Grandori, C.; Robinson, K.L.; Galloway, D.A.; Swisshelm, K. Functional link between Myc and the Werner gene in tumorigenesis. Cell Cycle, 2004, 3(1), 22-25.
[http://dx.doi.org/10.4161/cc.3.1.630] [PMID: 14657658]
[197]
Poortinga, G.; Wall, M.; Sanij, E.; Siwicki, K.; Ellul, J.; Brown, D.; Holloway, T.P.; Hannan, R.D.; McArthur, G.A. c-MYC coordinately regulates ribosomal gene chromatin remodeling and Pol I availability during granulocyte differentiation. Nucleic Acids Res., 2011, 39(8), 3267-3281.
[http://dx.doi.org/10.1093/nar/gkq1205] [PMID: 21177653]
[198]
Rahl, P.B.; Lin, C.Y.; Seila, A.C.; Flynn, R.A.; McCuine, S.; Burge, C.B.; Sharp, P.A.; Young, R.A. c-Myc regulates transcriptional pause release. Cell, 2010, 141(3), 432-445.
[http://dx.doi.org/10.1016/j.cell.2010.03.030] [PMID: 20434984]
[199]
Eberhardy, S.R.; Farnham, P.J. Myc recruits P-TEFb to mediate the final step in the transcriptional activation of the cad promoter. J. Biol. Chem., 2002, 277(42), 40156-40162.
[http://dx.doi.org/10.1074/jbc.M207441200] [PMID: 12177005]
[200]
Chen, H.; Liu, H.; Qing, G. Targeting oncogenic Myc as a strategy for cancer treatment. Signal Transduct. Target. Ther., 2018, 3, 5.
[http://dx.doi.org/10.1038/s41392-018-0008-7] [PMID: 29527331]
[201]
Manning, M.; Jiang, Y.; Wang, R.; Liu, L.; Rode, S.; Bonahoom, M.; Kim, S.; Yang, Z.Q. Pan-cancer analysis of RNA methyltransferases identifies FTSJ3 as a potential regulator of breast cancer progression. RNA Biol., 2020, 17(4), 474-486.
[http://dx.doi.org/10.1080/15476286.2019.1708549] [PMID: 31957540]
[202]
Zhang, J.; Zheng, Y.G. SAM/SAH Analogs as Versatile Tools for SAM-Dependent Methyltransferases. ACS Chem. Biol., 2016, 11(3), 583-597.
[http://dx.doi.org/10.1021/acschembio.5b00812] [PMID: 26540123]
[203]
Schubert, H.L.; Blumenthal, R.M.; Cheng, X. Many paths to methyltransfer: a chronicle of convergence. Trends Biochem. Sci., 2003, 28(6), 329-335.
[http://dx.doi.org/10.1016/S0968-0004(03)00090-2] [PMID: 12826405]
[204]
Copeland, R.A. Protein methyltransferase inhibitors as precision cancer therapeutics: a decade of discovery. Philos. Trans. R. Soc. Lond. B Biol. Sci., 2018, 373(1748), 373.
[http://dx.doi.org/10.1098/rstb.2017.0080] [PMID: 29685962]
[205]
Morera, L.; Lübbert, M.; Jung, M. Targeting histone methyltransferases and demethylases in clinical trials for cancer therapy. Clin. Epigenetics, 2016, 8, 57.
[http://dx.doi.org/10.1186/s13148-016-0223-4] [PMID: 27222667]
[206]
Zhou, Z.; Li, H.Q.; Liu, F. DNA Methyltransferase Inhibitors and their Therapeutic Potential. Curr. Top. Med. Chem., 2018, 18(28), 2448-2457.
[http://dx.doi.org/10.2174/1568026619666181120150122] [PMID: 30465505]
[207]
Kloor, D.; Osswald, H. S-Adenosylhomocysteine hydrolase as a target for intracellular adenosine action. Trends Pharmacol. Sci., 2004, 25(6), 294-297.
[http://dx.doi.org/10.1016/j.tips.2004.04.004] [PMID: 15165742]
[208]
Poortinga, G.; Quinn, L.M.; Hannan, R.D. Targeting RNA polymerase I to treat MYC-driven cancer. Oncogene, 2015, 34(4), 403-412.
[http://dx.doi.org/10.1038/onc.2014.13] [PMID: 24608428]
[209]
Drygin, D.; Lin, A.; Bliesath, J.; Ho, C.B.; O’Brien, S.E.; Proffitt, C.; Omori, M.; Haddach, M.; Schwaebe, M.K.; Siddiqui-Jain, A.; Streiner, N.; Quin, J.E.; Sanij, E.; Bywater, M.J.; Hannan, R.D.; Ryckman, D.; Anderes, K.; Rice, W.G. Targeting RNA polymerase I with an oral small molecule CX-5461 inhibits ribosomal RNA synthesis and solid tumor growth. Cancer Res., 2011, 71(4), 1418-1430.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-1728] [PMID: 21159662]
[210]
Khot, A.; Brajanovski, N.; Cameron, D.P.; Hein, N.; Maclachlan, K.H.; Sanij, E.; Lim, J.; Soong, J.; Link, E.; Blombery, P.; Thompson, E.R.; Fellowes, A.; Sheppard, K.E.; McArthur, G.A.; Pearson, R.B.; Hannan, R.D.; Poortinga, G.; Harrison, S.J. First-in-Human RNA Polymerase I Transcription Inhibitor CX-5461 in Patients with Advanced Hematologic Cancers: Results of a Phase I Dose-Escalation Study. Cancer Discov., 2019, 9(8), 1036-1049.
[http://dx.doi.org/10.1158/2159-8290.CD-18-1455] [PMID: 31092402]
[211]
Meyuhas, O. Synthesis of the translational apparatus is regulated at the translational level. Eur. J. Biochem., 2000, 267(21), 6321-6330.
[http://dx.doi.org/10.1046/j.1432-1327.2000.01719.x] [PMID: 11029573]
[212]
Iadevaia, V.; Caldarola, S.; Tino, E.; Amaldi, F.; Loreni, F. All translation elongation factors and the e, f, and h subunits of translation initiation factor 3 are encoded by 5′-terminal oligopyrimidine (TOP) mRNAs. RNA, 2008, 14(9), 1730-1736.
[http://dx.doi.org/10.1261/rna.1037108] [PMID: 18658124]
[213]
Izaurralde, E.; McGuigan, C.; Mattaj, I.W. Nuclear localization of a cap-binding protein complex. Cold Spring Harb. Symp. Quant. Biol., 1995, 60, 669-675.
[http://dx.doi.org/10.1101/SQB.1995.060.01.072] [PMID: 8824441]
[214]
Maniatis, T.; Reed, R. An extensive network of coupling among gene expression machines. Nature, 2002, 416(6880), 499-506.
[http://dx.doi.org/10.1038/416499a] [PMID: 11932736]
[215]
Topisirovic, I.; Siddiqui, N.; Lapointe, V.L.; Trost, M.; Thibault, P.; Bangeranye, C.; Piñol-Roma, S.; Borden, K.L. Molecular dissection of the eukaryotic initiation factor 4E (eIF4E) export-competent RNP. EMBO J., 2009, 28(8), 1087-1098.
[http://dx.doi.org/10.1038/emboj.2009.53] [PMID: 19262567]
[216]
Topisirovic, I.; Svitkin, Y.V.; Sonenberg, N.; Shatkin, A.J. Cap and cap-binding proteins in the control of gene expression. Wiley Interdiscip. Rev. RNA, 2011, 2(2), 277-298.
[http://dx.doi.org/10.1002/wrna.52] [PMID: 21957010]
[217]
Gross, J.D.; Moerke, N.J.; von der Haar, T.; Lugovskoy, A.A.; Sachs, A.B.; McCarthy, J.E.; Wagner, G. Ribosome loading onto the mRNA cap is driven by conformational coupling between eIF4G and eIF4E. Cell, 2003, 115(6), 739-750.
[http://dx.doi.org/10.1016/S0092-8674(03)00975-9] [PMID: 14675538]
[218]
Aitken, C.E.; Lorsch, J.R. A mechanistic overview of translation initiation in eukaryotes. Nat. Struct. Mol. Biol., 2012, 19(6), 568-576.
[http://dx.doi.org/10.1038/nsmb.2303] [PMID: 22664984]
[219]
Modrak-Wojcik, A.; Gorka, M.; Niedzwiecka, K.; Zdanowski, K.; Zuberek, J.; Niedzwiecka, A.; Stolarski, R. Eukaryotic translation initiation is controlled by cooperativity effects within ternary complexes of 4E-BP1, eIF4E, and the mRNA 5′ cap. FEBS Lett., 2013, 587(24), 3928-3934.
[http://dx.doi.org/10.1016/j.febslet.2013.10.043] [PMID: 24211447]
[220]
Filipowicz, W.; Furuichi, Y.; Sierra, J.M.; Muthukrishnan, S.; Shatkin, A.J.; Ochoa, S. A protein binding the methylated 5′-terminal sequence, m7GpppN, of eukaryotic messenger RNA. Proc. Natl. Acad. Sci. USA, 1976, 73(5), 1559-1563.
[http://dx.doi.org/10.1073/pnas.73.5.1559] [PMID: 1064023]
[221]
Borden, K.L. The eukaryotic translation initiation factor eIF4E wears a “cap” for many occasions. Translation (Austin), 2016, 4(2)
[http://dx.doi.org/10.1080/21690731.2016.1220899] [PMID: 28090419]
[222]
Gingras, A.C.; Gygi, S.P.; Raught, B.; Polakiewicz, R.D.; Abraham, R.T.; Hoekstra, M.F.; Aebersold, R.; Sonenberg, N. Regulation of 4E-BP1 phosphorylation: a novel two-step mechanism. Genes Dev., 1999, 13(11), 1422-1437.
[http://dx.doi.org/10.1101/gad.13.11.1422] [PMID: 10364159]
[223]
She, Q.B.; Halilovic, E.; Ye, Q.; Zhen, W.; Shirasawa, S.; Sasazuki, T.; Solit, D.B.; Rosen, N. 4E-BP1 is a key effector of the oncogenic activation of the AKT and ERK signaling pathways that integrates their function in tumors. Cancer Cell, 2010, 18(1), 39-51.
[http://dx.doi.org/10.1016/j.ccr.2010.05.023] [PMID: 20609351]
[224]
Tcherkezian, J.; Cargnello, M.; Romeo, Y.; Huttlin, E.L.; Lavoie, G.; Gygi, S.P.; Roux, P.P. Proteomic analysis of cap-dependent translation identifies LARP1 as a key regulator of 5'TOP mRNA translation. Genes Dev., 2014, 28(4), 357-371.
[http://dx.doi.org/10.1101/gad.231407.113] [PMID: 24532714]
[225]
Fonseca, B.D.; Zakaria, C.; Jia, J.J.; Graber, T.E.; Svitkin, Y.; Tahmasebi, S.; Healy, D.; Hoang, H.D.; Jensen, J.M.; Diao, I.T.; Lussier, A.; Dajadian, C.; Padmanabhan, N.; Wang, W.; Matta-Camacho, E.; Hearnden, J.; Smith, E.M.; Tsukumo, Y.; Yanagiya, A.; Morita, M.; Petroulakis, E.; González, J.L.; Hernández, G.; Alain, T.; Damgaard, C.K. La-related Protein 1 (LARP1) Represses Terminal Oligopyrimidine (TOP) mRNA Translation Downstream of mTOR Complex 1 (mTORC1). J. Biol. Chem., 2015, 290(26), 15996-16020.
[http://dx.doi.org/10.1074/jbc.M114.621730] [PMID: 25940091]
[226]
Lahr, R.M.; Fonseca, B.D.; Ciotti, G.E.; Al-Ashtal, H.A.; Jia, J.J.; Niklaus, M.R.; Blagden, S.P.; Alain, T.; Berman, A.J. La-related protein 1 (LARP1) binds the mRNA cap, blocking eIF4F assembly on TOP mRNAs. eLife, 2017, 6, 6.
[http://dx.doi.org/10.7554/eLife.24146] [PMID: 28379136]
[227]
Saxton, R.A.; Sabatini, D.M. mTOR Signaling in Growth, Metabolism, and Disease. Cell, 2017, 169(2), 361-371.
[http://dx.doi.org/10.1016/j.cell.2017.03.035] [PMID: 28388417]
[228]
Thoreen, C.C. The molecular basis of mTORC1-regulated translation. Biochem. Soc. Trans., 2017, 45(1), 213-221.
[http://dx.doi.org/10.1042/BST20160072] [PMID: 28202675]
[229]
Philippe, L.; Vasseur, J.J.; Debart, F.; Thoreen, C.C. La-related protein 1 (LARP1) repression of TOP mRNA translation is mediated through its cap-binding domain and controlled by an adjacent regulatory region. Nucleic Acids Res., 2018, 46(3), 1457-1469.
[http://dx.doi.org/10.1093/nar/gkx1237] [PMID: 29244122]
[230]
Siddiqui, N.; Sonenberg, N. Signalling to eIF4E in cancer. Biochem. Soc. Trans., 2015, 43(5), 763-772.
[http://dx.doi.org/10.1042/BST20150126] [PMID: 26517881]
[231]
Mossmann, D.; Park, S.; Hall, M.N. mTOR signalling and cellular metabolism are mutual determinants in cancer. Nat. Rev. Cancer, 2018, 18(12), 744-757.
[http://dx.doi.org/10.1038/s41568-018-0074-8] [PMID: 30425336]
[232]
Carroll, M.; Borden, K.L. The oncogene eIF4E: using biochemical insights to target cancer. J. Interferon Cytokine Res., 2013, 33(5), 227-238.
[http://dx.doi.org/10.1089/jir.2012.0142] [PMID: 23472659]
[233]
Wendel, H.G.; Silva, R.L.; Malina, A.; Mills, J.R.; Zhu, H.; Ueda, T.; Watanabe-Fukunaga, R.; Fukunaga, R.; Teruya-Feldstein, J.; Pelletier, J.; Lowe, S.W. Dissecting eIF4E action in tumorigenesis. Genes Dev., 2007, 21(24), 3232-3237.
[http://dx.doi.org/10.1101/gad.1604407] [PMID: 18055695]
[234]
Mamane, Y.; Petroulakis, E.; Rong, L.; Yoshida, K.; Ler, L.W.; Sonenberg, N. eIF4E--from translation to transformation. Oncogene, 2004, 23(18), 3172-3179.
[http://dx.doi.org/10.1038/sj.onc.1207549] [PMID: 15094766]
[235]
Proud, C.G. Mnks, eIF4E phosphorylation and cancer. Biochim. Biophys. Acta, 2015, 1849(7), 766-773.
[http://dx.doi.org/10.1016/j.bbagrm.2014.10.003] [PMID: 25450520]
[236]
Jia, Y.; Polunovsky, V.; Bitterman, P.B.; Wagner, C.R. Cap-dependent translation initiation factor eIF4E: an emerging anticancer drug target. Med. Res. Rev., 2012, 32(4), 786-814.
[http://dx.doi.org/10.1002/med.21260] [PMID: 22495651]
[237]
Piserà, A.; Campo, A.; Campo, S. Structure and functions of the translation initiation factor eIF4E and its role in cancer development and treatment. J. Genet. Genomics, 2018, 45(1), 13-24.
[http://dx.doi.org/10.1016/j.jgg.2018.01.003] [PMID: 29396141]
[238]
Bhat, M.; Robichaud, N.; Hulea, L.; Sonenberg, N.; Pelletier, J.; Topisirovic, I. Targeting the translation machinery in cancer. Nat. Rev. Drug Discov., 2015, 14(4), 261-278.
[http://dx.doi.org/10.1038/nrd4505] [PMID: 25743081]
[239]
Graff, J.R.; Konicek, B.W.; Vincent, T.M.; Lynch, R.L.; Monteith, D.; Weir, S.N.; Schwier, P.; Capen, A.; Goode, R.L.; Dowless, M.S.; Chen, Y.; Zhang, H.; Sissons, S.; Cox, K.; McNulty, A.M.; Parsons, S.H.; Wang, T.; Sams, L.; Geeganage, S.; Douglass, L.E.; Neubauer, B.L.; Dean, N.M.; Blanchard, K.; Shou, J.; Stancato, L.F.; Carter, J.H.; Marcusson, E.G. Therapeutic suppression of translation initiation factor eIF4E expression reduces tumor growth without toxicity. J. Clin. Invest., 2007, 117(9), 2638-2648.
[http://dx.doi.org/10.1172/JCI32044] [PMID: 17786246]
[240]
Wendel, H.G.; De Stanchina, E.; Fridman, J.S.; Malina, A.; Ray, S.; Kogan, S.; Cordon-Cardo, C.; Pelletier, J.; Lowe, S.W. Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature, 2004, 428(6980), 332-337.
[http://dx.doi.org/10.1038/nature02369] [PMID: 15029198]
[241]
Li, S.; Jia, Y.; Jacobson, B.; McCauley, J.; Kratzke, R.; Bitterman, P.B.; Wagner, C.R. Treatment of breast and lung cancer cells with a N-7 benzyl guanosine monophosphate tryptamine phosphoramidate pronucleotide (4Ei-1) results in chemosensitization to gemcitabine and induced eIF4E proteasomal degradation. Mol. Pharm., 2013, 10(2), 523-531.
[http://dx.doi.org/10.1021/mp300699d] [PMID: 23289910]
[242]
Soukarieh, F.; Nowicki, M.W.; Bastide, A.; Pöyry, T.; Jones, C.; Dudek, K.; Patwardhan, G.; Meullenet, F.; Oldham, N.J.; Walkinshaw, M.D.; Willis, A.E.; Fischer, P.M. Design of nucleotide-mimetic and non-nucleotide inhibitors of the translation initiation factor eIF4E: Synthesis, structural and functional characterisation. Eur. J. Med. Chem., 2016, 124, 200-217.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.047] [PMID: 27592390]
[243]
Kaur, T.; Menon, A.; Garner, A.L. Synthesis of 7-benzylguanosine cap-analogue conjugates for eIF4E targeted degradation. Eur. J. Med. Chem., 2019, 166, 339-350.
[http://dx.doi.org/10.1016/j.ejmech.2019.01.080] [PMID: 30735900]
[244]
Karaki, S.; Andrieu, C.; Ziouziou, H.; Rocchi, P. The Eukaryotic Translation Initiation Factor 4E (eIF4E) as a Therapeutic Target for Cancer. Adv. Protein Chem. Struct. Biol., 2015, 101, 1-26.
[http://dx.doi.org/10.1016/bs.apcsb.2015.09.001] [PMID: 26572974]
[245]
Witkowski, J.T.; Robins, R.K.; Sidwell, R.W.; Simon, L.N. Design, synthesis, and broad spectrum antiviral activity of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide and related nucleosides. J. Med. Chem., 1972, 15(11), 1150-1154.
[http://dx.doi.org/10.1021/jm00281a014] [PMID: 4347550]
[246]
Assouline, S.; Culjkovic, B.; Cocolakis, E.; Rousseau, C.; Beslu, N.; Amri, A.; Caplan, S.; Leber, B.; Roy, D.C.; Miller, W.H., Jr; Borden, K.L. Molecular targeting of the oncogene eIF4E in acute myeloid leukemia (AML): a proof-of-principle clinical trial with ribavirin. Blood, 2009, 114(2), 257-260.
[http://dx.doi.org/10.1182/blood-2009-02-205153] [PMID: 19433856]
[247]
Casaos, J.; Gorelick, N.L.; Huq, S.; Choi, J.; Xia, Y.; Serra, R.; Felder, R.; Lott, T.; Kast, R.E.; Suk, I.; Brem, H.; Tyler, B.; Skuli, N. The Use of Ribavirin as an Anticancer Therapeutic: Will It Go Viral? Mol. Cancer Ther., 2019, 18(7), 1185-1194.
[http://dx.doi.org/10.1158/1535-7163.MCT-18-0666] [PMID: 31263027]
[248]
Heinzen, D.; Divé, I.; Lorenz, N.I.; Luger, A.L.; Steinbach, J.P.; Ronellenfitsch, M.W. Second Generation mTOR Inhibitors as a Double-Edged Sword in Malignant Glioma Treatment. Int. J. Mol. Sci., 2019, 20(18)
[http://dx.doi.org/10.3390/ijms20184474] [PMID: 31510109]
[249]
Maira, S.M.; Stauffer, F.; Brueggen, J.; Furet, P.; Schnell, C.; Fritsch, C.; Brachmann, S.; Chène, P.; De Pover, A.; Schoemaker, K.; Fabbro, D.; Gabriel, D.; Simonen, M.; Murphy, L.; Finan, P.; Sellers, W.; García-Echeverría, C. Identification and characterization of NVP-BEZ235, a new orally available dual phosphatidylinositol 3-kinase/mammalian target of rapamycin inhibitor with potent in vivo antitumor activity. Mol. Cancer Ther., 2008, 7(7), 1851-1863.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0017] [PMID: 18606717]
[250]
Roper, J.; Richardson, M.P.; Wang, W.V.; Richard, L.G.; Chen, W.; Coffee, E.M.; Sinnamon, M.J.; Lee, L.; Chen, P.C.; Bronson, R.T.; Martin, E.S.; Hung, K.E. The dual PI3K/mTOR inhibitor NVP-BEZ235 induces tumor regression in a genetically engineered mouse model of PIK3CA wild-type colorectal cancer. PLoS One, 2011, 6(9)
[http://dx.doi.org/10.1371/journal.pone.0025132] [PMID: 21966435]
[251]
Shaik, A.; Kirubakaran, S. Evolution of PIKK family kinase inhibitors: A new age cancer therapeutics. Front. Biosci., 2020, 25, 1510-1537.
[http://dx.doi.org/10.2741/4866] [PMID: 32114443]
[252]
Shi, F.; Zhang, J.; Liu, H.; Wu, L.; Jiang, H.; Wu, Q.; Liu, T.; Lou, M.; Wu, H. The dual PI3K/mTOR inhibitor dactolisib elicits anti-tumor activity in vitro and in vivo. Oncotarget, 2017, 9(1), 706-717.
[http://dx.doi.org/10.18632/oncotarget.23091] [PMID: 29416647]
[253]
Sznol, J.A.; Jilaveanu, L.B.; Kluger, H.M. Studies of NVP-BEZ235 in melanoma. Curr. Cancer Drug Targets, 2013, 13(2), 165-174.
[http://dx.doi.org/10.2174/1568009611313020006] [PMID: 23215722]
[254]
Xu, C.X.; Li, Y.; Yue, P.; Owonikoko, T.K.; Ramalingam, S.S.; Khuri, F.R.; Sun, S.Y. The combination of RAD001 and NVP-BEZ235 exerts synergistic anticancer activity against non-small cell lung cancer in vitro and in vivo. PLoS One, 2011, 6(6)
[http://dx.doi.org/10.1371/journal.pone.0020899] [PMID: 21695126]
[255]
Rodon, J.; Pérez-Fidalgo, A.; Krop, I.E.; Burris, H.; Guerrero-Zotano, A.; Britten, C.D.; Becerra, C.; Schellens, J.; Richards, D.A.; Schuler, M.; Abu-Khalaf, M.; Johnson, F.M.; Ranson, M.; Edenfield, J.; Silva, A.P.; Hackl, W.; Quadt, C.; Demanse, D.; Duval, V.; Baselga, J. Phase 1/1b dose escalation and expansion study of BEZ235, a dual PI3K/mTOR inhibitor, in patients with advanced solid tumors including patients with advanced breast cancer. Cancer Chemother. Pharmacol., 2018, 82(2), 285-298.
[http://dx.doi.org/10.1007/s00280-018-3610-z] [PMID: 29882016]
[256]
Dowling, R.J.; Topisirovic, I.; Fonseca, B.D.; Sonenberg, N. Dissecting the role of mTOR: lessons from mTOR inhibitors. Biochim. Biophys. Acta, 2010, 1804(3), 433-439.
[http://dx.doi.org/10.1016/j.bbapap.2009.12.001] [PMID: 20005306]
[257]
Euvrard, S.; Morelon, E.; Rostaing, L.; Goffin, E.; Brocard, A.; Tromme, I.; Broeders, N.; del Marmol, V.; Chatelet, V.; Dompmartin, A.; Kessler, M.; Serra, A.L.; Hofbauer, G.F.; Pouteil-Noble, C.; Campistol, J.M.; Kanitakis, J.; Roux, A.S.; Decullier, E.; Dantal, J. TUMORAPA Study Group. Sirolimus and secondary skin-cancer prevention in kidney transplantation. N. Engl. J. Med., 2012, 367(4), 329-339.
[http://dx.doi.org/10.1056/NEJMoa1204166] [PMID: 22830463]
[258]
Rössler, J.; Geiger, J.; Földi, E.; Adams, D.M.; Niemeyer, C.M. Sirolimus is highly effective for lymph leakage in microcystic lymphatic malformations with skin involvement. Int. J. Dermatol., 2017, 56(4), e72-e75.
[http://dx.doi.org/10.1111/ijd.13419] [PMID: 27706796]
[259]
Knoll, G.A.; Kokolo, M.B.; Mallick, R.; Beck, A.; Buenaventura, C.D.; Ducharme, R.; Barsoum, R.; Bernasconi, C.; Blydt-Hansen, T.D.; Ekberg, H.; Felipe, C.R.; Firth, J.; Gallon, L.; Gelens, M.; Glotz, D.; Gossmann, J.; Guba, M.; Morsy, A.A.; Salgo, R.; Scheuermann, E.H.; Tedesco-Silva, H.; Vitko, S.; Watson, C.; Fergusson, D.A. Effect of sirolimus on malignancy and survival after kidney transplantation: systematic review and meta-analysis of individual patient data. BMJ, 2014, 349, g6679.
[http://dx.doi.org/10.1136/bmj.g6679] [PMID: 25422259]
[260]
Perl, A.E.; Kasner, M.T.; Shank, D.; Luger, S.M.; Carroll, M. Single-cell pharmacodynamic monitoring of S6 ribosomal protein phosphorylation in AML blasts during a clinical trial combining the mTOR inhibitor sirolimus and intensive chemotherapy. Clin. Cancer Res., 2012, 18(6), 1716-1725.
[http://dx.doi.org/10.1158/1078-0432.CCR-11-2346] [PMID: 22167413]
[261]
Cope, C.L.; Gilley, R.; Balmanno, K.; Sale, M.J.; Howarth, K.D.; Hampson, M.; Smith, P.D.; Guichard, S.M.; Cook, S.J. Adaptation to mTOR kinase inhibitors by amplification of eIF4E to maintain cap-dependent translation. J. Cell Sci., 2014, 127(Pt 4), 788-800.
[http://dx.doi.org/10.1242/jcs.137588] [PMID: 24363449]
[262]
Kauffman, E.C.; Lang, M.; Rais-Bahrami, S.; Gupta, G.N.; Wei, D.; Yang, Y.; Sourbier, C.; Srinivasan, R. Preclinical efficacy of dual mTORC1/2 inhibitor AZD8055 in renal cell carcinoma harboring a TFE3 gene fusion. BMC Cancer, 2019, 19(1), 917.
[http://dx.doi.org/10.1186/s12885-019-6096-0] [PMID: 31519159]
[263]
Naing, A.; Aghajanian, C.; Raymond, E.; Olmos, D.; Schwartz, G.; Oelmann, E.; Grinsted, L.; Burke, W.; Taylor, R.; Kaye, S.; Kurzrock, R.; Banerji, U. Safety, tolerability, pharmacokinetics and pharmacodynamics of AZD8055 in advanced solid tumours and lymphoma. Br. J. Cancer, 2012, 107(7), 1093-1099.
[http://dx.doi.org/10.1038/bjc.2012.368] [PMID: 22935583]
[264]
Shao, H.; Gao, C.; Tang, H.; Zhang, H.; Roberts, L.R.; Hylander, B.L.; Repasky, E.A.; Ma, W.W.; Qiu, J.; Adjei, A.A.; Dy, G.K.; Yu, C. Dual targeting of mTORC1/C2 complexes enhances histone deacetylase inhibitor-mediated anti-tumor efficacy in primary HCC cancer in vitro and in vivo. J. Hepatol., 2012, 56(1), 176-183.
[http://dx.doi.org/10.1016/j.jhep.2011.07.013] [PMID: 21835141]
[265]
Willems, L.; Chapuis, N.; Puissant, A.; Maciel, T.T.; Green, A.S.; Jacque, N.; Vignon, C.; Park, S.; Guichard, S.; Herault, O.; Fricot, A.; Hermine, O.; Moura, I.C.; Auberger, P.; Ifrah, N.; Dreyfus, F.; Bonnet, D.; Lacombe, C.; Mayeux, P.; Bouscary, D.; Tamburini, J. The dual mTORC1 and mTORC2 inhibitor AZD8055 has anti-tumor activity in acute myeloid leukemia. Leukemia, 2012, 26(6), 1195-1202.
[http://dx.doi.org/10.1038/leu.2011.339] [PMID: 22143671]
[266]
Hou, J.; Lam, F.; Proud, C.; Wang, S. Targeting Mnks for cancer therapy. Oncotarget, 2012, 3(2), 118-131.
[http://dx.doi.org/10.18632/oncotarget.453] [PMID: 22392765]
[267]
Prabhu, S.A.; Moussa, O.; Miller, W.H., Jr; Del Rincón, S.V. The MNK1/2-eIF4E Axis as a Potential Therapeutic Target in Melanoma. Int. J. Mol. Sci., 2020, 21(11)4055
[http://dx.doi.org/10.3390/ijms21114055] [PMID: 32517051]
[268]
Dreas, A.; Mikulski, M.; Milik, M.; Fabritius, C.H.; Brzózka, K.; Rzymski, T. Mitogen-activated Protein Kinase (MAPK) Interacting Kinases 1 and 2 (MNK1 and MNK2) as Targets for Cancer Therapy: Recent Progress in the Development of MNK Inhibitors. Curr. Med. Chem., 2017, 24(28), 3025-3053.
[http://dx.doi.org/10.2174/0929867324666170203123427] [PMID: 28164761]
[269]
Salgo, R.; Gossmann, J.; Schöfer, H.; Kachel, H.G.; Kuck, J.; Geiger, H.; Kaufmann, R.; Scheuermann, E.H. Switch to a sirolimus-based immunosuppression in long-term renal transplant recipients: reduced rate of (pre-)malignancies and nonmelanoma skin cancer in a prospective, randomized, assessor-blinded, controlled clinical trial. Am. J. Transplant., 2010, 10(6), 1385-1393.
[http://dx.doi.org/10.1111/j.1600-6143.2009.02997.x] [PMID: 20121752]
[270]
Dong, Z.; Cui, H. The Emerging Roles of RNA Modifications in Glioblastoma. Cancers (Basel), 2020, 12(3)736
[http://dx.doi.org/10.3390/cancers12030736] [PMID: 32244981]
[271]
Yuan, Y.; Du, Y.; Wang, L.; Liu, X. The M6A methyltransferase METTL3 promotes the development and progression of prostate carcinoma via mediating MYC methylation. J. Cancer, 2020, 11(12), 3588-3595.
[http://dx.doi.org/10.7150/jca.42338] [PMID: 32284755]
[272]
Cai, J.; Yang, F.; Zhan, H.; Situ, J.; Li, W.; Mao, Y.; Luo, Y. RNA m6A Methyltransferase METTL3 Promotes The Growth Of Prostate Cancer By Regulating Hedgehog Pathway. OncoTargets Ther., 2019, 12, 9143-9152.
[http://dx.doi.org/10.2147/OTT.S226796] [PMID: 31806999]
[273]
Zhuang, Z.; Chen, L.; Mao, Y.; Zheng, Q.; Li, H.; Huang, Y.; Hu, Z.; Jin, Y. Diagnostic, progressive and prognostic performance of m6A methylation RNA regulators in lung adenocarcinoma. Int. J. Biol. Sci., 2020, 16(11), 1785-1797.
[http://dx.doi.org/10.7150/ijbs.39046] [PMID: 32398949]
[274]
Wang, Q.; Chen, C.; Ding, Q.; Zhao, Y.; Wang, Z.; Chen, J.; Jiang, Z.; Zhang, Y.; Xu, G.; Zhang, J.; Zhou, J.; Sun, B.; Zou, X.; Wang, S. METTL3-mediated m6A modification of HDGF mRNA promotes gastric cancer progression and has prognostic significance. Gut, 2020, 69(7), 1193-1205.
[http://dx.doi.org/10.1136/gutjnl-2019-319639] [PMID: 31582403]
[275]
Geng, Y.; Guan, R.; Hong, W.; Huang, B.; Liu, P.; Guo, X.; Hu, S.; Yu, M.; Hou, B. Identification of m6A-related genes and m6A RNA methylation regulators in pancreatic cancer and their association with survival. Ann. Transl. Med., 2020, 8(6), 387.
[http://dx.doi.org/10.21037/atm.2020.03.98] [PMID: 32355831]
[276]
Xia, T.; Wu, X.; Cao, M.; Zhang, P.; Shi, G.; Zhang, J.; Lu, Z.; Wu, P.; Cai, B.; Miao, Y.; Jiang, K. The RNA m6A methyltransferase METTL3 promotes pancreatic cancer cell proliferation and invasion. Pathol. Res. Pract., 2019, 215(11)
[http://dx.doi.org/10.1016/j.prp.2019.152666] [PMID: 31606241]
[277]
Chen, M.; Wong, C.M. The emerging roles of N6-methyladenosine (m6A) deregulation in liver carcinogenesis. Mol. Cancer, 2020, 19(1), 44.
[http://dx.doi.org/10.1186/s12943-020-01172-y] [PMID: 32111216]
[278]
Chen, R.X.; Chen, X.; Xia, L.P.; Zhang, J.X.; Pan, Z.Z.; Ma, X.D.; Han, K.; Chen, J.W.; Judde, J.G.; Deas, O.; Wang, F.; Ma, N.F.; Guan, X.; Yun, J.P.; Wang, F.W.; Xu, R.H.; Dan Xie, N6-methyladenosine modification of circNSUN2 facilitates cytoplasmic export and stabilizes HMGA2 to promote colorectal liver metastasis. Nat. Commun., 2019, 10(1), 4695.
[http://dx.doi.org/10.1038/s41467-019-12651-2] [PMID: 31619685]
[279]
Wang, X.; Fu, X.; Zhang, J.; Xiong, C.; Zhang, S.; Lv, Y. Identification and validation of m6A RNA methylation regulators with clinical prognostic value in Papillary thyroid cancer. Cancer Cell Int., 2020, 20, 203.
[http://dx.doi.org/10.1186/s12935-020-01283-y] [PMID: 32514248]
[280]
Gao, Q.; Zheng, J.; Ni, Z.; Sun, P.; Yang, C.; Cheng, M.; Wu, M.; Zhang, X.; Yuan, L.; Zhang, Y.; Li, Y. The m6A Methylation-Regulated AFF4 Promotes Self-Renewal of Bladder Cancer Stem Cells. Stem Cells Int., 2020, 2020
[http://dx.doi.org/10.1155/2020/8849218] [PMID: 32676121]
[281]
Wang, J.; Zhang, C.; He, W.; Gou, X. Effect of m6A RNA Methylation Regulators on Malignant Progression and Prognosis in Renal Clear Cell Carcinoma. Front. Oncol., 2020, 10, 3.
[http://dx.doi.org/10.3389/fonc.2020.00003] [PMID: 32038982]
[282]
Zhuang, C.; Zhuang, C.; Luo, X.; Huang, X.; Yao, L.; Li, J.; Li, Y.; Xiong, T.; Ye, J.; Zhang, F.; Gui, Y. N6-methyladenosine demethylase FTO suppresses clear cell renal cell carcinoma through a novel FTO-PGC-1α signalling axis. J. Cell. Mol. Med., 2019, 23(3), 2163-2173.
[http://dx.doi.org/10.1111/jcmm.14128] [PMID: 30648791]
[283]
Shen, C.; Xuan, B.; Yan, T.; Ma, Y.; Xu, P.; Tian, X.; Zhang, X.; Cao, Y.; Ma, D.; Zhu, X.; Zhang, Y.; Fang, J.Y.; Chen, H.; Hong, J. m6A-dependent glycolysis enhances colorectal cancer progression. Mol. Cancer, 2020, 19(1), 72.
[http://dx.doi.org/10.1186/s12943-020-01190-w] [PMID: 32245489]
[284]
Zhang, J.; Cheng, X.; Wang, J.; Huang, Y.; Yuan, J.; Guo, D. Gene signature and prognostic merit of M6a regulators in colorectal cancer. Exp. Biol. Med. (Maywood), 2020, 245(15), 1344-1354.
[http://dx.doi.org/10.1177/1535370220936145] [PMID: 32605475]
[285]
Sun, T. LNC942 promoting METTL14-mediated m(6)A methylation in breast cancer cell proliferation and progression. Oncogene, 2020.
[http://dx.doi.org/10.1038/s41388-020-1338-9]
[286]
Liu, S.; Li, Q.; Chen, K.; Zhang, Q.; Li, G.; Zhuo, L.; Zhai, B.; Sui, X.; Hu, X.; Xie, T. The emerging molecular mechanism of m6A modulators in tumorigenesis and cancer progression. Biomed. Pharmacother., 2020, 127
[http://dx.doi.org/10.1016/j.biopha.2020.110098] [PMID: 32299028]
[287]
Ianniello, Z.; Paiardini, A.; Fatica, A. N6-Methyladenosine (m6A): A Promising New Molecular Target in Acute Myeloid Leukemia. Front. Oncol., 2019, 9, 251.
[http://dx.doi.org/10.3389/fonc.2019.00251] [PMID: 31024852]
[288]
Zhang, W.; He, X.; Hu, J.; Yang, P.; Liu, C.; Wang, J.; An, R.; Zhen, J.; Pang, M.; Hu, K.; Ke, X.; Zhang, X.; Jing, H. Dysregulation of N6-methyladenosine regulators predicts poor patient survival in mantle cell lymphoma. Oncol. Lett., 2019, 18(4), 3682-3690.
[http://dx.doi.org/10.3892/ol.2019.10708] [PMID: 31516580]
[289]
Wen, L.; Pan, X.; Yu, Y.; Yang, B. Down-regulation of FTO promotes proliferation and migration, and protects bladder cancer cells from cisplatin-induced cytotoxicity. BMC Urol., 2020, 20(1), 39.
[http://dx.doi.org/10.1186/s12894-020-00612-7] [PMID: 32299393]
[290]
Rong, Z.X.; Li, Z.; He, J.J.; Liu, L.Y.; Ren, X.X.; Gao, J.; Mu, Y.; Guan, Y.D.; Duan, Y.M.; Zhang, X.P.; Zhang, D.X.; Li, N.; Deng, Y.Z.; Sun, L.Q. Downregulation of Fat Mass and Obesity Associated (FTO) Promotes the Progression of Intrahepatic Cholangiocarcinoma. Front. Oncol., 2019, 9, 369.
[http://dx.doi.org/10.3389/fonc.2019.00369] [PMID: 31143705]
[291]
Li, X.; Tang, J.; Huang, W.; Wang, F.; Li, P.; Qin, C.; Qin, Z.; Zou, Q.; Wei, J.; Hua, L.; Yang, H.; Wang, Z. The M6A methyltransferase METTL3: acting as a tumor suppressor in renal cell carcinoma. Oncotarget, 2017, 8(56), 96103-96116.
[http://dx.doi.org/10.18632/oncotarget.21726] [PMID: 29221190]
[292]
Cui, Q.; Shi, H.; Ye, P.; Li, L.; Qu, Q.; Sun, G.; Sun, G.; Lu, Z.; Huang, Y.; Yang, C.G.; Riggs, A.D.; He, C.; Shi, Y. m6A RNA Methylation Regulates the Self-Renewal and Tumorigenesis of Glioblastoma Stem Cells. Cell Rep., 2017, 18(11), 2622-2634.
[http://dx.doi.org/10.1016/j.celrep.2017.02.059] [PMID: 28297667]
[293]
Li, J.; Han, Y.; Zhang, H.; Qian, Z.; Jia, W.; Gao, Y.; Zheng, H.; Li, B. The m6A demethylase FTO promotes the growth of lung cancer cells by regulating the m6A level of USP7 mRNA. Biochem. Biophys. Res. Commun., 2019, 512(3), 479-485.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.093] [PMID: 30905413]
[294]
Yang, S.; Wei, J.; Cui, Y.H.; Park, G.; Shah, P.; Deng, Y.; Aplin, A.E.; Lu, Z.; Hwang, S.; He, C.; He, Y.Y. m6A mRNA demethylase FTO regulates melanoma tumorigenicity and response to anti-PD-1 blockade. Nat. Commun., 2019, 10(1), 2782.
[http://dx.doi.org/10.1038/s41467-019-10669-0] [PMID: 31239444]
[295]
Xu, D.; Shao, W.; Jiang, Y.; Wang, X.; Liu, Y.; Liu, X. FTO expression is associated with the occurrence of gastric cancer and prognosis. Oncol. Rep., 2017, 38(4), 2285-2292.
[http://dx.doi.org/10.3892/or.2017.5904] [PMID: 28849183]
[296]
Akbari, M.E.; Gholamalizadeh, M.; Doaei, S.; Mirsafa, F. FTO Gene Affects Obesity and Breast Cancer Through Similar Mechanisms: A New Insight into the Molecular Therapeutic Targets. Nutr. Cancer, 2018, 70(1), 30-36.
[http://dx.doi.org/10.1080/01635581.2018.1397709] [PMID: 29220587]
[297]
Liu, Y.; Wang, R.; Zhang, L.; Li, J.; Lou, K.; Shi, B. The lipid metabolism gene FTO influences breast cancer cell energy metabolism via the PI3K/AKT signaling pathway. Oncol. Lett., 2017, 13(6), 4685-4690.
[http://dx.doi.org/10.3892/ol.2017.6038] [PMID: 28599470]
[298]
Li, Z.; Weng, H.; Su, R.; Weng, X.; Zuo, Z.; Li, C.; Huang, H.; Nachtergaele, S.; Dong, L.; Hu, C.; Qin, X.; Tang, L.; Wang, Y.; Hong, G.M.; Huang, H.; Wang, X.; Chen, P.; Gurbuxani, S.; Arnovitz, S.; Li, Y.; Li, S.; Strong, J.; Neilly, M.B.; Larson, R.A.; Jiang, X.; Zhang, P.; Jin, J.; He, C.; Chen, J. FTO Plays an Oncogenic Role in Acute Myeloid Leukemia as a N6-Methyladenosine RNA Demethylase. Cancer Cell, 2017, 31(1), 127-141.
[http://dx.doi.org/10.1016/j.ccell.2016.11.017] [PMID: 28017614]
[299]
Su, R. R-2HG Exhibits Anti-tumor Activity by Targeting FTO/m(6)A/MYC/CEBPA Signaling. Cell., 2018, 172(1-2), 90-105.
[300]
Weng, H. METTL14 Inhibits Hematopoietic Stem/Progenitor Differentiation and Promotes Leukemogenesis via mRNA m(6)A Modification. Cell Stem Cell., 2018, 22(2), 191-205.
[301]
Bansal, H.; Yihua, Q.; Iyer, S.P.; Ganapathy, S.; Proia, D.A.; Penalva, L.O.; Uren, P.J.; Suresh, U.; Carew, J.S.; Karnad, A.B.; Weitman, S.; Tomlinson, G.E.; Rao, M.K.; Kornblau, S.M.; Bansal, S. WTAP is a novel oncogenic protein in acute myeloid leukemia. Leukemia, 2014, 28(5), 1171-1174.
[http://dx.doi.org/10.1038/leu.2014.16] [PMID: 24413322]
[302]
Vu, L.P.; Pickering, B.F.; Cheng, Y.; Zaccara, S.; Nguyen, D.; Minuesa, G.; Chou, T.; Chow, A.; Saletore, Y.; MacKay, M.; Schulman, J.; Famulare, C.; Patel, M.; Klimek, V.M.; Garrett-Bakelman, F.E.; Melnick, A.; Carroll, M.; Mason, C.E.; Jaffrey, S.R.; Kharas, M.G. The N6-methyladenosine (m6A)-forming enzyme METTL3 controls myeloid differentiation of normal hematopoietic and leukemia cells. Nat. Med., 2017, 23(11), 1369-1376.
[http://dx.doi.org/10.1038/nm.4416] [PMID: 28920958]
[303]
Han, L.; Diao, L.; Yu, S.; Xu, X.; Li, J.; Zhang, R.; Yang, Y.; Werner, H.M.J.; Eterovic, A.K.; Yuan, Y.; Li, J.; Nair, N.; Minelli, R.; Tsang, Y.H.; Cheung, L.W.T.; Jeong, K.J.; Roszik, J.; Ju, Z.; Woodman, S.E.; Lu, Y.; Scott, K.L.; Li, J.B.; Mills, G.B.; Liang, H. The Genomic Landscape and Clinical Relevance of A-to-I RNA Editing in Human Cancers. Cancer Cell, 2015, 28(4), 515-528.
[http://dx.doi.org/10.1016/j.ccell.2015.08.013] [PMID: 26439496]
[304]
Paz-Yaacov, N.; Bazak, L.; Buchumenski, I.; Porath, H.T.; Danan-Gotthold, M.; Knisbacher, B.A.; Eisenberg, E.; Levanon, E.Y. Elevated RNA Editing Activity Is a Major Contributor to Transcriptomic Diversity in Tumors. Cell Rep., 2015, 13(2), 267-276.
[http://dx.doi.org/10.1016/j.celrep.2015.08.080] [PMID: 26440895]
[305]
Zipeto, M.A.; Court, A.C.; Sadarangani, A.; Delos Santos, N.P.; Balaian, L.; Chun, H.J.; Pineda, G.; Morris, S.R.; Mason, C.N.; Geron, I.; Barrett, C.; Goff, D.J.; Wall, R.; Pellecchia, M.; Minden, M.; Frazer, K.A.; Marra, M.A.; Crews, L.A.; Jiang, Q.; Jamieson, C.H.M. ADAR1 Activation Drives Leukemia Stem Cell Self-Renewal by Impairing Let-7 Biogenesis. Cell Stem Cell, 2016, 19(2), 177-191.
[http://dx.doi.org/10.1016/j.stem.2016.05.004] [PMID: 27292188]
[306]
Jiang, Q. Hyper-Editing of Cell-Cycle Regulatory and Tumor Suppressor RNA Promotes Malignant Progenitor Propagation. Cancer Cell., 2019, 35(1), 81-94.
[http://dx.doi.org/10.1016/j.ccell.2018.11.017]
[307]
Zhang, W.C.; Slack, F.J. ADARs Edit MicroRNAs to Promote Leukemic Stem Cell Activity. Cell Stem Cell, 2016, 19(2), 141-142.
[http://dx.doi.org/10.1016/j.stem.2016.07.012] [PMID: 27494666]
[308]
Cenci, C.; Barzotti, R.; Galeano, F.; Corbelli, S.; Rota, R.; Massimi, L.; Di Rocco, C.; O’Connell, M.A.; Gallo, A. Down-regulation of RNA editing in pediatric astrocytomas: ADAR2 editing activity inhibits cell migration and proliferation. J. Biol. Chem., 2008, 283(11), 7251-7260.
[http://dx.doi.org/10.1074/jbc.M708316200] [PMID: 18178553]
[309]
Chen, Y.B.; Liao, X.Y.; Zhang, J.B.; Wang, F.; Qin, H.D.; Zhang, L.; Shugart, Y.Y.; Zeng, Y.X.; Jia, W.H. ADAR2 functions as a tumor suppressor via editing IGFBP7 in esophageal squamous cell carcinoma. Int. J. Oncol., 2017, 50(2), 622-630.
[http://dx.doi.org/10.3892/ijo.2016.3823] [PMID: 28035363]
[310]
Shimokawa, T.; Rahman, M.F.; Tostar, U.; Sonkoly, E.; Ståhle, M.; Pivarcsi, A.; Palaniswamy, R.; Zaphiropoulos, P.G. RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biol., 2013, 10(2), 321-333.
[http://dx.doi.org/10.4161/rna.23343] [PMID: 23324600]
[311]
Bedi, R.K.; Huang, D.; Wiedmer, L.; Li, Y.; Dolbois, A.; Wojdyla, J.A.; Sharpe, M.E.; Caflisch, A.; Sledz, P. Selectively Disrupting m6A-Dependent Protein-RNA Interactions with Fragments. ACS Chem. Biol., 2020, 15(3), 618-625.
[http://dx.doi.org/10.1021/acschembio.9b00894] [PMID: 32101404]
[312]
Selberg, S. Discovery of Small Molecules that Activate RNA Methylation through Cooperative Binding to the METTL3-14-WTAP Complex Active Site. Cell Rep., 2019, 26(13), 3762-3771.
[http://dx.doi.org/10.1016/j.celrep.2019.02.100]
[313]
Huang, Y.; Yan, J.; Li, Q.; Li, J.; Gong, S.; Zhou, H.; Gan, J.; Jiang, H.; Jia, G.F.; Luo, C.; Yang, C.G. Meclofenamic acid selectively inhibits FTO demethylation of m6A over ALKBH5. Nucleic Acids Res., 2015, 43(1), 373-384.
[http://dx.doi.org/10.1093/nar/gku1276] [PMID: 25452335]
[314]
Das, M.; Yang, T.; Dong, J.; Prasetya, F.; Xie, Y.; Wong, K.H.Q.; Cheong, A.; Woon, E.C.Y. Multiprotein Dynamic Combinatorial Chemistry: A Strategy for the Simultaneous Discovery of Subfamily-Selective Inhibitors for Nucleic Acid Demethylases FTO and ALKBH3. Chem. Asian J., 2018, 13(19), 2854-2867.
[http://dx.doi.org/10.1002/asia.201800729] [PMID: 29917331]
[315]
Busch, H.; Busch, R.K.; Freeman, J.W.; Perlaky, L. Nucleolar protein P120 and its targeting for cancer chemotherapy. Boll. Soc. Ital. Biol. Sper., 1991, 67(8), 739-750.
[PMID: 1809302]
[316]
Hilbe, W.; Gächter, A.; Duba, H.C.; Dirnhofer, S.; Eisterer, W.; Schmid, T.; Mildner, A.; Bodner, J.; Wöll, E. Comparison of automated cellular imaging system and manual microscopy for immunohistochemically stained cryostat sections of lung cancer specimens applying p53, ki-67 and p120. Oncol. Rep., 2003, 10(1), 15-20.
[http://dx.doi.org/10.3892/or.10.1.15] [PMID: 12469137]
[317]
Kosi, N.; Alić, I.; Kolačević, M.; Vrsaljko, N.; Jovanov Milošević, N.; Sobol, M.; Philimonenko, A.; Hozák, P.; Gajović, S.; Pochet, R.; Mitrečić, D. Nop2 is expressed during proliferation of neural stem cells and in adult mouse and human brain. Brain Res., 2015, 1597, 65-76.
[http://dx.doi.org/10.1016/j.brainres.2014.11.040] [PMID: 25481415]
[318]
Hong, J.; Lee, J.H.; Chung, I.K. Telomerase activates transcription of cyclin D1 gene through an interaction with NOL1. J. Cell Sci., 2016, 129(8), 1566-1579.
[http://dx.doi.org/10.1242/jcs.181040] [PMID: 26906424]
[319]
Bourgeois, G.; Ney, M.; Gaspar, I.; Aigueperse, C.; Schaefer, M.; Kellner, S.; Helm, M.; Motorin, Y. Eukaryotic rRNA Modification by Yeast 5-Methylcytosine-Methyltransferases and Human Proliferation-Associated Antigen p120. PLoS One, 2015, 10(7)e0133321
[http://dx.doi.org/10.1371/journal.pone.0133321] [PMID: 26196125]
[320]
Zhong, C.H.; Prima, V.; Liang, X.; Frye, C.; McGavran, L.; Meltesen, L.; Wei, Q.; Boomer, T.; Varella-Garcia, M.; Gump, J.; Hunger, S.P. E2A-ZNF384 and NOL1-E2A fusion created by a cryptic t(12;19)(p13.3; p13.3) in acute leukemia. Leukemia, 2008, 22(4), 723-729.
[http://dx.doi.org/10.1038/sj.leu.2405084] [PMID: 18185522]
[321]
Letessier, A.; Sircoulomb, F.; Ginestier, C.; Cervera, N.; Monville, F.; Gelsi-Boyer, V.; Esterni, B.; Geneix, J.; Finetti, P.; Zemmour, C.; Viens, P.; Charafe-Jauffret, E.; Jacquemier, J.; Birnbaum, D.; Chaffanet, M. Frequency, prognostic impact, and subtype association of 8p12, 8q24, 11q13, 12p13, 17q12, and 20q13 amplifications in breast cancers. BMC Cancer, 2006, 6, 245.
[http://dx.doi.org/10.1186/1471-2407-6-245] [PMID: 17040570]
[322]
Mei, L.; Shen, C.; Miao, R.; Wang, J.Z.; Cao, M.D.; Zhang, Y.S.; Shi, L.H.; Zhao, G.H.; Wang, M.H.; Wu, L.S.; Wei, J.F. RNA methyltransferase NSUN2 promotes gastric cancer cell proliferation by repressing p57Kip2 by an m5C-dependent manner. Cell Death Dis., 2020, 11(4), 270.
[http://dx.doi.org/10.1038/s41419-020-2487-z] [PMID: 32332707]
[323]
Gao, Y.; Wang, Z.; Zhu, Y.; Zhu, Q.; Yang, Y.; Jin, Y.; Zhang, F.; Jiang, L.; Ye, Y.; Li, H.; Zhang, Y.; Liang, H.; Xiang, S.; Miao, H.; Liu, Y.; Hao, Y. NOP2/Sun RNA methyltransferase 2 promotes tumor progression via its interacting partner RPL6 in gallbladder carcinoma. Cancer Sci., 2019, 110(11), 3510-3519.
[http://dx.doi.org/10.1111/cas.14190] [PMID: 31487418]
[324]
Gkatza, N.A.; Castro, C.; Harvey, R.F.; Heiß, M.; Popis, M.C.; Blanco, S.; Bornelöv, S.; Sajini, A.A.; Gleeson, J.G.; Griffin, J.L.; West, J.A.; Kellner, S.; Willis, A.E.; Dietmann, S.; Frye, M. Cytosine-5 RNA methylation links protein synthesis to cell metabolism. PLoS Biol., 2019, 17(6)
[http://dx.doi.org/10.1371/journal.pbio.3000297] [PMID: 31199786]
[325]
Sajini, A.A.; Choudhury, N.R.; Wagner, R.E.; Bornelöv, S.; Selmi, T.; Spanos, C.; Dietmann, S.; Rappsilber, J.; Michlewski, G.; Frye, M. Loss of 5-methylcytosine alters the biogenesis of vault-derived small RNAs to coordinate epidermal differentiation. Nat. Commun., 2019, 10(1), 2550.
[http://dx.doi.org/10.1038/s41467-019-10020-7] [PMID: 31186410]
[326]
Lu, L.; Gaffney, S.G.; Cannataro, V.L.; Townsend, J. Transfer RNA methyltransferase gene NSUN2 mRNA expression modifies the effect of T cell activation score on patient survival in head and neck squamous carcinoma. Oral Oncol., 2020, 101
[http://dx.doi.org/10.1016/j.oraloncology.2019.104554] [PMID: 31887619]
[327]
Genenncher, B.; Durdevic, Z.; Hanna, K.; Zinkl, D.; Mobin, M.B.; Senturk, N.; Da Silva, B.; Legrand, C.; Carré, C.; Lyko, F.; Schaefer, M. Mutations in Cytosine-5 tRNA Methyltransferases Impact Mobile Element Expression and Genome Stability at Specific DNA Repeats. Cell Rep., 2018, 22(7), 1861-1874.
[http://dx.doi.org/10.1016/j.celrep.2018.01.061] [PMID: 29444437]
[328]
Flores, J.V.; Cordero-Espinoza, L.; Oeztuerk-Winder, F.; Andersson-Rolf, A.; Selmi, T.; Blanco, S.; Tailor, J.; Dietmann, S.; Frye, M. Cytosine-5 RNA Methylation Regulates Neural Stem Cell Differentiation and Motility. Stem Cell Reports, 2017, 8(1), 112-124.
[http://dx.doi.org/10.1016/j.stemcr.2016.11.014] [PMID: 28041877]
[329]
Yi, J.; Gao, R.; Chen, Y.; Yang, Z.; Han, P.; Zhang, H.; Dou, Y.; Liu, W.; Wang, W.; Du, G.; Xu, Y.; Wang, J. Overexpression of NSUN2 by DNA hypomethylation is associated with metastatic progression in human breast cancer. Oncotarget, 2017, 8(13), 20751-20765.
[http://dx.doi.org/10.18632/oncotarget.10612] [PMID: 27447970]
[330]
Alshaker, H.; Wang, Q.; Brewer, D.; Pchejetski, D. Transcriptome-Wide Effects of Sphingosine Kinases Knockdown in Metastatic Prostate and Breast Cancer Cells: Implications for Therapeutic Targeting. Front. Pharmacol., 2019, 10, 303.
[http://dx.doi.org/10.3389/fphar.2019.00303] [PMID: 30971929]
[331]
Trixl, L.; Amort, T.; Wille, A.; Zinni, M.; Ebner, S.; Hechenberger, C.; Eichin, F.; Gabriel, H.; Schoberleitner, I.; Huang, A.; Piatti, P.; Nat, R.; Troppmair, J.; Lusser, A. RNA cytosine methyltransferase Nsun3 regulates embryonic stem cell differentiation by promoting mitochondrial activity. Cell. Mol. Life Sci., 2018, 75(8), 1483-1497.
[http://dx.doi.org/10.1007/s00018-017-2700-0] [PMID: 29103146]
[332]
He, Y.; Yu, X.; Li, J.; Zhang, Q.; Zheng, Q.; Guo, W. Role of m5C-related regulatory genes in the diagnosis and prognosis of hepatocellular carcinoma. Am. J. Transl. Res., 2020, 12(3), 912-922.
[PMID: 32269723]
[333]
Kar, S.P.; Beesley, J.; Amin Al Olama, A.; Michailidou, K.; Tyrer, J.; Kote-Jarai, Z.; Lawrenson, K.; Lindstrom, S.; Ramus, S.J.; Thompson, D.J.; Kibel, A.S.; Dansonka-Mieszkowska, A.; Michael, A.; Dieffenbach, A.K.; Gentry-Maharaj, A.; Whittemore, A.S.; Wolk, A.; Monteiro, A.; Peixoto, A.; Kierzek, A.; Cox, A.; Rudolph, A.; Gonzalez-Neira, A.; Wu, A.H.; Lindblom, A.; Swerdlow, A.; Ziogas, A.; Ekici, A.B.; Burwinkel, B.; Karlan, B.Y.; Nordestgaard, B.G.; Blomqvist, C.; Phelan, C.; McLean, C.; Pearce, C.L.; Vachon, C.; Cybulski, C.; Slavov, C.; Stegmaier, C.; Maier, C.; Ambrosone, C.B.; Høgdall, C.K.; Teerlink, C.C.; Kang, D.; Tessier, D.C.; Schaid, D.J.; Stram, D.O.; Cramer, D.W.; Neal, D.E.; Eccles, D.; Flesch-Janys, D.; Edwards, D.R.; Wokozorczyk, D.; Levine, D.A.; Yannoukakos, D.; Sawyer, E.J.; Bandera, E.V.; Poole, E.M.; Goode, E.L.; Khusnutdinova, E.; Høgdall, E.; Song, F.; Bruinsma, F.; Heitz, F.; Modugno, F.; Hamdy, F.C.; Wiklund, F.; Giles, G.G.; Olsson, H.; Wildiers, H.; Ulmer, H.U.; Pandha, H.; Risch, H.A.; Darabi, H.; Salvesen, H.B.; Nevanlinna, H.; Gronberg, H.; Brenner, H.; Brauch, H.; Anton-Culver, H.; Song, H.; Lim, H.Y.; McNeish, I.; Campbell, I.; Vergote, I.; Gronwald, J.; Lubiński, J.; Stanford, J.L.; Benítez, J.; Doherty, J.A.; Permuth, J.B.; Chang-Claude, J.; Donovan, J.L.; Dennis, J.; Schildkraut, J.M.; Schleutker, J.; Hopper, J.L.; Kupryjanczyk, J.; Park, J.Y.; Figueroa, J.; Clements, J.A.; Knight, J.A.; Peto, J.; Cunningham, J.M.; Pow-Sang, J.; Batra, J.; Czene, K.; Lu, K.H.; Herkommer, K.; Khaw, K.T.; Matsuo, K.; Muir, K.; Offitt, K.; Chen, K.; Moysich, K.B.; Aittomäki, K.; Odunsi, K.; Kiemeney, L.A.; Massuger, L.F.; Fitzgerald, L.M.; Cook, L.S.; Cannon-Albright, L.; Hooning, M.J.; Pike, M.C.; Bolla, M.K.; Luedeke, M.; Teixeira, M.R.; Goodman, M.T.; Schmidt, M.K.; Riggan, M.; Aly, M.; Rossing, M.A.; Beckmann, M.W.; Moisse, M.; Sanderson, M.; Southey, M.C.; Jones, M.; Lush, M.; Hildebrandt, M.A.; Hou, M.F.; Schoemaker, M.J.; Garcia-Closas, M.; Bogdanova, N.; Rahman, N.; Le, N.D.; Orr, N.; Wentzensen, N.; Pashayan, N.; Peterlongo, P.; Guénel, P.; Brennan, P.; Paulo, P.; Webb, P.M.; Broberg, P.; Fasching, P.A.; Devilee, P.; Wang, Q.; Cai, Q.; Li, Q.; Kaneva, R.; Butzow, R.; Kopperud, R.K.; Schmutzler, R.K.; Stephenson, R.A.; MacInnis, R.J.; Hoover, R.N.; Winqvist, R.; Ness, R.; Milne, R.L.; Travis, R.C.; Benlloch, S.; Olson, S.H.; McDonnell, S.K.; Tworoger, S.S.; Maia, S.; Berndt, S.; Lee, S.C.; Teo, S.H.; Thibodeau, S.N.; Bojesen, S.E.; Gapstur, S.M.; Kjær, S.K.; Pejovic, T.; Tammela, T.L.; Dörk, T.; Brüning, T.; Wahlfors, T.; Key, T.J.; Edwards, T.L.; Menon, U.; Hamann, U.; Mitev, V.; Kosma, V.M.; Setiawan, V.W.; Kristensen, V.; Arndt, V.; Vogel, W.; Zheng, W.; Sieh, W.; Blot, W.J.; Kluzniak, W.; Shu, X.O.; Gao, Y.T.; Schumacher, F.; Freedman, M.L.; Berchuck, A.; Dunning, A.M.; Simard, J.; Haiman, C.A.; Spurdle, A.; Sellers, T.A.; Hunter, D.J.; Henderson, B.E.; Kraft, P.; Chanock, S.J.; Couch, F.J.; Hall, P.; Gayther, S.A.; Easton, D.F.; Chenevix-Trench, G.; Eeles, R.; Pharoah, P.D.; Lambrechts, D. ABCTB Investigators; AOCS Study Group & Australian Cancer Study (Ovarian Cancer); APCB BioResource; kConFab Investigators; NBCS Investigators; GENICA Network; PRACTICAL consortium. Genome-Wide Meta-Analyses of Breast, Ovarian, and Prostate Cancer Association Studies Identify Multiple New Susceptibility Loci Shared by at Least Two Cancer Types. Cancer Discov., 2016, 6(9), 1052-1067.
[http://dx.doi.org/10.1158/2159-8290.CD-15-1227] [PMID: 27432226]
[334]
Heissenberger, C.; Liendl, L.; Nagelreiter, F.; Gonskikh, Y.; Yang, G.; Stelzer, E.M.; Krammer, T.L.; Micutkova, L.; Vogt, S.; Kreil, D.P.; Sekot, G.; Siena, E.; Poser, I.; Harreither, E.; Linder, A.; Ehret, V.; Helbich, T.H.; Grillari-Voglauer, R.; Jansen-Dürr, P.; Koš, M.; Polacek, N.; Grillari, J.; Schosserer, M. Loss of the ribosomal RNA methyltransferase NSUN5 impairs global protein synthesis and normal growth. Nucleic Acids Res., 2019, 47(22), 11807-11825.
[http://dx.doi.org/10.1093/nar/gkz1043] [PMID: 31722427]
[335]
Janin, M.; Ortiz-Barahona, V.; de Moura, M.C.; Martínez-Cardús, A.; Llinàs-Arias, P.; Soler, M.; Nachmani, D.; Pelletier, J.; Schumann, U.; Calleja-Cervantes, M.E.; Moran, S.; Guil, S.; Bueno-Costa, A.; Piñeyro, D.; Perez-Salvia, M.; Rosselló-Tortella, M.; Piqué, L.; Bech-Serra, J.J.; De La Torre, C.; Vidal, A.; Martínez-Iniesta, M.; Martín-Tejera, J.F.; Villanueva, A.; Arias, A.; Cuartas, I.; Aransay, A.M.; La Madrid, A.M.; Carcaboso, A.M.; Santa-Maria, V.; Mora, J.; Fernandez, A.F.; Fraga, M.F.; Aldecoa, I.; Pedrosa, L.; Graus, F.; Vidal, N.; Martínez-Soler, F.; Tortosa, A.; Carrato, C.; Balañá, C.; Boudreau, M.W.; Hergenrother, P.J.; Kötter, P.; Entian, K.D.; Hench, J.; Frank, S.; Mansouri, S.; Zadeh, G.; Dans, P.D.; Orozco, M.; Thomas, G.; Blanco, S.; Seoane, J.; Preiss, T.; Pandolfi, P.P.; Esteller, M. Epigenetic loss of RNA-methyltransferase NSUN5 in glioma targets ribosomes to drive a stress adaptive translational program. Acta Neuropathol., 2019, 138(6), 1053-1074.
[http://dx.doi.org/10.1007/s00401-019-02062-4] [PMID: 31428936]
[336]
Elhardt, W.; Shanmugam, R.; Jurkowski, T.P.; Jeltsch, A. Somatic cancer mutations in the DNMT2 tRNA methyltransferase alter its catalytic properties. Biochimie, 2015, 112, 66-72.
[http://dx.doi.org/10.1016/j.biochi.2015.02.022] [PMID: 25747896]
[337]
Lewinska, A.; Klukowska-Rötzler, J.; Deregowska, A.; Adamczyk-Grochala, J.; Wnuk, M. c-Myc activation promotes cofilin-mediated F-actin cytoskeleton remodeling and telomere homeostasis as a response to oxidant-based DNA damage in medulloblastoma cells. Redox Biol., 2019, 24
[http://dx.doi.org/10.1016/j.redox.2019.101163] [PMID: 30901604]
[338]
Schaefer, M.; Hagemann, S.; Hanna, K.; Lyko, F. Azacytidine inhibits RNA methylation at DNMT2 target sites in human cancer cell lines. Cancer Res., 2009, 69(20), 8127-8132.
[http://dx.doi.org/10.1158/0008-5472.CAN-09-0458] [PMID: 19808971]
[339]
Annereau, M.; Willekens, C.; El Halabi, L.; Chahine, C.; Saada, V.; Auger, N.; Danu, A.; Bermudez, E.; Lazarovici, J.; Ghez, D.; Leary, A.; Pistilli, B.; Lemare, F.; Solary, E.; de Botton, S.; Desmaris, R.P.; Micol, J.B. Use of 5-azacitidine for therapy-related myeloid neoplasms in patients with concomitant active neoplastic disease. Leuk. Res., 2017, 55, 58-64.
[http://dx.doi.org/10.1016/j.leukres.2017.01.024] [PMID: 28131982]
[340]
Daver, N.; Boddu, P.; Garcia-Manero, G.; Yadav, S.S.; Sharma, P.; Allison, J.; Kantarjian, H. Hypomethylating agents in combination with immune checkpoint inhibitors in acute myeloid leukemia and myelodysplastic syndromes. Leukemia, 2018, 32(5), 1094-1105.
[http://dx.doi.org/10.1038/s41375-018-0070-8] [PMID: 29487386]
[341]
Li, L.H.; Olin, E.J.; Buskirk, H.H.; Reineke, L.M. Cytotoxicity and mode of action of 5-azacytidine on L1210 leukemia. Cancer Res., 1970, 30(11), 2760-2769.
[PMID: 5487063]
[342]
Sala, L.; Franco-Valls, H.; Stanisavljevic, J.; Curto, J.; Vergés, J.; Peña, R.; Duch, P.; Alcaraz, J.; García de Herreros, A.; Baulida, J. Abrogation of myofibroblast activities in metastasis and fibrosis by methyltransferase inhibition. Int. J. Cancer, 2019, 145(11), 3064-3077.
[http://dx.doi.org/10.1002/ijc.32376] [PMID: 31032902]
[343]
Stevens, A.P.; Spangler, B.; Wallner, S.; Kreutz, M.; Dettmer, K.; Oefner, P.J.; Bosserhoff, A.K. Direct and tumor microenvironment mediated influences of 5′-deoxy-5′-(methylthio)adenosine on tumor progression of malignant melanoma. J. Cell. Biochem., 2009, 106(2), 210-219.
[http://dx.doi.org/10.1002/jcb.21984] [PMID: 19097084]
[344]
Borden, K.L.; Culjkovic-Kraljacic, B. Ribavirin as an anti-cancer therapy: acute myeloid leukemia and beyond? Leuk. Lymphoma, 2010, 51(10), 1805-1815.
[http://dx.doi.org/10.3109/10428194.2010.496506] [PMID: 20629523]
[345]
Kosciuczuk, E.M.; Saleiro, D.; Platanias, L.C. Dual targeting of eIF4E by blocking MNK and mTOR pathways in leukemia. Cytokine, 2017, 89, 116-121.
[http://dx.doi.org/10.1016/j.cyto.2016.01.024] [PMID: 27094611]
[346]
Schiff, D.; Jaeckle, K.A.; Anderson, S.K.; Galanis, E.; Giannini, C.; Buckner, J.C.; Stella, P.; Flynn, P.J.; Erickson, B.J.; Schwerkoske, J.F.; Kaluza, V.; Twohy, E.; Dancey, J.; Wright, J.; Sarkaria, J.N. Phase 1/2 trial of temsirolimus and sorafenib in the treatment of patients with recurrent glioblastoma: North Central Cancer Treatment Group Study/Alliance N0572. Cancer, 2018, 124(7), 1455-1463.
[http://dx.doi.org/10.1002/cncr.31219] [PMID: 29313954]
[347]
Grignani, G.; Palmerini, E.; Ferraresi, V.; D’Ambrosio, L.; Bertulli, R.; Asaftei, S.D.; Tamburini, A.; Pignochino, Y.; Sangiolo, D.; Marchesi, E.; Capozzi, F.; Biagini, R.; Gambarotti, M.; Fagioli, F.; Casali, P.G.; Picci, P.; Ferrari, S.; Aglietta, M. Italian Sarcoma Group. Sorafenib and everolimus for patients with unresectable high-grade osteosarcoma progressing after standard treatment: a non-randomised phase 2 clinical trial. Lancet Oncol., 2015, 16(1), 98-107.
[http://dx.doi.org/10.1016/S1470-2045(14)71136-2] [PMID: 25498219]
[348]
Wataya-Kaneda, M.; Nakamura, A.; Tanaka, M.; Hayashi, M.; Matsumoto, S.; Yamamoto, K.; Katayama, I. Efficacy and Safety of Topical Sirolimus Therapy for Facial Angiofibromas in the Tuberous Sclerosis Complex : A Randomized Clinical Trial. JAMA Dermatol., 2017, 153(1), 39-48.
[http://dx.doi.org/10.1001/jamadermatol.2016.3545] [PMID: 27837201]
[349]
Yao, J.C.; Shah, M.H.; Ito, T.; Bohas, C.L.; Wolin, E.M.; Van Cutsem, E.; Hobday, T.J.; Okusaka, T.; Capdevila, J.; de Vries, E.G.; Tomassetti, P.; Pavel, M.E.; Hoosen, S.; Haas, T.; Lincy, J.; Lebwohl, D.; Öberg, K. RAD001 in Advanced Neuroendocrine Tumors, Third Trial (RADIANT-3) Study Group. Everolimus for advanced pancreatic neuroendocrine tumors. N. Engl. J. Med., 2011, 364(6), 514-523.
[http://dx.doi.org/10.1056/NEJMoa1009290] [PMID: 21306238]
[350]
Vasan, N.; Baselga, J.; Hyman, D.M. A view on drug resistance in cancer. Nature, 2019, 575(7782), 299-309.
[http://dx.doi.org/10.1038/s41586-019-1730-1] [PMID: 31723286]
[351]
Housman, G.; Byler, S.; Heerboth, S.; Lapinska, K.; Longacre, M.; Snyder, N.; Sarkar, S. Drug resistance in cancer: an overview. Cancers (Basel), 2014, 6(3), 1769-1792.
[http://dx.doi.org/10.3390/cancers6031769] [PMID: 25198391]
[352]
Brown, R.; Curry, E.; Magnani, L.; Wilhelm-Benartzi, C.S.; Borley, J. Poised epigenetic states and acquired drug resistance in cancer. Nat. Rev. Cancer, 2014, 14(11), 747-753.
[http://dx.doi.org/10.1038/nrc3819] [PMID: 25253389]
[353]
Wendel, H.G.; Lowe, S.W. Reversing drug resistance in vivo. Cell Cycle, 2004, 3(7), 847-849.
[http://dx.doi.org/10.4161/cc.3.7.976] [PMID: 15190216]
[354]
Cao, J.; Sun, X.; Zhang, X.; Chen, D. Inhibition of eIF4E cooperates with chemotherapy and immunotherapy in renal cell carcinoma. Clin. Transl. Oncol., 2018, 20(6), 761-767.
[http://dx.doi.org/10.1007/s12094-017-1786-z] [PMID: 29086249]
[355]
Boussemart, L.; Malka-Mahieu, H.; Girault, I.; Allard, D.; Hemmingsson, O.; Tomasic, G.; Thomas, M.; Basmadjian, C.; Ribeiro, N.; Thuaud, F.; Mateus, C.; Routier, E.; Kamsu-Kom, N.; Agoussi, S.; Eggermont, A.M.; Désaubry, L.; Robert, C.; Vagner, S. eIF4F is a nexus of resistance to anti-BRAF and anti-MEK cancer therapies. Nature, 2014, 513(7516), 105-109.
[http://dx.doi.org/10.1038/nature13572] [PMID: 25079330]
[356]
Ilic, N.; Utermark, T.; Widlund, H.R.; Roberts, T.M. PI3K-targeted therapy can be evaded by gene amplification along the MYC-eukaryotic translation initiation factor 4E (eIF4E) axis. Proc. Natl. Acad. Sci. USA, 2011, 108(37), E699-E708.
[http://dx.doi.org/10.1073/pnas.1108237108] [PMID: 21876152]
[357]
Katsha, A.; Wang, L.; Arras, J.; Omar, O.M.; Ecsedy, J.; Belkhiri, A.; El-Rifai, W. Activation of EIF4E by Aurora Kinase A Depicts a Novel Druggable Axis in Everolimus-Resistant Cancer Cells. Clin. Cancer Res., 2017, 23(14), 3756-3768.
[http://dx.doi.org/10.1158/1078-0432.CCR-16-2141] [PMID: 28073841]
[358]
Xi, C.; Wang, L.; Yu, J.; Ye, H.; Cao, L.; Gong, Z. Inhibition of eukaryotic translation initiation factor 4E is effective against chemo-resistance in colon and cervical cancer. Biochem. Biophys. Res. Commun., 2018, 503(4), 2286-2292.
[http://dx.doi.org/10.1016/j.bbrc.2018.06.150] [PMID: 29959920]
[359]
Matsumoto, M.; Seike, M.; Noro, R.; Soeno, C.; Sugano, T.; Takeuchi, S.; Miyanaga, A.; Kitamura, K.; Kubota, K.; Gemma, A. Control of the MYC-eIF4E axis plus mTOR inhibitor treatment in small cell lung cancer. BMC Cancer, 2015, 15, 241.
[http://dx.doi.org/10.1186/s12885-015-1202-4] [PMID: 25884680]
[360]
Patel, M.R.; Jay-Dixon, J.; Sadiq, A.A.; Jacobson, B.A.; Kratzke, R.A. Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. J. Thorac. Oncol., 2013, 8(9), 1142-1147.
[http://dx.doi.org/10.1097/JTO.0b013e31829ce963] [PMID: 23883783]
[361]
Zhan, Y.; Dahabieh, M.S.; Rajakumar, A.; Dobocan, M.C.; M’Boutchou, M.N.; Goncalves, C.; Lucy, S.L.; Pettersson, F.; Topisirovic, I.; van Kempen, L.; Del Rincón, S.V.; Miller, W.H., Jr The role of eIF4E in response and acquired resistance to vemurafenib in melanoma. J. Invest. Dermatol., 2015, 135(5), 1368-1376.
[http://dx.doi.org/10.1038/jid.2015.11] [PMID: 25615552]
[362]
Andrieu, C.; Taieb, D.; Baylot, V.; Ettinger, S.; Soubeyran, P.; De-Thonel, A.; Nelson, C.; Garrido, C.; So, A.; Fazli, L.; Bladou, F.; Gleave, M.; Iovanna, J.L.; Rocchi, P. Heat shock protein 27 confers resistance to androgen ablation and chemotherapy in prostate cancer cells through eIF4E. Oncogene, 2010, 29(13), 1883-1896.
[http://dx.doi.org/10.1038/onc.2009.479] [PMID: 20101233]
[363]
Gong, C.; Tsoi, H.; Mok, K.C.; Cheung, J.; Man, E.P.S.; Fujino, K.; Wong, A.; Lam, E.W.F.; Khoo, U.S. Phosphorylation independent eIF4E translational reprogramming of selective mRNAs determines tamoxifen resistance in breast cancer. Oncogene, 2020, 39(15), 3206-3217.
[http://dx.doi.org/10.1038/s41388-020-1210-y] [PMID: 32066877]
[364]
Wang, D.; Ma, J.; Ji, X.; Xu, F.; Wei, Y. miR-141 regulation of EIF4E expression affects docetaxel chemoresistance of non-small cell lung cancer. Oncol. Rep., 2017, 37(1), 608-616.
[http://dx.doi.org/10.3892/or.2016.5214] [PMID: 27840955]
[365]
Garrido, M.F.; Martin, N.J.; Bertrand, M.; Gaudin, C.; Commo, F.; El Kalaany, N.; Al Nakouzi, N.; Fazli, L.; Del Nery, E.; Camonis, J.; Perez, F.; Lerondel, S.; Le Pape, A.; Compagno, D.; Gleave, M.; Loriot, Y.; Désaubry, L.; Vagner, S.; Fizazi, K.; Chauchereau, A. Regulation of eIF4F Translation Initiation Complex by the Peptidyl Prolyl Isomerase FKBP7 in Taxane-resistant Prostate Cancer. Clin. Cancer Res., 2019, 25(2), 710-723.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-0704] [PMID: 30322877]
[366]
Cerezo, M.; Guemiri, R.; Druillennec, S.; Girault, I.; Malka-Mahieu, H.; Shen, S.; Allard, D.; Martineau, S.; Welsch, C.; Agoussi, S.; Estrada, C.; Adam, J.; Libenciuc, C.; Routier, E.; Roy, S.; Désaubry, L.; Eggermont, A.M.; Sonenberg, N.; Scoazec, J.Y.; Eychène, A.; Vagner, S.; Robert, C. Translational control of tumor immune escape via the eIF4F-STAT1-PD-L1 axis in melanoma. Nat. Med., 2018, 24(12), 1877-1886.
[http://dx.doi.org/10.1038/s41591-018-0217-1] [PMID: 30374200]
[367]
Taketo, K.; Konno, M.; Asai, A.; Koseki, J.; Toratani, M.; Satoh, T.; Doki, Y.; Mori, M.; Ishii, H.; Ogawa, K. The epitranscriptome m6A writer METTL3 promotes chemo- and radioresistance in pancreatic cancer cells. Int. J. Oncol., 2018, 52(2), 621-629.
[PMID: 29345285]
[368]
Lin, Z.; Niu, Y.; Wan, A.; Chen, D.; Liang, H.; Chen, X.; Sun, L.; Zhan, S.; Chen, L.; Cheng, C.; Zhang, X.; Bu, X.; He, W.; Wan, G. RNA m6 A methylation regulates sorafenib resistance in liver cancer through FOXO3-mediated autophagy. EMBO J., 2020, 39(12)e103181
[http://dx.doi.org/10.15252/embj.2019103181] [PMID: 32368828]
[369]
Zhu, L.; Zhu, Y.; Han, S.; Chen, M.; Song, P.; Dai, D.; Xu, W.; Jiang, T.; Feng, L.; Shin, V.Y.; Wang, X.; Jin, H. Impaired autophagic degradation of lncRNA ARHGAP5-AS1 promotes chemoresistance in gastric cancer. Cell Death Dis., 2019, 10(6), 383.
[http://dx.doi.org/10.1038/s41419-019-1585-2] [PMID: 31097692]
[370]
Jin, D.; Guo, J.; Wu, Y.; Du, J.; Yang, L.; Wang, X.; Di, W.; Hu, B.; An, J.; Kong, L.; Pan, L.; Su, G. m6A mRNA methylation initiated by METTL3 directly promotes YAP translation and increases YAP activity by regulating the MALAT1-miR-1914-3p-YAP axis to induce NSCLC drug resistance and metastasis. J. Hematol. Oncol., 2019, 12(1), 135.
[http://dx.doi.org/10.1186/s13045-019-0830-6] [PMID: 31818312]
[371]
Uddin, M.B.; Roy, K.R.; Hosain, S.B.; Khiste, S.K.; Hill, R.A.; Jois, S.D.; Zhao, Y.; Tackett, A.J.; Liu, Y.Y. An N6-methyladenosine at the transited codon 273 of p53 pre-mRNA promotes the expression of R273H mutant protein and drug resistance of cancer cells. Biochem. Pharmacol., 2019, 160, 134-145.
[http://dx.doi.org/10.1016/j.bcp.2018.12.014] [PMID: 30578766]
[372]
Fukumoto, T.; Zhu, H.; Nacarelli, T.; Karakashev, S.; Fatkhutdinov, N.; Wu, S.; Liu, P.; Kossenkov, A.V.; Showe, L.C.; Jean, S.; Zhang, L.; Zhang, R. N6-Methylation of Adenosine of FZD10 mRNA Contributes to PARP Inhibitor Resistance. Cancer Res., 2019, 79(11), 2812-2820.
[http://dx.doi.org/10.1158/0008-5472.CAN-18-3592] [PMID: 30967398]
[373]
Meng, Q.; Wang, S.; Zhou, S.; Liu, H.; Ma, X.; Zhou, X.; Liu, H.; Xu, C.; Jiang, W. Dissecting the m6A methylation affection on afatinib resistance in non-small cell lung cancer. Pharmacogenomics J., 2020, 20(2), 227-234.
[http://dx.doi.org/10.1038/s41397-019-0110-4] [PMID: 31624334]
[374]
Yan, F.; Al-Kali, A.; Zhang, Z.; Liu, J.; Pang, J.; Zhao, N.; He, C.; Litzow, M.R.; Liu, S. A dynamic N6-methyladenosine methylome regulates intrinsic and acquired resistance to tyrosine kinase inhibitors. Cell Res., 2018, 28(11), 1062-1076.
[http://dx.doi.org/10.1038/s41422-018-0097-4] [PMID: 30297871]
[375]
Gannon, H.S.; Zou, T.; Kiessling, M.K.; Gao, G.F.; Cai, D.; Choi, P.S.; Ivan, A.P.; Buchumenski, I.; Berger, A.C.; Goldstein, J.T.; Cherniack, A.D.; Vazquez, F.; Tsherniak, A.; Levanon, E.Y.; Hahn, W.C.; Meyerson, M. Identification of ADAR1 adenosine deaminase dependency in a subset of cancer cells. Nat. Commun., 2018, 9(1), 5450.
[http://dx.doi.org/10.1038/s41467-018-07824-4] [PMID: 30575730]
[376]
Ishizuka, J.J.; Manguso, R.T.; Cheruiyot, C.K.; Bi, K.; Panda, A.; Iracheta-Vellve, A.; Miller, B.C.; Du, P.P.; Yates, K.B.; Dubrot, J.; Buchumenski, I.; Comstock, D.E.; Brown, F.D.; Ayer, A.; Kohnle, I.C.; Pope, H.W.; Zimmer, M.D.; Sen, D.R.; Lane-Reticker, S.K.; Robitschek, E.J.; Griffin, G.K.; Collins, N.B.; Long, A.H.; Doench, J.G.; Kozono, D.; Levanon, E.Y.; Haining, W.N. Loss of ADAR1 in tumours overcomes resistance to immune checkpoint blockade. Nature, 2019, 565(7737), 43-48.
[http://dx.doi.org/10.1038/s41586-018-0768-9] [PMID: 30559380]
[377]
Patel, S.J.; Sanjana, N.E.; Kishton, R.J.; Eidizadeh, A.; Vodnala, S.K.; Cam, M.; Gartner, J.J.; Jia, L.; Steinberg, S.M.; Yamamoto, T.N.; Merchant, A.S.; Mehta, G.U.; Chichura, A.; Shalem, O.; Tran, E.; Eil, R.; Sukumar, M.; Guijarro, E.P.; Day, C.P.; Robbins, P.; Feldman, S.; Merlino, G.; Zhang, F.; Restifo, N.P. Identification of essential genes for cancer immunotherapy. Nature, 2017, 548(7669), 537-542.
[http://dx.doi.org/10.1038/nature23477] [PMID: 28783722]
[378]
Frye, M.; Watt, F.M. The RNA methyltransferase Misu (NSun2) mediates Myc-induced proliferation and is upregulated in tumors. Curr. Biol., 2006, 16(10), 971-981.
[http://dx.doi.org/10.1016/j.cub.2006.04.027] [PMID: 16713953]
[379]
Soucek, L.; Whitfield, J.; Martins, C.P.; Finch, A.J.; Murphy, D.J.; Sodir, N.M.; Karnezis, A.N.; Swigart, L.B.; Nasi, S.; Evan, G.I. Modelling Myc inhibition as a cancer therapy. Nature, 2008, 455(7213), 679-683.
[http://dx.doi.org/10.1038/nature07260] [PMID: 18716624]
[380]
Lee, K.M. MYC and MCL1 Cooperatively Promote Chemotherapy-Resistant Breast Cancer Stem Cells via Regulation of Mitochondrial Oxidative Phosphorylation. Cell Metab., 2017, 26(4), 633-647.
[http://dx.doi.org/10.1016/j.cmet.2017.09.009]
[381]
Elbadawy, M.; Usui, T.; Yamawaki, H.; Sasaki, K. Emerging Roles of C-Myc in Cancer Stem Cell-Related Signaling and Resistance to Cancer Chemotherapy: A Potential Therapeutic Target Against Colorectal Cancer. Int. J. Mol. Sci., 2019, 20(9)
[http://dx.doi.org/10.3390/ijms20092340] [PMID: 31083525]
[382]
Lu, L.; Zhu, G.; Zeng, H.; Xu, Q.; Holzmann, K. High tRNA Transferase NSUN2 Gene Expression is Associated with Poor Prognosis in Head and Neck Squamous Carcinoma. Cancer Invest., 2018, 36(4), 246-253.
[http://dx.doi.org/10.1080/07357907.2018.1466896] [PMID: 29775108]
[383]
Li, Y.; Li, J.; Luo, M.; Zhou, C.; Shi, X.; Yang, W.; Lu, Z.; Chen, Z.; Sun, N.; He, J. Novel long noncoding RNA NMR promotes tumor progression via NSUN2 and BPTF in esophageal squamous cell carcinoma. Cancer Lett., 2018, 430, 57-66.
[http://dx.doi.org/10.1016/j.canlet.2018.05.013] [PMID: 29763634]
[384]
Bhawe, K.; Felty, Q.; Yoo, C.; Ehtesham, N.Z.; Hasnain, S.E.; Singh, V.P.; Mohapatra, I.; Roy, D. Nuclear Respiratory Factor 1 (NRF1) Transcriptional Activity-Driven Gene Signature Association with Severity of Astrocytoma and Poor Prognosis of Glioblastoma. Mol. Neurobiol., 2020, 57(9), 3827-3845.
[http://dx.doi.org/10.1007/s12035-020-01979-2] [PMID: 32594352]
[385]
Okamoto, M.; Fujiwara, M.; Hori, M.; Okada, K.; Yazama, F.; Konishi, H.; Xiao, Y.; Qi, G.; Shimamoto, F.; Ota, T.; Temme, A.; Tatsuka, M. tRNA modifying enzymes, NSUN2 and METTL1, determine sensitivity to 5-fluorouracil in HeLa cells. PLoS Genet., 2014, 10(9)
[http://dx.doi.org/10.1371/journal.pgen.1004639] [PMID: 25233213]
[386]
Martinez, N.M.; Gilbert, W.V. Pre-mRNA modifications and their role in nuclear processing. Quant. Biol., 2018, 6(3), 210-227.
[http://dx.doi.org/10.1007/s40484-018-0147-4] [PMID: 30533247]
[387]
Nachtergaele, S.; He, C. Chemical Modifications in the Life of an mRNA Transcript. Annu. Rev. Genet., 2018, 52, 349-372.
[http://dx.doi.org/10.1146/annurev-genet-120417-031522] [PMID: 30230927]
[388]
Boo, S.H.; Kim, Y.K. The emerging role of RNA modifications in the regulation of mRNA stability. Exp. Mol. Med., 2020, 52(3), 400-408.
[http://dx.doi.org/10.1038/s12276-020-0407-z] [PMID: 32210357]
[389]
Sloan, K.E.; Warda, A.S.; Sharma, S.; Entian, K.D.; Lafontaine, D.L.J.; Bohnsack, M.T. Tuning the ribosome: The influence of rRNA modification on eukaryotic ribosome biogenesis and function. RNA Biol., 2017, 14(9), 1138-1152.
[http://dx.doi.org/10.1080/15476286.2016.1259781] [PMID: 27911188]
[390]
Meyer, R.; Faesen, A.; Vogel, K.; Jeganathan, S.; Musacchio, A.; Niemeyer, C.M. DNA-Directed Assembly of Capture Tools for Constitutional Studies of Large Protein Complexes. Small, 2015, 11(22), 2669-2674.
[http://dx.doi.org/10.1002/smll.201403544] [PMID: 25649737]
[391]
Wang, X.; Zhao, B.S.; Roundtree, I.A.; Lu, Z.; Han, D.; Ma, H.; Weng, X.; Chen, K.; Shi, H.; He, C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell, 2015, 161(6), 1388-1399.
[http://dx.doi.org/10.1016/j.cell.2015.05.014] [PMID: 26046440]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy