Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Inflammatory Basis of Atherosclerosis: Modulation by Sex Hormones

Author(s): Suzanne A. Nasser, Elham A. Afify, Firas Kobeissy, Bassam Hamam, Ali H. Eid* and Mahmoud M. El-Mas*

Volume 27, Issue 18, 2021

Published on: 22 January, 2021

Page: [2099 - 2111] Pages: 13

DOI: 10.2174/1381612827666210122142811

Price: $65

Abstract

Atherosclerosis-related cardiovascular diseases (CVDs) are the leading cause of death globally. Several lines of evidence are supportive of the contributory role of vascular inflammation in atherosclerosis. Diverse immune cell types, including monocytes/macrophages, T-cells and neutrophils, as well as specialized proresolving lipid mediators, have been successfully characterized as key players in vascular inflammation. The increased prevalence of atherosclerotic CVD in men in comparison to age-matched premenopausal women and the abolition of sex differences in prevalence during menopause strongly suggest a pivotal role of sex hormones in the development of CVD. Indeed, many animal and human studies conclusively implicate sex hormones as a crucial component in driving the immune response. This is further corroborated by the effective identification of sex hormone receptors in vascular endothelial cells, vascular smooth muscle cells and immune cells. Collectively, these findings suggest a cellular communication between sex hormones and vascular or immune cells underlying the vascular inflammation in atherosclerosis. The aim of this review is to provide an overview of vascular inflammation as a causal cue underlying atherosclerotic CVDs within the context of the modulatory effects of sex hormones. Moreover, the cellular and molecular signaling pathways underlying the sex hormones- immune system interactions as potential culprits for vascular inflammation are highlighted with detailed and critical discussion. Finally, the review concludes by speculations on the potential sex-related efficacy of currently available immunotherapies in mitigating vascular inflammation. Conceivably, a deeper understanding of the immunoregulatory influence of sex hormones on vascular inflammation-mediated atherosclerosis permits sex-based management of atherosclerosis-related CVDs.

Keywords: Atherosclerosis, inflammasome, immune cells, cytokines, estrogen, testosterone, adhesion molecules.

[1]
Murray CJ, Ezzati M, Flaxman AD, et al. GBD 2010: design, definitions, and metrics. Lancet 2012; 380(9859): 2063-6.
[http://dx.doi.org/10.1016/S0140-6736(12)61899-6] [PMID: 23245602]
[2]
Fioranelli M, Bottaccioli AG, Bottaccioli F, Bianchi M, Rovesti M, Roccia MG. Stress and Inflammation in Coronary Artery Disease: A Review Psychoneuroendocrineimmunology-Based. Front Immunol 2018; 9: 2031.
[http://dx.doi.org/10.3389/fimmu.2018.02031] [PMID: 30237802]
[3]
Schiffrin EL. Immune mechanisms in hypertension and vascular injury. Clin Sci (Lond) 2014; 126(4): 267-74.
[http://dx.doi.org/10.1042/CS20130407] [PMID: 24144355]
[4]
Rao RM, Yang L, Garcia-Cardena G, Luscinskas FW. Endothelial-dependent mechanisms of leukocyte recruitment to the vascular wall. Circ Res 2007; 101(3): 234-47.
[http://dx.doi.org/10.1161/CIRCRESAHA.107.151860b] [PMID: 17673684]
[5]
Teague HL, Ahlman MA, Alavi A, et al. Unraveling Vascular Inflammation: From Immunology to Imaging. J Am Coll Cardiol 2017; 70(11): 1403-12.
[http://dx.doi.org/10.1016/j.jacc.2017.07.750] [PMID: 28882238]
[6]
Yin Y, Pastrana JL, Li X, et al. Inflammasomes: sensors of metabolic stresses for vascular inflammation. Front Biosci 2013; 18: 638-49.
[http://dx.doi.org/10.2741/4127] [PMID: 23276949]
[7]
Fredman G, Tabas I. Boosting Inflammation Resolution in Atherosclerosis: The Next Frontier for Therapy. Am J Pathol 2017; 187(6): 1211-21.
[http://dx.doi.org/10.1016/j.ajpath.2017.01.018] [PMID: 28527709]
[8]
Meyer MR, Haas E, Barton M. Gender differences of cardiovascular disease: new perspectives for estrogen receptor signaling. Hypertension 2006; 47(6): 1019-26.
[http://dx.doi.org/10.1161/01.HYP.0000223064.62762.0b] [PMID: 16651458]
[9]
Villablanca AC, Jayachandran M, Banka C. Atherosclerosis and sex hormones: current concepts. Clin Sci (Lond) 2010; 119(12): 493-513.
[http://dx.doi.org/10.1042/CS20100248] [PMID: 20958265]
[10]
Fairweather D. Sex differences in inflammation during atherosclerosis. Clin Med Insights Cardiol 2015; 8(Suppl. 3): 49-59.
[PMID: 25983559]
[11]
Rosano GM, Vitale C, Marazzi G, Volterrani M. Menopause and cardiovascular disease: the evidence. Climacteric 2007; 10(Suppl. 1): 19-24.
[http://dx.doi.org/10.1080/13697130601114917] [PMID: 17364594]
[12]
Ponikowska B, Jankowska EA, Maj J, et al. Gonadal and adrenal androgen deficiencies as independent predictors of increased cardiovascular mortality in men with type II diabetes mellitus and stable coronary artery disease. Int J Cardiol 2010; 143(3): 343-8.
