Generic placeholder image

Combinatorial Chemistry & High Throughput Screening

Editor-in-Chief

ISSN (Print): 1386-2073
ISSN (Online): 1875-5402

Research Article

Repositioning of RdRp Inhibitors Against HCV NS5B Polymerase Utilizing Structure-Based Molecular Docking

Author(s): Heena Tarannum and Sisir Nandi*

Volume 25, Issue 4, 2022

Published on: 21 January, 2021

Page: [702 - 719] Pages: 18

DOI: 10.2174/1386207324666210121111921

Price: $65

Abstract

Objective: Hepatitis C Virus (HCV) is very dreadful as it can attack an estimated 71 million people around the world. The World Health Organization (WHO) reported that every year about 399000 people die due to HCV caused by chronic cirrhosis and liver cancer globally. There are many drugs available for the treatment of HCV. But drug resistance and toxicity are major issues. The quest for potential drugs utilizing repositioning would be a very useful and economical method to combat HCV.

Methods: One of the most common HCV targets is RNA-dependent RNA polymerase (RdRp). The RdRp is common in HCV, Dengue virus (DENV), Zika virus (ZIKV), and Yellow fever virus (YFV) belonging to the same family of Flaviviridae. An attempt has been made in the present study to reposition different DENV, ZIKV, and YFV RdRp inhibitors against HCV NS5B polymerase utilizing structure-based molecular docking which explores the affinity and mode of binding of these RdRp inhibitors.

Results: Several 87 compounds having dengue, yellow fever and zika RdRp inhibitory activities have been taken into consideration for the screening of potential RdRp leads utilizing docking simulation, which focuses on the affinity and mode of binding of sofosbuvir diphosphate, a standard HCV, RdRp inhibitor.

Conclusion: The compounds 6 (N-sulfonylanthranilic acid derivative), 17 (R1479), 20 (DMB220), 23 (FD-83-KI26), 40 (CCG-7648), 50 (T-1106), 65 (mycophenolic acid), and 69 (DMB213) exhibited docking score within the range of -7.602 to -8.971 Kcal/Mol having almost same mode of interaction as compared to the reference drug molecule. The drugs mentioned above possess satisfactory affinity to bind the hepatitis C viral RdRp and thus may be used to treat the disease. Therefore, these predicted compounds may be potential leads for further testing of anti HCV activity and can be repurposed to combat HCV. The high throughput shotgun of drug repurposing utilizing structure-based docking simulation freeware would be a cost-effective way to screen the potential anti-HCV leads.

Keywords: Hepatitis C Virus (HCV), NS5B Polymerase, RdRp inhibitors, drug repositioning, structure-based molecular docking.

Graphical Abstract

[1]
Lingala, S.; Ghany, M.G. Natural History of Hepatitis C. Gastroenterol. Clin. North Am., 2015, 44(4), 717-734.
[http://dx.doi.org/10.1016/j.gtc.2015.07.003] [PMID: 26600216]
[2]
Taherkhani, R.; Farshadpour, F. Epidemiology of hepatitis C virus in Iran. World J. Gastroenterol., 2015, 21(38), 10790-10810.
[http://dx.doi.org/10.3748/wjg.v21.i38.10790] [PMID: 26478671]
[3]
Bertino, G.; Ardiri, A.; Proiti, M.; Rigano, G.; Frazzetto, E.; Demma, S.; Ruggeri, M.I.; Scuderi, L.; Malaguarnera, G.; Bertino, N.; Rapisarda, V.; Di Carlo, I.; Toro, A.; Salomone, F.; Malaguarnera, M.; Bertino, E.; Malaguarnera, M. Chronic hepatitis C: This and the new era of treatment. World J. Hepatol., 2016, 8(2), 92-106.
[http://dx.doi.org/10.4254/wjh.v8.i2.92] [PMID: 26807205]
[4]
Madaliński, K.; Zakrzewska, K.; Kołakowska, A.; Godzik, P. Epidemiology of HCV infection in Central and Eastern Europe. Przegl. Epidemiol., 2015, 69(3), 459-464, 581-584.
[PMID: 26519840]
[5]
Lavanchy, D. The global burden of hepatitis C. Liver Int., 2009, 29(1)(Suppl. 1), 74-81.
[http://dx.doi.org/10.1111/j.1478-3231.2008.01934.x] [PMID: 19207969]
[6]
World Health Organization. Hepatitis C, WHO fact sheet No. 164. 2015.http://www.who.int/
[7]
Chen, K.X.; Vibulbhan, B.; Yang, W.; Sannigrahi, M.; Velazquez, F.; Chan, T.Y.; Venkatraman, S.; Anilkumar, G.N.; Zeng, Q.; Bennet, F.; Jiang, Y.; Lesburg, C.A.; Duca, J.; Pinto, P.; Gavalas, S.; Huang, Y.; Wu, W.; Selyutin, O.; Agrawal, S.; Feld, B.; Huang, H.C.; Li, C.; Cheng, K.C.; Shih, N.Y.; Kozlowski, J.A.; Rosenblum, S.B.; Njoroge, F.G. Structure-activity relationship (SAR) development and discovery of potent indole-based inhibitors of the hepatitis C virus (HCV) NS5B polymerase. J. Med. Chem., 2012, 55(2), 754-765.
[http://dx.doi.org/10.1021/jm201258k] [PMID: 22148957]
[8]
Powdrill, M.H.; Bernatchez, J.A.; Götte, M. Inhibitors of the Hepatitis C Virus RNA-Dependent RNA Polymerase NS5B. Viruses, 2010, 2(10), 2169-2195.
[http://dx.doi.org/10.3390/v2102169] [PMID: 21994615]
[9]
Deore, R.R.; Chern, J.W. NS5B RNA dependent RNA polymerase inhibitors: the promising approach to treat hepatitis C virus infections. Curr. Med. Chem., 2010, 17(32), 3806-3826.
[http://dx.doi.org/10.2174/092986710793205471] [PMID: 20858218]
[10]
Sofia, M.J.; Bao, D.; Chang, W.; Du, J.; Nagarathnam, D.; Rachakonda, S.; Reddy, P.; Ganapati, R.; Bruce, S.; Wang, P.; Zhang, H.R.; Bansal, S.; Espiritu, C.; Keilman, M.; Lam, A.M.; Steuer, H.M. Micolochick; N.; Congrong, O.; Michael, J.; Furman, P.A. Discovery of a β-2'-Deoxy-2'-α-fluoro-2'-β-methyluridine Nucleotide Prodrug (PSI-7977) for the Treatment of Hepatitis C Virus. J. Med. Chem., 2010, 53(19), 7202-7218.
[http://dx.doi.org/10.1021/jm100863x] [PMID: 20845908]
[11]
Burton, G.; Ku, T.W.; Carr, T.J.; Kiesow, T.; Sarisky, R.T.; Lin-Goerke, J.; Hofmann, G.A.; Slater, M.J.; Haigh, D.; Dhanak, D.; Johnson, V.K.; Parry, N.R.; Thommes, P. Studies on acyl pyrrolidine inhibitors of HCV RNA-dependent RNA polymerase to identify a molecule with replicon antiviral activity. Bioorg. Med. Chem. Lett., 2007, 17(7), 1930-1933.
[http://dx.doi.org/10.1016/j.bmcl.2007.01.034] [PMID: 17270443]
[12]
Geddawy, A.; Ibrahim, Y.F.; Elbahie, N.M.; Ibrahim, M.A. Direct acting anti-hepatitis C virus drugs: Clinical pharmacology and future direction. J. Transl. Int. Med., 2017, 5(1), 8-17.
[http://dx.doi.org/10.1515/jtim-2017-0007] [PMID: 28680834]
[13]
Pelliccia, S.; Wu, Y.H.; Coluccia, A.; La Regina, G.; Tseng, C.K.; Famiglini, V.; Masci, D.; Hiscott, J.; Lee, J.C.; Silvestri, R. Inhibition of dengue virus replication by novel inhibitors of RNA-dependent RNA polymerase and protease activities. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 1091-1101.
[http://dx.doi.org/10.1080/14756366.2017.1355791] [PMID: 28776445]
[14]
Yao, X.; Guo, S.; Wu, W.; Wang, J.; Wu, S.; He, S.; Wan, Y.; Nandakumar, K.S.; Chen, X.; Sun, N.; Zhu, Q.; Liu, S. Q63, a novel DENV2 RdRp non-nucleoside inhibitor, inhibited DENV2 replication and infection. J. Pharmacol. Sci., 2018, 138(4), 247-256.
[http://dx.doi.org/10.1016/j.jphs.2018.06.012] [PMID: 30518482]
[15]
Niyomrattanakit, P.; Chen, Y.L.; Dong, H.; Yin, Z.; Qing, M.; Glickman, J.F.; Lin, K.; Mueller, D.; Voshol, H.; Lim, J.Y.; Nilar, S.; Keller, T.H.; Shi, P.Y. Inhibition of dengue virus polymerase by blocking of the RNA tunnel. J. Virol., 2010, 84(11), 5678-5686.
[http://dx.doi.org/10.1128/JVI.02451-09] [PMID: 20237086]
[16]
Noble, C.G.; Lim, S.P.; Chen, Y.L.; Liew, C.W.; Yap, L.; Lescar, J.; Shi, P.Y. Conformational flexibility of the Dengue virus RNA-dependent RNA polymerase revealed by a complex with an inhibitor. J. Virol., 2013, 87(9), 5291-5295.
[http://dx.doi.org/10.1128/JVI.00045-13] [PMID: 23408636]
[17]
Lim, S.P.; Noble, C.G.; Seh, C.C.; Soh, T.S.; El Sahili, A.; Chan, G.K.; Lescar, J.; Arora, R.; Benson, T.; Nilar, S.; Manjunatha, U.; Wan, K.F.; Dong, H.; Xie, X.; Shi, P.Y.; Yokokawa, F. Potent Allosteric Dengue Virus NS5 Polymerase Inhibitors: Mechanism of Action and Resistance Profiling. PLoS Pathog., 2016, 12(8), e1005737.
[http://dx.doi.org/10.1371/journal.ppat.1005737] [PMID: 27500641]
[18]
Yokokawa, F.; Nilar, S.; Noble, C.G.; Lim, S.P.; Rao, R.; Tania, S.; Wang, G.; Lee, G.; Hunziker, J.; Karuna, R.; Manjunatha, U.; Shi, P.Y.; Smith, P.W. Discovery of Potent Non-Nucleoside Inhibitors of Dengue Viral RNA-Dependent RNA Polymerase from a Fragment Hit Using Structure-Based Drug Design. J. Med. Chem., 2016, 59(8), 3935-3952.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00143] [PMID: 26984786]
[19]
Patil, V.M.; Balasubramanian, K.; Masand, N. Dengue Virus Polymerase: A Crucial Target for Antiviral Drug Discovery. Viral polymerases, 2019, 387-428.
[20]
Xu, H.T.; Colby-Germinario, S.P.; Hassounah, S.; Quashie, P.K.; Han, Y.; Oliveira, M.; Stranix, B.R.; Wainberg, M.A. Identification of a Pyridoxine-Derived Small-Molecule Inhibitor Targeting Dengue Virus RNA-Dependent RNA Polymerase. Antimicrob. Agents Chemother., 2015, 60(1), 600-608.
[http://dx.doi.org/10.1128/AAC.02203-15] [PMID: 26574011]
[21]
Noble, C.G.; Lim, S.P.; Arora, R.; Yokokawa, F.; Nilar, S.; Seh, C.C.; Wright, S.K.; Benson, T.E.; Smith, P.W.; Shi, P.Y. A Conserved Pocket in the Dengue Virus Polymerase Identified through Fragment-based Screening. J. Biol. Chem., 2016, 291(16), 8541-8548.
[http://dx.doi.org/10.1074/jbc.M115.710731] [PMID: 26872970]
[22]
Nncube, N.B.; Ramharack, P.; Soliman, M.E.S. Using bioinformatics tools for the discovery of Dengue RNA-dependent RNA polymerase inhibitors. PeerJ, 2018, 6(5068), e5068.
[http://dx.doi.org/10.7717/peerj.5068] [PMID: 30280009]
[23]
Tarantino, D.; Cannalire, R.; Mastrangelo, E.; Croci, R.; Querat, G.; Barreca, M.L.; Bolognesi, M.; Manfroni, G.; Cecchetti, V.; Milani, M. Targeting flavivirus RNA dependent RNA polymerase through a pyridobenzothiazole inhibitor. Antiviral Res., 2016, 134, 226-235.
[http://dx.doi.org/10.1016/j.antiviral.2016.09.007] [PMID: 27649989]
[24]
Tian, Y.S.; Zhou, Y.; Takagi, T.; Kameoka, M.; Kawashita, N. Dengue Virus and Its Inhibitors: A Brief Review. Chem. Pharm. Bull. (Tokyo), 2018, 66(3), 191-206.
[http://dx.doi.org/10.1248/cpb.c17-00794] [PMID: 29491253]
[25]
de Oliveira, A.S.; da Silva, M.L.; Flávia, A.; Oliveira, C.S.; da Silva, C.C. Teixeira, R.R.; De Paula, S.O. NS3 and NS5 Proteins: Important Targets for Anti-Dengue Drug Design. J. Braz. Chem. Soc., 2014, 25(10), 1759-1769.
[26]
Sumo, U.; Tambunan, F.; Noors, R.S.; Parikesit, A.A. Elyana, Ronggo, W. Molecular Dynamics Simulation of DENV RNA-Dependent RNA-Polymerase with Potential Inhibitor of Disulfide Cyclic Peptide. Online J. Biol. Sci., 2011, 11(2), 48-62.
[http://dx.doi.org/10.3844/ojbsci.2011.48.62]
[27]
Coulerie, P.; Maciuk, A.; Eydoux, C.; Hnawia, E.; Lebouvier, N.; Figadère, B.; Guillemot, J.C.; Nour, M. New Inhibitors of the DENV-NS5 RdRp from Carpolepis laurifolia as Potential Antiviral Drugs for Dengue Treatment. ACG PUBLICATIONS Rec. Nat. Prod, 2014, 8(3), 286-289.
[28]
Patkar, C.G.; Larsen, M.; Owston, M.; Smith, J.L.; Kuhn, R.J. Identification of inhibitors of yellow fever virus replication using a replicon-based high-throughput assay. Antimicrob. Agents Chemother., 2009, 53(10), 4103-4114.
[http://dx.doi.org/10.1128/AAC.00074-09] [PMID: 19651907]
[29]
Pilger, R.B.; Moraes, C.B.; Gil, H.V.; Freitas, L.H. Drug repurposing for yellow fever using high content screening. bioRxiv, 2017, 1-18.
[30]
De Burghgraeve, T.; Selisko, B.; Kaptein, S.; Chatelain, G.; Leyssen, P.; Debing, Y.; Jacobs, M.; Van Aerschot, A.; Canard, B.; Neyts, J. 3'5'Di-O-trityluridine inhibits in vitro flavivirus replication. Antiviral Res., 2013, 98(2), 242-247.
[http://dx.doi.org/10.1016/j.antiviral.2013.01.011] [PMID: 23470860]
[31]
Julander, J.G. Experimental therapies for yellow fever. Antiviral Res., 2013, 97(2), 169-179.
[http://dx.doi.org/10.1016/j.antiviral.2012.12.002] [PMID: 23237991]
[32]
Furuta, Y.; Takahashi, K.; Shiraki, K.; Sakamoto, K.; Smee, D.F.; Barnard, D.L.; Gowen, B.B.; Julander, J.G.; Morrey, J.D. T-705 (favipiravir) and related compounds: Novel broad-spectrum inhibitors of RNA viral infections. Antiviral Res., 2009, 82(3), 95-102.
[http://dx.doi.org/10.1016/j.antiviral.2009.02.198] [PMID: 19428599]
[33]
Sesmero, E.; Thorpe, I.F. Using the Hepatitis C Virus RNA-Dependent RNA Polymerase as a Model to Understand Viral Polymerase Structure, Function and Dynamics. Viruses, 2015, 7(7), 3974-3994.
[http://dx.doi.org/10.3390/v7072808] [PMID: 26193306]
[34]
Nandi, S.; Kaur, R.; Kumar, M.; Sharma, A.; Naaz, A.; Mandal, S.C. Current Breakthroughs in Structure-based Design of Synthetic and Natural Sourced Inhibitors Against Zika Viral Targets. Curr. Top. Med. Chem., 2018, 18(20), 1792-1803.
[http://dx.doi.org/10.2174/1568026619666181120125525] [PMID: 30465510]
[35]
Lu, G.; Bluemling, G.R.; Collop, P.; Hager, M.; Kuiper, D.; Gurale, B.P.; Painter, G.R.; De La Rosa, A.; Kolykhalov, A.A. Analysis of Ribonucleotide 5'-Triphosphate Analogs as Potential Inhibitors of Zika Virus RNA-Dependent RNA Polymerase by Using Nonradioactive Polymerase Assays. Antimicrob. Agents Chemother., 2017, 61(3), 01967-16.
[http://dx.doi.org/10.1128/AAC.01967-16] [PMID: 27993851]
[36]
Elfiky, A.A.; Ismail, A.M. Molecular docking revealed the binding of nucleotide/side inhibitors to Zika viral polymerase solved structures. SAR QSAR Environ. Res., 2018, 29(5), 409-418.
[http://dx.doi.org/10.1080/1062936X.2018.1454981] [PMID: 29652194]
[37]
Tay, M.Y.; Fraser, J.E.; Chan, W.K.; Moreland, N.J.; Rathore, A.P.; Wang, C.; Vasudevan, S.G.; Jans, D.A. Nuclear localization of dengue virus (DENV) 1-4 non-structural protein 5; protection against all 4 DENV serotypes by the inhibitor Ivermectin. Antiviral Res., 2013, 99(3), 301-306.
[http://dx.doi.org/10.1016/j.antiviral.2013.06.002] [PMID: 23769930]
[38]
Velkov, T.; Carbone, V.; Akter, J.; Sivanesan, S.; Li, J.; Beddoe, T.; Marsh, G.A. The RNA-dependent-RNA polymerase, an emerging antiviral drug target for the Hendra virus. Curr. Drug Targets, 2014, 15(1), 103-113.
[http://dx.doi.org/10.2174/1389450114888131204163210] [PMID: 24102407]
[39]
Thompson, M.A. Arguslab 4.0.1., http://www.arguslab.com
[40]
Allinger, N.L. Conformational analysis 130. MM2. A hydrocarbon inters atomic potential utilizing V1 and V2 torsional terms. J. Am. Chem. Soc., 1977, 99(25), 8127-8134.
[http://dx.doi.org/10.1021/ja00467a001]
[41]
Mills, N. ChemDraw Ultra 10.0. J. Am. Chem. Soc., 2006, 128(41), 13649-13650.
[http://dx.doi.org/10.1021/ja0697875]
[42]
Appleby, T.C.; Perry, J.K.; Murakami, E.; Barauskas, O.; Feng, J.; Cho, A.; Fox, D., III; Wetmore, D.R.; McGrath, M.E.; Ray, A.S.; Sofia, M.J.; Swaminathan, S.; Edwards, T.E. Viral replication. Structural basis for RNA replication by the hepatitis C virus polymerase. Science, 2015, 347(6223), 771-775.
[http://dx.doi.org/10.1126/science.1259210] [PMID: 25678663]
[43]
Thompson, M.A.; Zerner, M.C. A theoretical examination of the electronic structure and spectroscopy of the photosynthetic reaction center from Rhodopseudomonasviridis. J. Am. Chem. Soc., 1990, 113(22), 8210-8215.
[http://dx.doi.org/10.1021/ja00022a003]
[44]
Fung, A.; Jin, Z.; Dyatkina, N.; Wang, G.; Beigelman, L.; Deval, J. Efficiency of incorporation and chain termination determines the inhibition potency of 2'-modified nucleotide analogs against hepatitis C virus polymerase. Antimicrob. Agents Chemother., 2014, 58(7), 3636-3645.
[http://dx.doi.org/10.1128/AAC.02666-14] [PMID: 24733478]
[45]
Ma, H.; Jiang, W.R.; Robledo, N.; Leveque, V.; Ali, S.; Lara-Jaime, T.; Masjedizadeh, M.; Smith, D.B.; Cammack, N.; Klumpp, K.; Symons, J. Characterization of the metabolic activation of hepatitis C virus nucleoside inhibitor beta-D-2'-Deoxy-2'-fluoro-2'-C-methylcytidine (PSI-6130) and identification of a novel active 5'-triphosphate species. J. Biol. Chem., 2007, 282(41), 29812-29820.
[http://dx.doi.org/10.1074/jbc.M705274200] [PMID: 17698842]
[46]
Elfiky, A.A. Ribavirin, Remdesivir, Sofosbuvir, Galidesivir, and Tenofovir against SARSCoV-2 RNA dependent RNA polymerase (RdRp): A molecular docking study. Life Sci., 2020, 258, 118350.
[http://dx.doi.org/10.1016/j.lfs.2020.118350] [PMID: 32863005]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy