[1]
Bradley, D.W.; McCaustland, K.A.; Cook, E.; Schable, C.A.; Ebert, J.W.; Maynard, J.E. Posttransfusion non-A, non-B hepatitis in chimpanzees: physicochemical evidence that the tubule-forming agent is a small, enveloped virus. Gastroenterology, 1985, 88(3), 773-779.
[2]
Gastaminza, P.; Dryden, K.A.; Boyd, B.; Wood, M.R.; Law, M.; Yeager, M.; Chisari, F.V. Ultrastructural and biophysical characterization of hepatitis C virus particles produced in cell culture. Journal of Virology, 2010, 84(21), 10999-11009.
[3]
Popescu, C-I.; Riva, L.; Vlaicu, O.; Farhat, R.; Rouillé, Y.; Dubuisson, J. Hepatitis C virus life cycle and lipid metabolism. Biology, 2014, 3(4), 892-921.
[5]
Colpitts, C.C.; Baumert, T.F. SMAD About Hepatitis C Virus Cell Entry and Liver Disease. Gastroenterology, 2017, 152(1), 21.
[6]
Boyer, A.; Dumans, A.; Beaumont, E.; Etienne, L.; Roingeard, P.; Meunier, J-C. The association of hepatitis C virus glycoproteins with apolipoproteins E and B early in assembly is conserved in lipoviral particles. Journal of Biological Chemistry, 2014, 289(27), 18904-18913.
[7]
Lee, J-Y.; Acosta, E.G.; Stoeck, I.K.; Long, G.; Hiet, M-S.; Mueller, B.; Fackler, O.T.; Kallis, S.; Bartenschlager, R. Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. Journal of virology, 2014, 88(21), 12422-12437.
[8]
Albecka, A.; Belouzard, S.; de Beeck, A.O.; Descamps, V.; Goueslain, L.; Bertrand‐Michel, J.; Tercé, F.; Duverlie, G.; Rouillé, Y.; Dubuisson, J. Role of low‐density lipoprotein receptor in the hepatitis C virus life cycle. Hepatology, 2012, 55(4), 998-1007.
[9]
Thi, V.L.D.; Granier, C.; Zeisel, M.B.; Guérin, M.; Mancip, J.; Granio, O.; Penin, F.; Lavillette, D.; Bartenschlager, R.; Baumert, T.F. Characterization of hepatitis C virus particle subpopulations reveals multiple usage of the scavenger receptor BI for entry steps. Journal of Biological Chemistry, 2012, 287(37), 31242-31257.
[10]
Zahid, M.N.; Turek, M.; Xiao, F.; Dao Thi, V.L.; Guérin, M.; Fofana, I.; Bachellier, P.; Thompson, J.; Delang, L.; Neyts, J. The postbinding activity of scavenger receptor class B type I mediates initiation of hepatitis C virus infection and viral dissemination. Hepatology, 2013, 57(2), 492-504.
[11]
Scarselli, E.; Ansuini, H.; Cerino, R.; Roccasecca, R.M.; Acali, S.; Filocamo, G.; Traboni, C.; Nicosia, A.; Cortese, R.; Vitelli, A. The human scavenger receptor class B type I is a novel candidate receptor for the hepatitis C virus. The EMBO journal, 2002, 21(19), 5017-5025.
[12]
Bankwitz, D.; Steinmann, E.; Bitzegeio, J.; Ciesek, S.; Friesland, M.; Herrmann, E.; Zeisel, M.B.; Baumert, T.F.; Keck, Z-y.; Foung, S.K. Hepatitis C virus hypervariable region 1 modulates receptor interactions, conceals the CD81 binding site, and protects conserved neutralizing epitopes. Journal of virology, 2010, 84(11), 5751-5763.
[13]
Farquhar, M.J.; Hu, K.; Harris, H.J.; Davis, C.; Brimacombe, C.L.; Fletcher, S.J.; Baumert, T.F.; Rappoport, J.Z.; Balfe, P.; McKeating, J.A. Hepatitis C virus induces CD81 and claudin-1 endocytosis. Journal of virology, 2012, 86(8), 4305-4316.
[14]
Kim, C.W.; Chang, K-M. Hepatitis C virus: virology and life cycle. Clinical and molecular hepatology, 2013, 19(1), 17.
[15]
Lescar, J.; Roussel, A.; Wien, M.W.; Navaza, J.; Fuller, S.D.; Wengler, G.; Wengler, G.; Rey, F.A. The fusion glycoprotein shell of Semliki Forest virus: an icosahedral assembly primed for fusogenic activation at endosomal pH. Cell, 2001, 105(1), 137-148.
[16]
Jackson, R.J.; Kaminski, A. Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA, 1995, 1(10), 985.
[17]
Friebe, P.; Lohmann, V.; Krieger, N.; Bartenschlager, R. Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. Journal of virology, 2001, 75(24), 12047-12057.
[18]
Luo, G.; Xin, S.; Cai, Z. Role of the 5′-proximal stem-loop structure of the 5′ untranslated region in replication and translation of hepatitis C virus RNA. Journal of virology, 2003, 77(5), 3312-3318.
[19]
Niepmann, M. In Hepatitis C Virus: From Molecular Virology to Antiviral Therapy; Springer, 2013, pp. 143-166.
[20]
Honda, M.; Ping, L-H.; Rijnbrand, R.C.; Amphlett, E.; Clarke, B.; Rowlands, D.; Lemon, S.M. Structural requirements for initiation of translation by internal ribosome entry within genome-length hepatitis C virus RNA. Virology, 1996, 222(1), 31-42.
[21]
Romero-López, C.; Berzal-Herranz, A. Structure-function relationship in viral RNA genomes: The case of hepatitis C virus. 2014.
[22]
Jopling, C.L.; Yi, M.; Lancaster, A.M.; Lemon, S.M.; Sarnow, P. Modulation of hepatitis C virus RNA abundance by a liverspecific MicroRNA. science, 2005, 309(5740), 1577-1581.
[23]
Moradpour, D.; Bieck, E.; Hügle, T.; Wels, W.; Wu, J.Z.; Hong, Z.; Blum, H.E.; Bartenschlager, R. Functional properties of a monoclonal antibody inhibiting the hepatitis C virus RNA-dependent RNA polymerase. Journal of Biological Chemistry, 2002, 277(1), 593-601.
[24]
Carrère-Kremer, S.; Montpellier, C.; Lorenzo, L.; Brulin, B.; Cocquerel, L.; Belouzard, S.; Penin, F.; Dubuisson, J. Regulation of hepatitis C virus polyprotein processing by signal peptidase involves structural determinants at the p7 sequence junctions. Journal of Biological Chemistry, 2004, 279(40), 41384-41392.
[25]
Roingeard, P.; Hourioux, C.; Blanchard, E.; Brand, D.; Ait‐Goughoulte, M. Hepatitis C virus ultrastructure and morphogenesis. Biology of the Cell, 2004, 96(2), 103-108.
[26]
Tomei, L.; Failla, C.; Santolini, E.; De Francesco, R.; La Monica, N. NS3 is a serine protease required for processing of hepatitis C virus polyprotein. Journal of virology, 1993, 67(7), 4017-4026.
[27]
Egger, D.; Wölk, B.; Gosert, R.; Bianchi, L.; Blum, H.E.; Moradpour, D.; Bienz, K. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. Journal of virology, 2002, 76(12), 5974-5984.
[28]
Gosert, R.; Egger, D.; Lohmann, V.; Bartenschlager, R.; Blum, H.E.; Bienz, K.; Moradpour, D. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. Journal of virology, 2003, 77(9), 5487-5492.
[29]
Alvisi, G.; Madan, V.; Bartenschlager, R. Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol., 2011, 8(2), 258-269.
[30]
Bartenschlager, R.; Cosset, F-L.; Lohmann, V. Hepatitis C virus replication cycle. Journal of hepatology, 2010, 53(3), 583-585.
[31]
Romero-Brey, I.; Merz, A.; Chiramel, A.; Lee, J-Y.; Chlanda, P.; Haselman, U.; Santarella-Mellwig, R.; Habermann, A.; Hoppe, S.; Kallis, S. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS pathogens, 2012, 8(12), e1003056.
[32]
Bartenschlager, R.; Frese, M.; Pietschmann, T. Novel insights into hepatitis C virus replication and persistence. Advances in virus research, 2004, 63, 72-181.
[33]
Miyanari, Y.; Atsuzawa, K.; Usuda, N.; Watashi, K.; Hishiki, T.; Zayas, M.; Bartenschlager, R.; Wakita, T.; Hijikata, M.; Shimotohno, K. The lipid droplet is an important organelle for hepatitis C virus production. Nature cell biology, 2007, 9(9), 1089.
[34]
Moradpour, D.; Gosert, R.; Egger, D.; Penin, F.; Blum, H.E.; Bienz, K. Membrane association of hepatitis C virus nonstructural proteins and identification of the membrane alteration that harbors the viral replication complex. Antiviral research, 2003, 60(2), 103-109.
[35]
Madan, V.; Paul, D.; Lohmann, V.; Bartenschlager, R. Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology, 2014, 146(5), 1361-1372. e1369.
[36]
Moradpour, D. Penin, F. In: Hepatitis C virus: from molecular virology to antiviral therapy; Springer, 2013; pp. 113-142.
[37]
Asabe, S-I.; Tanji, Y.; Satoh, S.; Kaneko, T.; Kimura, K.; Shimotohno, K. The N-terminal region of hepatitis C virus-encoded NS5A is important for NS4A-dependent phosphorylation. Journal of Virology, 1997, 71(1), 790-796.
[38]
Pang, P.S.; Jankowsky, E.; Planet, P.J.; Pyle, A.M. The hepatitis C viral NS3 protein is a processive DNA helicase with cofactor enhanced RNA unwinding. The EMBO journal, 2002, 21(5), 1168-1176.
[39]
Hügle, T.; Fehrmann, F.; Bieck, E.; Kohara, M.; Kräusslich, H-G.; Rice, C.M.; Blum, H.E.; Moradpour, D. The hepatitis C virus nonstructural protein 4B is an integral endoplasmic reticulum membrane protein. Journal of virology, 2001, 284(1), 70-81.
[40]
Lin, C.; Wu, J-W.; Hsiao, K.; Su, M. The hepatitis C virus NS4A protein: interactions with the NS4B and NS5A proteins. Journal of virology, 1997, 71(9), 6465-6471.
[41]
Jones, D.M.; Patel, A.H.; Targett-Adams, P.; McLauchlan, J. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. Journal of virology, 2009, 83(5), 2163-2177.
[42]
Paul, D.; Romero-Brey, I.; Gouttenoire, J.; Stoitsova, S.; Krijnse-Locker, J.; Moradpour, D.; Bartenschlager, R. NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes. Journal of virology, 2011, 85(14), 6963-6976.
[43]
Appel, N.; Zayas, M.; Miller, S.; Krijnse-Locker, J.; Schaller, T.; Friebe, P.; Kallis, S.; Engel, U.; Bartenschlager, R. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS pathogens, 2008, 4(3), e1000035.
[44]
Kim, S.; Welsch, C.; Yi, M.; Lemon, S.M. Regulation of the production of infectious genotype 1a hepatitis C virus by NS5A domain III. Journal of virology, 2011, 85(13), 6645-6656.
[45]
Neddermann, P.; Clementi, A.; De Francesco, R. Hyperphosphorylation of the hepatitis C virus NS5A protein requires an active NS3 protease, NS4A, NS4B, and NS5A encoded on the same polyprotein. Journal of virology, 1999, 73(12), 9984-9991.
[46]
Lohmann, V.; Körner, F.; Koch, J-O.; Herian, U.; Theilmann, L.; Bartenschlager, R. Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science, 1999, 285(5424), 110-113.
[47]
Shi, S.T.; Polyak, S.J.; Tu, H.; Taylor, D.R.; Gretch, D.R.; Lai, M.M. Hepatitis C virus NS5A colocalizes with the core protein on lipid droplets and interacts with apolipoproteins. Virology, 2002, 292(2), 198-210.
[48]
Gale, Jr M.J.; Korth, M.J.; Tang, N.M.; Tan, S-L.; Hopkins, D.A.; Dever, T.E.; Polyak, S.J.; Gretch, D.R.; Katze, M.G. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology, 1997, 230(2), 217-227.
[49]
Shirota, Y.; Luo, H.; Qin, W.; Kaneko, S.; Yamashita, T.; Kobayashi, K.; Murakami, S. Hepatitis C virus (HCV) NS5A binds RNA-dependent RNA polymerase (RdRP) NS5B and modulates RNA-dependent RNA polymerase activity. Journal of Biological Chemistry, 2002, 277(13), 11149-11155.
[50]
Quezada, E.M.; Kane, C.M. The stimulatory mechanism of hepatitis C virus NS5A protein on the NS5B catalyzed replication reaction in vitro. The open biochemistry journal, 2013, 7, 11.
[51]
She, Y.; Liao, Q.; Chen, X.; Ye, L.; Wu, Z. Hepatitis C virus (HCV) NS2 protein up-regulates HCV IRES-dependent translation and down-regulates NS5B RdRp activity. Arch. Virol., 2008, 153(11), 1991-1997.
[52]
Yamashita, T.; Kaneko, S.; Shirota, Y.; Qin, W.; Nomura, T.; Kobayashi, K.; Murakami, S. RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C-terminal region. J. Biol. Chem., 1998, 273(25), 15479-15486.
[53]
Huang, J-T.; Tseng, C-P.; Liao, M-H.; Lu, S-C.; Yeh, W-Z.; Sakamoto, N.; Chen, C-M.; Cheng, J-C. Hepatitis C virus replication is modulated by the interaction of nonstructural protein NS5B and fatty acid synthase. J. Virol., 2013, 87(9), 4994-5004.
[54]
De Francesco, R.; Migliaccio, G. Challenges and successes in developing new therapies for hepatitis C. Nature, 2005, 436(7053), 953.
[55]
Lee, H.; Shin, H.; Wimmer, E.; Paul, A.V. cis-acting RNA signals in the NS5B C-terminal coding sequence of the hepatitis C virus genome. J. Virol., 2004, 78(20), 10865-10877.
[56]
Martell, M.; Esteban, J.I.; Quer, J.; Genesca, J.; Weiner, A.; Esteban, R.; Guardia, J.; Gomez, J. Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J. Virol., 1992, 66(5), 3225-3229.
[57]
Yang, F.; Robotham, J.M.; Nelson, H.B.; Irsigler, A.; Kenworthy, R.; Tang, H. Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J. Virol., 2008, 82(11), 5269-5278.
[58]
Foster, T.L.; Gallay, P.; Stonehouse, N.J.; Harris, M. Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner. J. Virol., 2011, 85(14), 7460-7464.
[59]
Berger, K.L.; Cooper, J.D.; Heaton, N.S.; Yoon, R.; Oakland, T.E.; Jordan, T.X.; Mateu, G.; Grakoui, A.; Randall, G. Roles for endocytic trafficking and phosphatidylinositol 4-kinase III alpha in hepatitis C virus replication. Proc. Natl. Acad. Sci. USA, 2009, 106(18), 7577-7582.
[60]
Reiss, S.; Rebhan, I.; Backes, P.; Romero-Brey, I.; Erfle, H.; Matula, P.; Kaderali, L.; Poenisch, M.; Blankenburg, H.; Hiet, M-S. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe, 2011, 9(1), 32-45.
[61]
Tu, H.; Gao, L.; Shi, S.T.; Taylor, D.R.; Yang, T.; Mircheff, A.K.; Wen, Y.; Gorbalenya, A.E.; Hwang, S.B.; Lai, M.M. Hepatitis C virus RNA polymerase and NS5A complex with a SNARE-like protein. Virology, 1999, 263(1), 30-41.
[62]
Appel, N.; Schaller, T.; Penin, F.; Bartenschlager, R. From structure to function: new insights into hepatitis C virus RNA replication. J. Biol. Chem., 2006, 281(15), 9833-9836.
[63]
Hamamoto, I.; Nishimura, Y.; Okamoto, T.; Aizaki, H.; Liu, M.; Mori, Y.; Abe, T.; Suzuki, T.; Lai, M.M.; Miyamura, T. Human VAP-B is involved in hepatitis C virus replication through interaction with NS5A and NS5B. J. Virol., 2005, 79(21), 13473-13482.
[64]
Masaki, T.; Suzuki, R.; Murakami, K.; Aizaki, H.; Ishii, K.; Murayama, A.; Date, T.; Matsuura, Y.; Miyamura, T.; Wakita, T. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J. Virol., 2008, 82(16), 7964-7976.
[65]
Herker, E.; Harris, C.; Hernandez, C.; Carpentier, A.; Kaehlcke, K.; Rosenberg, A.R.; Farese, R.V., Jr; Ott, M. Efficient hepatitis C virus particle formation requires diacylglycerol acyltransferase-1. Nat. Med., 2010, 16(11), 1295.
[66]
Vogt, D.A.; Camus, G.; Herker, E.; Webster, B.R.; Tsou, C-L.; Greene, W.C.; Yen, T-S.B.; Ott, M. Lipid droplet-binding protein TIP47 regulates hepatitis C Virus RNA replication through interaction with the viral NS5A protein. PLoS Pathog., 2013, 9(4), e1003302.
[67]
Clément, S.; Fauvelle, C.; Branche, E.; Kaddai, V.; Conzelmann, S.; Boldanova, T.; Bartosch, B.; Minehira, K.; Negro, F. Role of seipin in lipid droplet morphology and hepatitis C virus life cycle. J. Gen. Virol., 2013, 94(10), 2208-2214.
[68]
Popescu, C-I.; Callens, N.; Trinel, D.; Roingeard, P.; Moradpour, D.; Descamps, V.; Duverlie, G.; Penin, F.; Héliot, L.; Rouille, Y. NS2 protein of hepatitis C virus interacts with structural and non-structural proteins towards virus assembly. PLoS Pathog., 2011, 7(2), e1001278.
[69]
Wozniak, A.L.; Griffin, S.; Rowlands, D.; Harris, M.; Yi, M.; Lemon, S.M.; Weinman, S.A. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog., 2010, 6(9), e1001087.
[70]
Sklan, E.H.; Charuworn, P.; Pang, P.S.; Glenn, J.S. Mechanisms of HCV survival in the host. Nat. Rev. Gastroenterol. Hepatol., 2009, 6(4), 217.
[71]
Gastaminza, P.; Kapadia, S.B.; Chisari, F.V. Differential biophysical properties of infectious intracellular and secreted hepatitis C virus particles. J. Virol., 2006, 80(22), 11074-11081.
[72]
Paul, D.; Madan, V.; Bartenschlager, R. Hepatitis C virus RNA replication and assembly: living on the fat of the land. Cell Host Microbe, 2014, 16(5), 569-579.
[73]
Tahir, R.A.; Sehgal, S.A.; Khattak, N.A.; Khattak, J.Z.K.; Mir, A. Tumor necrosis factor receptor superfamily 10B (TNFRSF10B): an insight from structure modeling to virtual screening for designing drug against head and neck cancer. Theor. Biol. Med. Model., 2013, 10(1), 38.
[74]
Sehgal, S.; Tahir, R.; Shafique, S.; Hassan, M.; Rashid, S. Molecular modeling and docking analysis of CYP1A1 associated with head and neck cancer to explore its binding regions. J Theor Comput Sci, 2014, 1(112), 2.
[75]
Tahir, R.A.; Sehgal, S.A. Pharmacoinformatics and Molecular Docking Studies Reveal Potential Novel Compounds Against Schizophrenia by Target SYN II. Comb. Chem. High Throughput Screen., 2018, 21(3), 175-181.
[76]
Tahir, R.A.; Wu, H.; Javed, N.; Khalique, A.; Khan, S.A.F.; Mir, A.; Ahmed, M.S.; Barreto, G.E.; Qing, H.; Ashraf, G.M.; Sehgal, S.A. Pharmacoinformatics and molecular docking reveal potential drug candidates against Schizophrenia to target TAAR6. J. Cell. Physiol., 2019, 234(8), 13263-13276.
[77]
Sehgal, S.A. Pharmacoinformatics, adaptive evolution, and elucidation of six novel compounds for schizophrenia treatment by targeting DAOA (G72) isoforms. BioMed research international, 2017, 2017
[78]
Tahir, R.A.; Wu, H.; Rizwan, M.A.; Jafar, T.H.; Saleem, S.; Sehgal, S.A. Immunoinformatics and molecular docking studies reveal potential epitope-based peptide vaccine against DENV-NS3 protein. J. Theor. Biol., 2018, 459, 162-170.
[79]
Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. Nucleic Acids Res., 2000, 28(1), 235-242.
[80]
Gouttenoire, J.; Montserret, R.; Paul, D.; Castillo, R.; Meister, S.; Bartenschlager, R.; Penin, F.; Moradpour, D. Aminoterminal amphipathic α-helix AH1 of hepatitis C virus nonstructural protein 4B possesses a dual role in RNA replication and virus production. PLoS Pathog., 2014, 10(11), e1004501.
[81]
Love, R.A.; Brodsky, O.; Hickey, M.J.; Wells, P.A.; Cronin, C.N. Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J. Virol., 2009, 83(9), 4395-4403.
[82]
LaPlante, S.R.; Gillard, J.R.; Jakalian, A.; Aubry, N.; Coulombe, R.; Brochu, C.; Tsantrizos, Y.S.; Poirier, M.; Kukolj, G.; Beaulieu, P.L. Importance of ligand bioactive conformation in the discovery of potent indole-diamide inhibitors of the hepatitis C virus NS5B. J. Am. Chem. Soc., 2010, 132(43), 15204-15212.
[83]
Mendelsohn, L.D. ChemDraw 8 ultra, windows and macintosh versions. J. Chem. Inf. Comput. Sci., 2004, 44(6), 2225-2226.
[84]
Ultra, C. 6.0 and Chem3D Ultra; Cambridge Soft Corporation: Cambridge, USA, 2001.
[85]
Pettersen, E.F.; Goddard, T.D.; Huang, C.C.; Couch, G.S.; Greenblatt, D.M.; Meng, E.C.; Ferrin, T.E. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem., 2004, 25(13), 1605-1612.
[87]
Jarrahpour, A.; Fathi, J.; Mimouni, M.; Hadda, T.B.; Sheikh, J.; Chohan, Z.; Parvez, A. Petra, Osiris and Molinspiration (POM) together as a successful support in drug design: antibacterial activity and biopharmaceutical characterization of some azo Schiff bases. Med. Chem. Res., 2012, 21(8), 1984-1990.
[88]
Cheng, F.; Li, W.; Zhou, Y.; Shen, J.; Wu, Z.; Liu, G.; Lee, P.W.; Tang, Y. ACS Publications 2012.
[89]
Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model., 2005, 45(1), 160-169.
[90]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[91]
Shepard, C.W.; Finelli, L.; Alter, M.J. Global epidemiology of hepatitis C virus infection. Lancet Infect. Dis., 2005, 5(9), 558-567.
[92]
Gentile, I.; Buonomo, A.R.; Borgia, F.; Zappulo, E.; Castaldo, G.; Borgia, G. MK-5172: a second-generation protease inhibitor for the treatment of hepatitis C virus infection. Expert Opin. Investig. Drugs, 2014, 23(5), 719-728.
[93]
Bell, A.M.; Wagner, J.L.; Barber, K.E.; Stover, K.R. Elbasvir/grazoprevir: a review of the latest agent in the fight against hepatitis C. International journal of hepatology, 2016.2016,
[94]
Kumari, R.; Nguyen, M.H. Fixed-dose combination of sofosbuvir and ledipasvir for the treatment of chronic hepatitis C genotype 1. Expert Opin. Pharmacother., 2015, 16(5), 739-748.
[95]
Shen, J.; Serby, M.; Surber, B.; Lee, A.J.; Ma, J.; Badri, P.; Menon, R.; Kavetskaia, O.; de Morais, S.M.; Sydor, J. Metabolism and disposition of pan-genotypic inhibitor of hepatitis C virus NS5A ombitasvir in humans. Drug Metab. Dispos., 2016, 44(8), 1148-1157.
[96]
Klibanov, O.M.; Gale, S.E.; Santevecchi, B. Ombitasvir/paritaprevir/ritonavir and dasabuvir tablets for hepatitis C virus genotype 1 infection. Ann. Pharmacother., 2015, 49(5), 566-581.