[http://dx.doi.org/10.1016/j.ijcard.2009.03.072] [PMID: 19395096]
[13]
Levine GN, D’Amico AV, Berger P, et al. American Heart Association Council on Clinical Cardiology and Council on Epidemiology and Prevention, the American Cancer Society, and the American Urological Association. Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. Circulation 2010; 121(6): 833-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.109.192695] [PMID: 20124128]
[14]
Bourghardt J, Wilhelmson AS, Alexanderson C, et al. Androgen receptor-dependent and independent atheroprotection by testosterone in male mice. Endocrinology 2010; 151(11): 5428-37.
[http://dx.doi.org/10.1210/en.2010-0663] [PMID: 20861231]
[15]
Nettleship JE, Jones TH, Channer KS, Jones RD. Physiological testosterone replacement therapy attenuates fatty streak formation and improves high-density lipoprotein cholesterol in the Tfm mouse: an effect that is independent of the classic androgen receptor. Circulation 2007; 116(21): 2427-34.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.708768] [PMID: 17984376]
[16]
Nasser SA, Afify EA. Sex differences in pain and opioid mediated antinociception: Modulatory role of gonadal hormones. Life Sci 2019; 237: 116926.
[http://dx.doi.org/10.1016/j.lfs.2019.116926] [PMID: 31614148]
[17]
El-Lakany MA, Fouda MA, El-Gowelli HM, El-Mas MM. Ovariectomy provokes inflammatory and cardiovascular effects of endotoxemia in rats: Dissimilar benefits of hormonal supplements. Toxicol Appl Pharmacol 2020; 393: 114928.
[http://dx.doi.org/10.1016/j.taap.2020.114928] [PMID: 32092384]
[18]
Abuiessa SA, Wedn AM, El-Gowilly SM, Helmy MM, El-Mas MM. Pre-eclamptic Fetal Programming Alters Neuroinflammatory and Cardiovascular Consequences of Endotoxemia in Sex-Specific Manners. J Pharmacol Exp Ther 2020; 373(2): 325-36.
[http://dx.doi.org/10.1124/jpet.119.264192] [PMID: 32094295]
[19]
El-Lakany MA, Fouda MA, El-Gowelli HM, El-Gowilly SM, El-Mas MM. Gonadal hormone receptors underlie the resistance of female rats to inflammatory and cardiovascular complications of endotoxemia. Eur J Pharmacol 2018; 823: 41-8.
[http://dx.doi.org/10.1016/j.ejphar.2018.01.051] [PMID: 29382531]
[20]
El-Bassossy HM, Awan Z, El-Mas MM. Perinatal ciclosporin A exposure elicits sex-related cardiac dysfunction and inflammation in the rat progeny. Toxicol Lett 2017; 281: 35-43.
[http://dx.doi.org/10.1016/j.toxlet.2017.09.002] [PMID: 28886988]
[21]
Moynihan JA, Callahan TA, Kelley SP, Campbell LM. Adrenal hormone modulation of type 1 and type 2 cytokine production by spleen cells: dexamethasone and dehydroepiandrosterone suppress interleukin-2, interleukin-4, and interferon-gamma production in vitro. Cell Immunol 1998; 184(1): 58-64.
[http://dx.doi.org/10.1006/cimm.1998.1259] [PMID: 9626336]
[22]
Araneo BA, Dowell T, Diegel M, Daynes RA. Dihydrotestosterone exerts a depressive influence on the production of interleukin-4 (IL-4), IL-5, and gamma-interferon, but not IL-2 by activated murine T cells. Blood 1991; 78(3): 688-99.
[http://dx.doi.org/10.1182/blood.V78.3.688.688] [PMID: 1830499]
[23]
Bebo BF Jr, Schuster JC, Vandenbark AA, Offner H. Androgens alter the cytokine profile and reduce encephalitogenicity of myelin-reactive T cells. J Immunol 1999; 162(1): 35-40.
[PMID: 9886367]
[24]
Santos-Galindo M, Acaz-Fonseca E, Bellini MJ, Garcia-Segura LM. Sex differences in the inflammatory response of primary astrocytes to lipopolysaccharide. Biol Sex Differ 2011; 2: 7.
[http://dx.doi.org/10.1186/2042-6410-2-7] [PMID: 21745355]
[25]
Gilmore W, Weiner LP, Correale J. Effect of estradiol on cytokine secretion by proteolipid protein-specific T cell clones isolated from multiple sclerosis patients and normal control subjects. J Immunol 1997; 158(1): 446-51.
[PMID: 8977221]
[26]
Dimayuga FO, Reed JL, Carnero GA, et al. Estrogen and brain inflammation: effects on microglial expression of MHC, costimulatory molecules and cytokines. J Neuroimmunol 2005; 161(1-2): 123-36.
[http://dx.doi.org/10.1016/j.jneuroim.2004.12.016] [PMID: 15748951]
[27]
Calippe B, Douin-Echinard V, Delpy L, et al. 17Beta-estradiol promotes TLR4-triggered proinflammatory mediator production through direct estrogen receptor alpha signaling in macrophages in vivo. J Immunol 2010; 185(2): 1169-76.
[http://dx.doi.org/10.4049/jimmunol.0902383] [PMID: 20554954]
[28]
Navarro Negredo F, Watkins S. Estrogen Stimulation Differentially Impacts Human Male and Female Antigen-Specific T Cell Anti-Tumor Function and Polyfunctionality. Gender and the Genome 2017; p. 1.
[29]
Calippe B, Douin-Echinard V, Laffargue M, et al. Chronic estradiol administration in vivo promotes the proinflammatory response of macrophages to TLR4 activation: involvement of the phosphatidylinositol 3-kinase pathway. J Immunol 2008; 180(12): 7980-8.
[http://dx.doi.org/10.4049/jimmunol.180.12.7980] [PMID: 18523261]
[30]
Ghisletti S, Meda C, Maggi A, Vegeto E. 17beta-estradiol inhibits inflammatory gene expression by controlling NF-kappaB intracellular localization. Mol Cell Biol 2005; 25(8): 2957-68.
[http://dx.doi.org/10.1128/MCB.25.8.2957-2968.2005] [PMID: 15798185]
[31]
Su L, Sun Y, Ma F, Lü P, Huang H, Zhou J. Progesterone inhibits Toll-like receptor 4-mediated innate immune response in macrophages by suppressing NF-kappaB activation and enhancing SOCS1 expression. Immunol Lett 2009; 125(2): 151-5.
[http://dx.doi.org/10.1016/j.imlet.2009.07.003] [PMID: 19607861]
[32]
Menzies FM, Henriquez FL, Alexander J, Roberts CW. Selective inhibition and augmentation of alternative macrophage activation by progesterone. Immunology 2011; 134(3): 281-91.
[http://dx.doi.org/10.1111/j.1365-2567.2011.03488.x] [PMID: 21977998]
[33]
Sprague AH, Khalil RA. Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009; 78(6): 539-52.
[http://dx.doi.org/10.1016/j.bcp.2009.04.029] [PMID: 19413999]
[34]
Savoia C, Sada L, Zezza L, et al. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int J Hypertens 2011; 2011: 281240.
[http://dx.doi.org/10.4061/2011/281240] [PMID: 21915370]
[35]
Zhang X, Sessa WC, Fernández-Hernando C. Endothelial Transcytosis of Lipoproteins in Atherosclerosis. Front Cardiovasc Med 2018; 5: 130.
[http://dx.doi.org/10.3389/fcvm.2018.00130] [PMID: 30320124]
[36]
Wu MY, Li CJ, Hou MF, Chu PY. New Insights into the Role of Inflammation in the Pathogenesis of Atherosclerosis. Int J Mol Sci 2017; 18(10): 18.
[http://dx.doi.org/10.3390/ijms18102034] [PMID: 28937652]
[37]
Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature 1998; 394(6696): 894-7.
[http://dx.doi.org/10.1038/29788] [PMID: 9732872]
[38]
Akhmedov A, Rozenberg I, Paneni F, et al. Endothelial overexpression of LOX-1 increases plaque formation and promotes atherosclerosis in vivo. Eur Heart J 2014; 35(40): 2839-48.
[http://dx.doi.org/10.1093/eurheartj/eht532] [PMID: 24419805]
[39]
Woollard KJ, Geissmann F. Monocytes in atherosclerosis: subsets and functions. Nat Rev Cardiol 2010; 7(2): 77-86.
[http://dx.doi.org/10.1038/nrcardio.2009.228] [PMID: 20065951]
[40]
Butcher MJ, Galkina EV. Phenotypic and functional heterogeneity of macrophages and dendritic cell subsets in the healthy and atherosclerosis-prone aorta. Front Physiol 2012; 3: 44.
[http://dx.doi.org/10.3389/fphys.2012.00044] [PMID: 22457649]
[41]
Tabas I, García-Cardeña G, Owens GK. Recent insights into the cellular biology of atherosclerosis. J Cell Biol 2015; 209(1): 13-22.
[http://dx.doi.org/10.1083/jcb.201412052] [PMID: 25869663]
[42]
Stein S, Lohmann C, Schäfer N, et al. SIRT1 decreases Lox-1-mediated foam cell formation in atherogenesis. Eur Heart J 2010; 31(18): 2301-9.
[http://dx.doi.org/10.1093/eurheartj/ehq107] [PMID: 20418343]
[43]
Wolf D, Ley K. Immunity and Inflammation in Atherosclerosis. Circ Res 2019; 124(2): 315-27.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.313591] [PMID: 30653442]
[44]
Duewell P, Kono H, Rayner KJ, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 2010; 464(7293): 1357-61.
[http://dx.doi.org/10.1038/nature08938] [PMID: 20428172]
[45]
Libby P. Interleukin-1 Beta as a Target for Atherosclerosis Therapy: Biological Basis of CANTOS and Beyond. J Am Coll Cardiol 2017; 70(18): 2278-89.
[http://dx.doi.org/10.1016/j.jacc.2017.09.028] [PMID: 29073957]
[46]
Quillard T, Araújo HA, Franck G, Shvartz E, Sukhova G, Libby P. TLR2 and neutrophils potentiate endothelial stress, apoptosis and detachment: implications for superficial erosion. Eur Heart J 2015; 36(22): 1394-404.
[http://dx.doi.org/10.1093/eurheartj/ehv044] [PMID: 25755115]
[47]
Mittal M, Siddiqui MR, Tran K, Reddy SP, Malik AB. Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal 2014; 20(7): 1126-67.
[http://dx.doi.org/10.1089/ars.2012.5149] [PMID: 23991888]
[48]
Gupta AK, Joshi MB, Philippova M, et al. Activated endothelial cells induce neutrophil extracellular traps and are susceptible to NETosis-mediated cell death. FEBS Lett 2010; 584(14): 3193-7.
[http://dx.doi.org/10.1016/j.febslet.2010.06.006] [PMID: 20541553]
[49]
Folco EJ, Mawson TL, Vromman A, et al. Neutrophil Extracellular Traps Induce Endothelial Cell Activation and Tissue Factor Production Through Interleukin-1α and Cathepsin G. Arterioscler Thromb Vasc Biol 2018; 38(8): 1901-12.
[http://dx.doi.org/10.1161/ATVBAHA.118.311150] [PMID: 29976772]
[50]
Hansson GK, Robertson AK, Söderberg-Nauclér C. Inflammation and atherosclerosis. Annu Rev Pathol 2006; 1: 297-329.
[http://dx.doi.org/10.1146/annurev.pathol.1.110304.100100] [PMID: 18039117]
[51]
Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 2005; 352(16): 1685-95.
[http://dx.doi.org/10.1056/NEJMra043430] [PMID: 15843671]
[52]
Andersson J, Libby P, Hansson GK. Adaptive immunity and atherosclerosis. Clin Immunol 2010; 134(1): 33-46.
[http://dx.doi.org/10.1016/j.clim.2009.07.002] [PMID: 19635683]
[53]
Peilot H, Rosengren B, Bondjers G, Hurt-Camejo E. Interferon-gamma induces secretory group IIA phospholipase A2 in human arterial smooth muscle cells. Involvement of cell differentiation, STAT-3 activation, and modulation by other cytokines. J Biol Chem 2000; 275(30): 22895-904.
[http://dx.doi.org/10.1074/jbc.M002783200] [PMID: 10811652]
[54]
Mallat Z, Ait-Oufella H, Tedgui A. Regulatory T cell responses: potential role in the control of atherosclerosis. Curr Opin Lipidol 2005; 16(5): 518-24.
[http://dx.doi.org/10.1097/01.mol.0000182532.11512.90] [PMID: 16148536]
[55]
Gao Q, Jiang Y, Ma T, et al. A critical function of Th17 proinflammatory cells in the development of atherosclerotic plaque in mice. J Immunol 2010; 185(10): 5820-7.
[http://dx.doi.org/10.4049/jimmunol.1000116] [PMID: 20952673]
[56]
Wilkenfeld SR, Lin C, Frigo DE. Communication between genomic and non-genomic signaling events coordinate steroid hormone actions. Steroids 2018; 133: 2-7.
[http://dx.doi.org/10.1016/j.steroids.2017.11.005] [PMID: 29155216]
[57]
Revankar CM, Cimino DF, Sklar LA, Arterburn JB, Prossnitz ER. A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science 2005; 307(5715): 1625-30.
[http://dx.doi.org/10.1126/science.1106943] [PMID: 15705806]
[58]
Filardo E, Quinn J, Pang Y, et al. Activation of the novel estrogen receptor G protein-coupled receptor 30 (GPR30) at the plasma membrane. Endocrinology 2007; 148(7): 3236-45.
[http://dx.doi.org/10.1210/en.2006-1605] [PMID: 17379646]
[59]
Wehbe Z, Nasser SA, El-Yazbi A, Nasreddine S, Eid AH. Estrogen and Bisphenol A in Hypertension. Curr Hypertens Rep 2020; 22(3): 23.
[http://dx.doi.org/10.1007/s11906-020-1022-z] [PMID: 32114652]
[60]
Chakrabarti S, Davidge ST. G-protein coupled receptor 30 (GPR30): a novel regulator of endothelial inflammation. PLoS One 2012; 7(12): e52357.
[http://dx.doi.org/10.1371/journal.pone.0052357] [PMID: 23285008]
[61]
Bowling MR, Xing D, Kapadia A, et al. Estrogen effects on vascular inflammation are age dependent: role of estrogen receptors. Arterioscler Thromb Vasc Biol 2014; 34(7): 1477-85.
[http://dx.doi.org/10.1161/ATVBAHA.114.303629] [PMID: 24876352]
[62]
Sarchielli E, Guarnieri G, Idrizaj E, et al. The G protein-coupled oestrogen receptor, GPER1, mediates direct anti-inflammatory effects of oestrogens in human cholinergic neurones from the nucleus basalis of Meynert. J Neuroendocrinol 2020; 32(3): e12837.
[http://dx.doi.org/10.1111/jne.12837] [PMID: 32077170]
[63]
Nathan L, Pervin S, Singh R, Rosenfeld M, Chaudhuri G. Estradiol inhibits leukocyte adhesion and transendothelial migration in rabbits in vivo: possible mechanisms for gender differences in atherosclerosis. Circ Res 1999; 85(4): 377-85.
[http://dx.doi.org/10.1161/01.RES.85.4.377] [PMID: 10455066]
[64]
Simoncini T, Garibaldi S, Fu XD, et al. Effects of phytoestrogens derived from red clover on atherogenic adhesion molecules in human endothelial cells. Menopause 2008; 15(3): 542-50.
[http://dx.doi.org/10.1097/gme.0b013e318156f9d6] [PMID: 18467954]
[65]
Caulin-Glaser T, Watson CA, Pardi R, Bender JR. Effects of 17beta-estradiol on cytokine-induced endothelial cell adhesion molecule expression. J Clin Invest 1996; 98(1): 36-42.
[http://dx.doi.org/10.1172/JCI118774] [PMID: 8690801]
[66]
Nakagami F, Nakagami H, Osako MK, et al. Estrogen attenuates vascular remodeling in Lp(a) transgenic mice. Atherosclerosis 2010; 211(1): 41-7.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.01.016] [PMID: 20138621]
[67]
Mukherjee TK, Nathan L, Dinh H, Reddy ST, Chaudhuri G. 17-epiestriol, an estrogen metabolite, is more potent than estradiol in inhibiting vascular cell adhesion molecule 1 (VCAM-1) mRNA expression. J Biol Chem 2003; 278(14): 11746-52.
[http://dx.doi.org/10.1074/jbc.M207800200] [PMID: 12547825]
[68]
Pan W, Yu H, Huang S, Zhu P. Resveratrol Protects against TNF-α-Induced Injury in Human Umbilical Endothelial Cells through Promoting Sirtuin-1-Induced Repression of NF-KB and p38 MAPK. PLoS One 2016; 11(1): e0147034.
[http://dx.doi.org/10.1371/journal.pone.0147034] [PMID: 26799794]
[69]
Murphy HS, Sun Q, Murphy BA, et al. Tissue-specific effect of estradiol on endothelial cell-dependent lymphocyte recruitment. Microvasc Res 2004; 68(3): 273-85.
[http://dx.doi.org/10.1016/j.mvr.2004.06.004] [PMID: 15501247]
[70]
Seli E, Pehlivan T, Selam B, Garcia-Velasco JA, Arici A. Estradiol down-regulates MCP-1 expression in human coronary artery endothelial cells. Fertil Steril 2002; 77(3): 542-7.
[http://dx.doi.org/10.1016/S0015-0282(01)03223-X] [PMID: 11872210]
[71]
Bishop-Bailey D, Burke-Gaffney A, Hellewell PG, Pepper JR, Mitchell JA. Cyclo-oxygenase-2 regulates inducible ICAM-1 and VCAM-1 expression in human vascular smooth muscle cells. Biochem Biophys Res Commun 1998; 249(1): 44-7.
[http://dx.doi.org/10.1006/bbrc.1998.8966] [PMID: 9705828]
[72]
Jordan NJ, Watson ML, Williams RJ, Roach AG, Yoshimura T, Westwick J. Chemokine production by human vascular smooth muscle cells: modulation by IL-13. Br J Pharmacol 1997; 122(4): 749-57.
[http://dx.doi.org/10.1038/sj.bjp.0701433] [PMID: 9375973]
[73]
Prasongsukarn K, Chaisri U, Chartburus P, et al. Phenotypic alterations in human saphenous vein culture induced by tumor necrosis factor-alpha and lipoproteins: a preliminary development of an initial atherosclerotic plaque model. Lipids Health Dis 2013; 12: 132.
[http://dx.doi.org/10.1186/1476-511X-12-132] [PMID: 24010774]
[74]
Xing D, Feng W, Miller AP, et al. Estrogen modulates TNF-alpha-induced inflammatory responses in rat aortic smooth muscle cells through estrogen receptor-beta activation. Am J Physiol Heart Circ Physiol 2007; 292(6): H2607-12.
[http://dx.doi.org/10.1152/ajpheart.01107.2006] [PMID: 17237237]
[75]
Albensi BC. What Is Nuclear Factor Kappa B (NF-κB) Doing in and to the Mitochondrion? Front Cell Dev Biol 2019; 7: 154.
[http://dx.doi.org/10.3389/fcell.2019.00154] [PMID: 31448275]
[76]
Xing D, Oparil S, Yu H, et al. Estrogen modulates NFκB signaling by enhancing IκBα levels and blocking p65 binding at the promoters of inflammatory genes via estrogen receptor-β. PLoS One 2012; 7(6): e36890.
[http://dx.doi.org/10.1371/journal.pone.0036890] [PMID: 22723832]
[77]
Jiang P, Xu J, Zheng S, et al. 17beta-estradiol down-regulates lipopolysaccharide-induced MCP-1 production and cell migration in vascular smooth muscle cells. J Mol Endocrinol 2010; 45(2): 87-97.
[http://dx.doi.org/10.1677/JME-09-0166] [PMID: 20538789]
[78]
Otsuki M, Saito H, Xu X, et al. Progesterone, but not medroxyprogesterone, inhibits vascular cell adhesion molecule-1 expression in human vascular endothelial cells. Arterioscler Thromb Vasc Biol 2001; 21(2): 243-8.
[http://dx.doi.org/10.1161/01.ATV.21.2.243] [PMID: 11156860]
[79]
Tatsumi H, Kitawaki J, Tanaka K, Hosoda T, Honjo H. Lack of stimulatory effect of dienogest on the expression of intercellular adhesion molecule-1 and vascular cell adhesion molecule-1 by endothelial cell as compared with other synthetic progestins. Maturitas 2002; 42(4): 287-94.
[http://dx.doi.org/10.1016/S0378-5122(02)00157-3] [PMID: 12191851]
[80]
Piercy KT, Donnell RL, Kirkpatrick SS, et al. Effects of estrogen, progesterone, and combination exposure on interleukin-1 beta-induced expression of VCAM-1, ICAM-1, PECAM, and E-selectin by human female iliac artery endothelial cells. J Surg Res 2002; 105(2): 215-9.
[http://dx.doi.org/10.1006/jsre.2002.6405] [PMID: 12121710]
[81]
Death AK, McGrath KC, Sader MA, et al. Dihydrotestosterone promotes vascular cell adhesion molecule-1 expression in male human endothelial cells via a nuclear factor-kappaB-dependent pathway. Endocrinology 2004; 145(4): 1889-97.
[http://dx.doi.org/10.1210/en.2003-0789] [PMID: 14684616]
[82]
Hatakeyama H, Nishizawa M, Nakagawa A, Nakano S, Kigoshi T, Uchida K. Testosterone inhibits tumor necrosis factor-alpha-induced vascular cell adhesion molecule-1 expression in human aortic endothelial cells. FEBS Lett 2002; 530(1-3): 129-32.
[http://dx.doi.org/10.1016/S0014-5793(02)03440-3] [PMID: 12387879]
[83]
Mukherjee TK, Dinh H, Chaudhuri G, Nathan L. Testosterone attenuates expression of vascular cell adhesion molecule-1 by conversion to estradiol by aromatase in endothelial cells: implications in atherosclerosis. Proc Natl Acad Sci USA 2002; 99(6): 4055-60.
[http://dx.doi.org/10.1073/pnas.052703199] [PMID: 11904449]
[84]
Norata GD, Tibolla G, Seccomandi PM, Poletti A, Catapano AL. Dihydrotestosterone decreases tumor necrosis factor-alpha and lipopolysaccharide-induced inflammatory response in human endothelial cells. J Clin Endocrinol Metab 2006; 91(2): 546-54.
[http://dx.doi.org/10.1210/jc.2005-1664] [PMID: 16317058]
[85]
Annibalini G, Agostini D, Calcabrini C, et al. Effects of sex hormones on inflammatory response in male and female vascular endothelial cells. J Endocrinol Invest 2014; 37(9): 861-9.
[http://dx.doi.org/10.1007/s40618-014-0118-1] [PMID: 24947177]
[86]
Sullivan ML, Martinez CM, Gennis P, Gallagher EJ. The cardiac toxicity of anabolic steroids. Prog Cardiovasc Dis 1998; 41(1): 1-15.
[http://dx.doi.org/10.1016/S0033-0620(98)80019-4] [PMID: 9717856]
[87]
Nathan L, Shi W, Dinh H, et al. Testosterone inhibits early atherogenesis by conversion to estradiol: critical role of aromatase. Proc Natl Acad Sci USA 2001; 98(6): 3589-93.
[http://dx.doi.org/10.1073/pnas.051003698] [PMID: 11248122]
[88]
Maseroli E, Santangelo A, Lara-Fontes B, et al. The non-aromatizable androgen dihydrotestosterone (DHT) facilitates sexual behavior in ovariectomized female rats primed with estradiol. Psychoneuroendocrinology 2020; 115: 104606.
[http://dx.doi.org/10.1016/j.psyneuen.2020.104606] [PMID: 32087523]
[89]
Bhatia A, Sekhon HK, Kaur G. Sex hormones and immune dimorphism. ScientificWorldJournal 2014; 2014: 159150.
[http://dx.doi.org/10.1155/2014/159150] [PMID: 25478584]
[90]
Gilliver SC. Sex steroids as inflammatory regulators. J Steroid Biochem Mol Biol 2010; 120(2-3): 105-15.
[http://dx.doi.org/10.1016/j.jsbmb.2009.12.015] [PMID: 20045727]
[91]
Murphy AJ, Guyre PM, Wira CR, Pioli PA. Estradiol regulates expression of estrogen receptor ERalpha46 in human macrophages. PLoS One 2009; 4(5): e5539.
[http://dx.doi.org/10.1371/journal.pone.0005539] [PMID: 19440537]
[92]
Schust DJ, Anderson DJ, Hill JA. Progesterone-induced immunosuppression is not mediated through the progesterone receptor. Hum Reprod 1996; 11(5): 980-5.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a019335] [PMID: 8671374]
[93]
Barish GD, Downes M, Alaynick WA, et al. A Nuclear Receptor Atlas: macrophage activation. Mol Endocrinol 2005; 19(10): 2466-77.
[http://dx.doi.org/10.1210/me.2004-0529] [PMID: 16051664]
[94]
Sader MA, McGrath KC, Hill MD, et al. Androgen receptor gene expression in leucocytes is hormonally regulated: implications for gender differences in disease pathogenesis. Clin Endocrinol (Oxf) 2005; 62(1): 56-63.
[http://dx.doi.org/10.1111/j.1365-2265.2004.02173.x] [PMID: 15638871]
[95]
Matalka KZ. The effect of estradiol, but not progesterone, on the production of cytokines in stimulated whole blood, is concentration-dependent. Neuroendocrinol Lett 2003; 24(3-4): 185-91.
[PMID: 14523355]
[96]
Reslan OM, Khalil RA. Vascular effects of estrogenic menopausal hormone therapy. Rev Recent Clin Trials 2012; 7(1): 47-70.
[http://dx.doi.org/10.2174/157488712799363253] [PMID: 21864249]
[97]
Yasuda H, Sonoda A, Yamamoto M, et al. 17-β-estradiol enhances neutrophil extracellular trap formation by interaction with estrogen membrane receptor. Arch Biochem Biophys 2019; 663: 64-70.
[http://dx.doi.org/10.1016/j.abb.2018.12.028] [PMID: 30590021]
[98]
Kovacs EJ, Faunce DE, Ramer-Quinn DS, Mott FJ, Dy PW, Frazier-Jessen MR. Estrogen regulation of JE/MCP-1 mRNA expression in fibroblasts. J Leukoc Biol 1996; 59(4): 562-8.
[http://dx.doi.org/10.1002/jlb.59.4.562] [PMID: 8613705]
[99]
Störk S, Baumann K, von Schacky C, Angerer P. The effect of 17 beta-estradiol on MCP-1 serum levels in postmenopausal women. Cardiovasc Res 2002; 53(3): 642-9.
[http://dx.doi.org/10.1016/S0008-6363(01)00461-8] [PMID: 11861035]
[100]
Deshpande R, Khalili H, Pergolizzi RG, Michael SD, Chang MD. Estradiol down-regulates LPS-induced cytokine production and NFkB activation in murine macrophages. Am J Reprod Immunol 1997; 38(1): 46-54.
[http://dx.doi.org/10.1111/j.1600-0897.1997.tb00275.x] [PMID: 9266010]
[101]
Blasko E, Haskell CA, Leung S, et al. Beneficial role of the GPR30 agonist G-1 in an animal model of multiple sclerosis. J Neuroimmunol 2009; 214(1-2): 67-77.
[http://dx.doi.org/10.1016/j.jneuroim.2009.06.023] [PMID: 19664827]
[102]
Pfeilschifter J, Köditz R, Pfohl M, Schatz H. Changes in proinflammatory cytokine activity after menopause. Endocr Rev 2002; 23(1): 90-119.
[http://dx.doi.org/10.1210/edrv.23.1.0456] [PMID: 11844745]
[103]
Keselman A, Fang X, White PB, Heller NM. Estrogen Signaling Contributes to Sex Differences in Macrophage Polarization during Asthma. J Immunol 2017; 199(5): 1573-83.
[http://dx.doi.org/10.4049/jimmunol.1601975] [PMID: 28760880]
[104]
Posadas-Sánchez R, Vargas-Alarcón G. Innate Immunity in Coronary Disease. The Role of Interleukin-12 Cytokine Family in Atherosclerosis. Rev Invest Clin 2018; 70(1): 5-17.
[http://dx.doi.org/10.24875/RIC.17002335] [PMID: 29513302]
[105]
Lu J, Reese J, Zhou Y, Hirsch E. Progesterone-induced activation of membrane-bound progesterone receptors in murine macrophage cells. J Endocrinol 2015; 224(2): 183-94.
[http://dx.doi.org/10.1530/JOE-14-0470] [PMID: 25472814]
[106]
Tsai YC, Tseng JT, Wang CY, Su MT, Huang JY, Kuo PL. Medroxyprogesterone acetate drives M2 macrophage differentiation toward a phenotype of decidual macrophage. Mol Cell Endocrinol 2017; 452: 74-83.
[http://dx.doi.org/10.1016/j.mce.2017.05.015] [PMID: 28522271]
[107]
Huang H, He J, Yuan Y, et al. Opposing effects of estradiol and progesterone on the oxidative stress-induced production of chemokine and proinflammatory cytokines in murine peritoneal macrophages. J Med Invest 2008; 55(1-2): 133-41.
[http://dx.doi.org/10.2152/jmi.55.133] [PMID: 18319556]
[108]
Dalal M, Kim S, Voskuhl RR. Testosterone therapy ameliorates experimental autoimmune encephalomyelitis and induces a T helper 2 bias in the autoantigen-specific T lymphocyte response. J Immunol 1997; 159(1): 3-6.
[PMID: 9200430]
[109]
Kanda N, Tsuchida T, Tamaki K. Testosterone suppresses anti-DNA antibody production in peripheral blood mononuclear cells from patients with systemic lupus erythematosus. Arthritis Rheum 1997; 40(9): 1703-11.
[http://dx.doi.org/10.1002/art.1780400921] [PMID: 9324026]
[110]
D’Agostino P, Milano S, Barbera C, et al. Sex hormones modulate inflammatory mediators produced by macrophages. Ann N Y Acad Sci 1999; 876: 426-9.
[http://dx.doi.org/10.1111/j.1749-6632.1999.tb07667.x] [PMID: 10415638]
[111]
Li ZG, Danis VA, Brooks PM. Effect of gonadal steroids on the production of IL-1 and IL-6 by blood mononuclear cells in vitro. Clin Exp Rheumatol 1993; 11(2): 157-62.
[PMID: 8508557]
[112]
Vignozzi L, Morelli A, Sarchielli E, et al. Testosterone protects from metabolic syndrome-associated prostate inflammation: an experimental study in rabbit. J Endocrinol 2012; 212(1): 71-84.
[http://dx.doi.org/10.1530/JOE-11-0289] [PMID: 22010203]
[113]
Maseroli E, Cellai I, Filippi S, et al. Anti-inflammatory effects of androgens in the human vagina. J Mol Endocrinol 2020; 65(3): 109-24.
[http://dx.doi.org/10.1530/JME-20-0147] [PMID: 32755990]
[114]
Chen S, Markman JL, Shimada K, et al. Sex-Specific Effects of the Nlrp3 Inflammasome on Atherogenesis in LDL Receptor-Deficient Mice. JACC Basic Transl Sci 2020; 5(6): 582-98.
[http://dx.doi.org/10.1016/j.jacbts.2020.03.016] [PMID: 32613145]
[115]
Ashcroft GS, Mills SJ. Androgen receptor-mediated inhibition of cutaneous wound healing. J Clin Invest 2002; 110(5): 615-24.
[http://dx.doi.org/10.1172/JCI0215704] [PMID: 12208862]
[116]
Lai JJ, Lai KP, Chuang KH, et al. Monocyte/macrophage androgen receptor suppresses cutaneous wound healing in mice by enhancing local TNF-alpha expression. J Clin Invest 2009; 119(12): 3739-51.
[http://dx.doi.org/10.1172/JCI39335] [PMID: 19907077]
[117]
Serhan CN. Pro-resolving lipid mediators are leads for resolution physiology. Nature 2014; 510(7503): 92-101.
[http://dx.doi.org/10.1038/nature13479] [PMID: 24899309]
[118]
Serhan CN, Chiang N. Resolution phase lipid mediators of inflammation: agonists of resolution. Curr Opin Pharmacol 2013; 13(4): 632-40.
[http://dx.doi.org/10.1016/j.coph.2013.05.012] [PMID: 23747022]
[119]
Sansbury BE, Spite M. Resolution of Acute Inflammation and the Role of Resolvins in Immunity, Thrombosis, and Vascular Biology. Circ Res 2016; 119(1): 113-30.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.307308] [PMID: 27340271]
[120]
Fredman G, Hellmann J, Proto JD, et al. An imbalance between specialized pro-resolving lipid mediators and pro-inflammatory leukotrienes promotes instability of atherosclerotic plaques. Nat Commun 2016; 7: 12859.
[http://dx.doi.org/10.1038/ncomms12859] [PMID: 27659679]
[121]
Viola JR, Lemnitzer P, Jansen Y, et al. Resolving Lipid Mediators Maresin 1 and Resolvin D2 Prevent Atheroprogression in Mice. Circ Res 2016; 119(9): 1030-8.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309492] [PMID: 27531933]
[122]
Rathod KS, Kapil V, Velmurugan S, et al. Accelerated resolution of inflammation underlies sex differences in inflammatory responses in humans. J Clin Invest 2017; 127(1): 169-82.
[http://dx.doi.org/10.1172/JCI89429] [PMID: 27893465]
[123]
Virani SS, Smith SC Jr, Stone NJ, Grundy SM. Secondary Prevention for Atherosclerotic Cardiovascular Disease: Comparing Recent US and European Guidelines on Dyslipidemia. Circulation 2020; 141(14): 1121-3.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.119.044282] [PMID: 32250694]
[124]
Nicholls SJ, Kastelein JJ, Schwartz GG, et al. VISTA-16 Investigators. Varespladib and cardiovascular events in patients with an acute coronary syndrome: the VISTA-16 randomized clinical trial. JAMA 2014; 311(3): 252-62.
[http://dx.doi.org/10.1001/jama.2013.282836] [PMID: 24247616]
[125]
Frijns CJ, Kappelle LJ. Inflammatory cell adhesion molecules in ischemic cerebrovascular disease. Stroke 2002; 33(8): 2115-22.
[http://dx.doi.org/10.1161/01.STR.0000021902.33129.69] [PMID: 12154274]
[126]
Vergunst CE, Gerlag DM, Lopatinskaya L, et al. Modulation of CCR2 in rheumatoid arthritis: a double-blind, randomized, placebo-controlled clinical trial. Arthritis Rheum 2008; 58(7): 1931-9.
[http://dx.doi.org/10.1002/art.23591] [PMID: 18576354]
[127]
Tzellos T, Kyrgidis A, Zouboulis CC. Re-evaluation of the risk for major adverse cardiovascular events in patients treated with anti-IL-12/23 biological agents for chronic plaque psoriasis: a meta-analysis of randomized controlled trials. J Eur Acad Dermatol Venereol 2013; 27(5): 622-7.
[http://dx.doi.org/10.1111/j.1468-3083.2012.04500.x] [PMID: 22404103]
[128]
Ogdie A, Yu Y, Haynes K, et al. Risk of major cardiovascular events in patients with psoriatic arthritis, psoriasis and rheumatoid arthritis: a population-based cohort study. Ann Rheum Dis 2015; 74(2): 326-32.
[http://dx.doi.org/10.1136/annrheumdis-2014-205675] [PMID: 25351522]
[129]
Gelfand JM, Shin DB, Duffin KC, Armstrong AW, Blauvelt A, Tyring SK, et al. A Randomized Placebo-Controlled Trial of Secukinumab on Aortic Vascular Inflammation in Moderate-to-Severe Plaque Psoriasis (VIP-S). J Invest Dermatol 2020.
[130]
Zhang MA, Rego D, Moshkova M, et al. Peroxisome proliferator-activated receptor (PPAR)α and -γ regulate IFNγ and IL-17A production by human T cells in a sex-specific way. Proc Natl Acad Sci USA 2012; 109(24): 9505-10.
[http://dx.doi.org/10.1073/pnas.1118458109] [PMID: 22647601]
[131]
Ridker PM, Everett BM, Thuren T, et al. CANTOS Trial Group. Antiinflammatory Therapy with Canakinumab for Atherosclerotic Disease. N Engl J Med 2017; 377(12): 1119-31.
[http://dx.doi.org/10.1056/NEJMoa1707914] [PMID: 28845751]
[132]
Kleveland O, Kunszt G, Bratlie M, et al. Effect of a single dose of the interleukin-6 receptor antagonist tocilizumab on inflammation and troponin T release in patients with non-ST-elevation myocardial infarction: a double-blind, randomized, placebo-controlled phase 2 trial. Eur Heart J 2016; 37(30): 2406-13.
[http://dx.doi.org/10.1093/eurheartj/ehw171] [PMID: 27161611]
[133]
Popa C, Netea MG, Radstake T, et al. Influence of anti-tumour necrosis factor therapy on cardiovascular risk factors in patients with active rheumatoid arthritis. Ann Rheum Dis 2005; 64(2): 303-5.
[http://dx.doi.org/10.1136/ard.2004.023119] [PMID: 15231512]
[134]
Girón-González JA, Moral FJ, Elvira J, et al. Consistent production of a higher TH1:TH2 cytokine ratio by stimulated T cells in men compared with women. Eur J Endocrinol 2000; 143(1): 31-6.
[http://dx.doi.org/10.1530/eje.0.1430031] [PMID: 10870028]
[135]
Lamkanfi M, Mueller JL, Vitari AC, et al. Glyburide inhibits the Cryopyrin/Nalp3 inflammasome. J Cell Biol 2009; 187(1): 61-70.
[http://dx.doi.org/10.1083/jcb.200903124] [PMID: 19805629]
[136]
Randle JC, Harding MW, Ku G, Schönharting M, Kurrle R. ICE/Caspase-1 inhibitors as novel anti-inflammatory drugs. Expert Opin Investig Drugs 2001; 10(7): 1207-9.
[http://dx.doi.org/10.1517/13543784.10.7.1207] [PMID: 11772244]
[137]
Brenner C, Franz WM, Kühlenthal S, et al. DPP-4 inhibition ameliorates atherosclerosis by priming monocytes into M2 macrophages. Int J Cardiol 2015; 199: 163-9.
[http://dx.doi.org/10.1016/j.ijcard.2015.07.044] [PMID: 26197403]
[138]
Bouhlel MA, Derudas B, Rigamonti E, et al. PPARgamma activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties. Cell Metab 2007; 6(2): 137-43.
[http://dx.doi.org/10.1016/j.cmet.2007.06.010] [PMID: 17681149]
[139]
Gubbels Bupp MR, Potluri T, Fink AL, Klein SL. The Confluence of Sex Hormones and Aging on Immunity. Front Immunol 2018; 9: 1269.
[http://dx.doi.org/10.3389/fimmu.2018.01269] [PMID: 29915601]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy