Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Prediction Models and Scores in Adult Congenital Heart Disease

Author(s): Alexandra Arvanitaki, Despoina Ntiloudi, George Giannakoulas and Konstantinos Dimopoulos*

Volume 27, Issue 10, 2021

Published on: 11 January, 2021

Page: [1232 - 1244] Pages: 13

DOI: 10.2174/1381612827999210111181554

Price: $65

Abstract

Nowadays, most patients with congenital heart disease survive to adulthood due to advances in pediatric cardiac surgery but often present with various comorbidities and long-term complications, posing challenges in their management. The development and clinical use of risk scores for the prediction of morbidity and/or mortality in adults with congenital heart disease (ACHD) is fundamental in achieving optimal management for these patients, including appropriate follow-up frequency, treatment escalation, and timely referral for invasive procedures or heart transplantation. In comparison with other fields of cardiovascular medicine, there are relatively few studies that report prediction models developed in the ACHD population, given the small sample size, heterogeneity of the population, and relatively low event rate. Some studies report risk scores originally developed in pediatric congenital or non-congenital population, externally validated in ACHD with variable success. Available risk scores are designed to predict heart failure or arrhythmic events, all-cause mortality, post-intervention outcomes, infective endocarditis, or atherosclerosis-related cardiovascular disease in ACHD. A substantial number of these scores are derived from retrospective studies and are not internally or externally validated. Adequately validated risk scores can be invaluable in clinical practice and an important step towards personalized medicine. Multicenter collaboration, adequate study design, and the potential use of artificial intelligence are important elements in the effort to develop reliable risk scores for the ACHD population.

Keywords: Adult congenital heart disease, prediction model, risk score, morbidity, mortality, arrhythmic events.

[1]
Ntiloudi D, Giannakoulas G, Parcharidou D, Panagiotidis T, Gatzoulis MA, Karvounis H. Adult congenital heart disease: A paradigm of epidemiological change. Int J Cardiol 2016; 218: 269-74.
[http://dx.doi.org/10.1016/j.ijcard.2016.05.046] [PMID: 27240150]
[2]
Bouma BJ, Mulder BJ. Changing landscape of congenital heart disease. Circ Res 2017; 120(6): 908-22.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309302] [PMID: 28302739]
[3]
Marelli AJ, Ionescu-Ittu R, Mackie AS, Guo L, Dendukuri N, Kaouache M. Lifetime prevalence of congenital heart disease in the general population from 2000 to 2010. Circulation 2014; 130(9): 749-56.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.008396] [PMID: 24944314]
[4]
Engelfriet P, Boersma E, Oechslin E, et al. The spectrum of adult congenital heart disease in Europe: morbidity and mortality in a 5 year follow-up period. The Euro Heart Survey on adult congenital heart disease. Eur Heart J 2005; 26(21): 2325-33.
[http://dx.doi.org/10.1093/eurheartj/ehi396] [PMID: 15996978]
[5]
Webb G, Mulder BJ, Aboulhosn J, et al. The care of adults with congenital heart disease across the globe: Current assessment and future perspective: A position statement from the International Society for Adult Congenital Heart Disease (ISACHD). Int J Cardiol 2015; 195: 326-33.
[http://dx.doi.org/10.1016/j.ijcard.2015.04.230] [PMID: 26056966]
[6]
Kempny A, Diller GP, Alonso-Gonzalez R, et al. Hypoalbuminaemia predicts outcome in adult patients with congenital heart disease. Heart 2015; 101(9): 699-705.
[http://dx.doi.org/10.1136/heartjnl-2014-306970] [PMID: 25736048]
[7]
Dimopoulos K, Diller GP, Koltsida E, et al. Prevalence, predictors, and prognostic value of renal dysfunction in adults with congenital heart disease. Circulation 2008; 117(18): 2320-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.734921] [PMID: 18443238]
[8]
Inuzuka R, Diller GP, Borgia F, et al. Comprehensive use of cardiopulmonary exercise testing identifies adults with congenital heart disease at increased mortality risk in the medium term. Circulation 2012; 125(2): 250-9.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.058719] [PMID: 22147905]
[9]
Dimopoulos K, Diller GP, Petraco R, et al. Hyponatraemia: A strong predictor of mortality in adults with congenital heart disease. Eur Heart J 2010; 31(5): 595-601.
[http://dx.doi.org/10.1093/eurheartj/ehp495] [PMID: 19933692]
[10]
Diller GP, Dimopoulos K, Okonko D, et al. Heart rate response during exercise predicts survival in adults with congenital heart disease. J Am Coll Cardiol 2006; 48(6): 1250-6.
[http://dx.doi.org/10.1016/j.jacc.2006.05.051] [PMID: 16979014]
[11]
Kempny A, Fraisse A, Dimopoulos K. Risk stratification in congenital heart disease - A call for protocolised assessment and multicentre collaboration. Int J Cardiol 2019; 276: 114-5.
[http://dx.doi.org/10.1016/j.ijcard.2018.11.101] [PMID: 30503190]
[12]
Cedars AM, Spertus JA. Call for a disease-specific patient-reported outcome tool in adult congenital heart disease. Circ Cardiovasc Qual Outcomes 2014; 7(6): 971-4.
[http://dx.doi.org/10.1161/CIRCOUTCOMES.114.001406] [PMID: 25316774]
[13]
Budts W. Individual risk stratification in adult congenital heart disease: the way to go? Eur Heart J 2017; 38(16): 1242-4.
[http://dx.doi.org/10.1093/eurheartj/ehw641] [PMID: 28077471]
[14]
Baggen VJM, Venema E, Živná R, et al. Development and validation of a risk prediction model in patients with adult congenital heart disease. Int J Cardiol 2019; 276: 87-92.
[http://dx.doi.org/10.1016/j.ijcard.2018.08.059] [PMID: 30172474]
[15]
Collins GS, Reitsma JB, Altman DG, Moons KG. Transparent reporting of a multivariable prediction model for individual prognosis or diagnosis (TRIPOD): the TRIPOD statement. BMJ 2015; 350: g7594.
[http://dx.doi.org/10.1136/bmj.g7594] [PMID: 25569120]
[16]
Yap SC, Harris L, Chauhan VS, Oechslin EN, Silversides CK. Identifying high risk in adults with congenital heart disease and atrial arrhythmias. Am J Cardiol 2011; 108(5): 723-8.
[http://dx.doi.org/10.1016/j.amjcard.2011.04.021] [PMID: 21684512]
[17]
Aaronson KD, Schwartz JS, Chen TM, Wong KL, Goin JE, Mancini DM. Development and prospective validation of a clinical index to predict survival in ambulatory patients referred for cardiac transplant evaluation. Circulation 1997; 95(12): 2660-7.
[http://dx.doi.org/10.1161/01.CIR.95.12.2660] [PMID: 9193435]
[18]
Levy WC, Mozaffarian D, Linker DT, et al. The Seattle Heart Failure Model: prediction of survival in heart failure. Circulation 2006; 113(11): 1424-33.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.584102] [PMID: 16534009]
[19]
Stefanescu A, Macklin EA, Lin E, et al. Usefulness of the Seattle Heart Failure Model to identify adults with congenital heart disease at high risk of poor outcome. Am J Cardiol 2014; 113(5): 865-70.
[http://dx.doi.org/10.1016/j.amjcard.2013.11.043] [PMID: 24411285]
[20]
Lin EY, Cohen HW, Bhatt AB, et al. Predicting outcomes using the heart failure survival score in adults with moderate or complex congenital heart disease. Congenit Heart Dis 2015; 10(5): 387-95.
[http://dx.doi.org/10.1111/chd.12229] [PMID: 25358483]
[21]
Engelfriet PM, Duffels MG, Möller T, et al. Pulmonary arterial hypertension in adults born with a heart septal defect: the Euro Heart Survey on adult congenital heart disease. Heart 2007; 93(6): 682-7.
[http://dx.doi.org/10.1136/hrt.2006.098848] [PMID: 17164490]
[22]
Dimopoulos K, Wort SJ, Gatzoulis MA. Pulmonary hypertension related to congenital heart disease: a call for action. Eur Heart J 2014; 35(11): 691-700.
[http://dx.doi.org/10.1093/eurheartj/eht437] [PMID: 24168793]
[23]
Arvanitaki A, Mouratoglou SA, Evangeliou A, et al. Quality of life is related to haemodynamics in precapillary pulmonary hypertension. Heart Lung Circ 2019; 29(1): 142-8.
[PMID: 30686644]
[24]
Arvanitaki A, Boutsikou M, Anthi A, et al. Hellenic Society for the Study of Pulmonary Hypertension (HSSPH). Epidemiology and initial management of pulmonary arterial hypertension: real-world data from the Hellenic Pulmonary Hypertension Registry (HOPE). Pulm Circ 2019; 9(3): 2045894019877157.
[http://dx.doi.org/10.1177/2045894019877157] [PMID: 31662847]
[25]
Galiè N, Humbert M, Vachiery JL, et al. 2015 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension: The Joint Task Force for the Diagnosis and Treatment of Pulmonary Hypertension of the European Society of Cardiology (ESC) and the European Respiratory Society (ERS): Endorsed by: Association for European Paediatric and Congenital Cardiology (AEPC), International Society for Heart and Lung Transplantation (ISHLT). Eur Respir J 2015; 46(4): 903-75.
[http://dx.doi.org/10.1183/13993003.01032-2015] [PMID: 26318161]
[26]
Hoeper MM, Kramer T, Pan Z, et al. Mortality in pulmonary arterial hypertension: prediction by the 2015 European pulmonary hypertension guidelines risk stratification model. Eur Respir J 2017; 50(2): 1700740.
[http://dx.doi.org/10.1183/13993003.00740-2017] [PMID: 28775047]
[27]
Kylhammar D, Kjellström B, Hjalmarsson C, et al. A comprehensive risk stratification at early follow-up determines prognosis in pulmonary arterial hypertension. Eur Heart J 2018; 39(47): 4175-81.
[http://dx.doi.org/10.1093/eurheartj/ehx257] [PMID: 28575277]
[28]
Benza RL, Gomberg-Maitland M, Elliott CG, et al. Predicting survival in patients with pulmonary arterial hypertension: the REVEAL risk score calculator 2.0 and comparison with ESC/ERS-based risk assessment strategies. Chest 2019; 156(2): 323-37.
[http://dx.doi.org/10.1016/j.chest.2019.02.004] [PMID: 30772387]
[29]
Moceri P, Dimopoulos K, Liodakis E, et al. Echocardiographic predictors of outcome in eisenmenger syndrome. Circulation 2012; 126(12): 1461-8.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.091421] [PMID: 22899772]
[30]
Kempny A, Hjortshøj CS, Gu H, et al. Predictors of death in contemporary adult patients with eisenmenger syndrome: a multicenter study. Circulation 2017; 135(15): 1432-40.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.023033] [PMID: 27979875]
[31]
Arvanitaki A, Giannakoulas G, Baumgartner H, Lammers AE. Eisenmenger syndrome: diagnosis, prognosis and clinical management. Heart 2020; 106(21): 1638-45.
[http://dx.doi.org/10.1136/heartjnl-2020-316665] [PMID: 32690623]
[32]
Valente AM, Gauvreau K, Assenza GE, et al. Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the Indicator cohort. Heart 2014; 100(3): 247-53.
[http://dx.doi.org/10.1136/heartjnl-2013-304958] [PMID: 24179163]
[33]
Alsaied T, Bokma JP, Engel ME, et al. Predicting long-term mortality after Fontan procedures: A risk score based on 6707 patients from 28 studies. Congenit Heart Dis 2017; 12(4): 393-8.
[http://dx.doi.org/10.1111/chd.12468] [PMID: 28480627]
[34]
Zomer AC, Verheugt CL, Vaartjes I, et al. Surgery in adults with congenital heart disease. Circulation 2011; 124(20): 2195-201.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.111.027763] [PMID: 21986279]
[35]
Verheugt CL, Uiterwaal CS, Vaartjes I, et al. Chance of surgery in adult congenital heart disease. Eur J Prev Cardiol 2017; 24(12): 1319-27.
[http://dx.doi.org/10.1177/2047487317710355] [PMID: 28541122]
[36]
Beurtheret S, Tutarel O, Diller GP, et al. Contemporary cardiac surgery for adults with congenital heart disease. Heart 2017; 103(15): 1194-202.
[http://dx.doi.org/10.1136/heartjnl-2016-310384] [PMID: 28270427]
[37]
Kempny A, Dimopoulos K, Uebing A, et al. Outcome of cardiac surgery in patients with congenital heart disease in England between 1997 and 2015. PLoS One 2017; 12(6): e0178963.
[http://dx.doi.org/10.1371/journal.pone.0178963] [PMID: 28628610]
[38]
Giamberti A, Chessa M, Abella R, et al. Morbidity and mortality risk factors in adults with congenital heart disease undergoing cardiac reoperations. Ann Thorac Surg 2009; 88(4): 1284-9.
[http://dx.doi.org/10.1016/j.athoracsur.2009.05.060] [PMID: 19766822]
[39]
Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI. Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 2002; 123(1): 110-8.
[http://dx.doi.org/10.1067/mtc.2002.119064] [PMID: 11782764]
[40]
Lacour-Gayet F, Clarke D, Jacobs J, et al. Aristotle Committee. The Aristotle score: a complexity-adjusted method to evaluate surgical results. Eur J Cardiothorac Surg 2004; 25(6): 911-24.
[http://dx.doi.org/10.1016/j.ejcts.2004.03.027] [PMID: 15144988]
[41]
O’Brien SM, Clarke DR, Jacobs JP, et al. An empirically based tool for analyzing mortality associated with congenital heart surgery. J Thorac Cardiovasc Surg 2009; 138(5): 1139-53.
[http://dx.doi.org/10.1016/j.jtcvs.2009.03.071] [PMID: 19837218]
[42]
Jacobs ML, O’Brien SM, Jacobs JP, et al. An empirically based tool for analyzing morbidity associated with operations for congenital heart disease. J Thorac Cardiovasc Surg 2013; 145(4): 1046-57.e1.
[http://dx.doi.org/10.1016/j.jtcvs.2012.06.029] [PMID: 22835225]
[43]
Roques F, Nashef SA, Michel P, et al. Risk factors and outcome in European cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur J Cardiothorac Surg 1999; 15(6): 816-22.
[http://dx.doi.org/10.1016/S1010-7940(99)00106-2] [PMID: 10431864]
[44]
Fuller SM, He X, Jacobs JP, et al. Estimating mortality risk for adult congenital heart surgery: an analysis of the society of thoracic surgeons congenital heart surgery database. Ann Thorac Surg 2015; 100(5): 1728-35.
[http://dx.doi.org/10.1016/j.athoracsur.2015.07.002] [PMID: 26411754]
[45]
Hörer J, Kasnar-Samprec J, Cleuziou J, et al. Mortality following congenital heart surgery in adults can be predicted accurately by combining expert-based and evidence-based pediatric risk scores. World J Pediatr Congenit Heart Surg 2016; 7(4): 425-35.
[http://dx.doi.org/10.1177/2150135116656001] [PMID: 27358296]
[46]
Hörer J, Vogt M, Wottke M, et al. Evaluation of the Aristotle complexity models in adult patients with congenital heart disease. Eur J Cardiothorac Surg 2013; 43(1): 128-34.
[http://dx.doi.org/10.1093/ejcts/ezs143] [PMID: 22491664]
[47]
Lacour-Gayet F. The goal is performance evaluation not outcome prediction. Eur J Cardiothorac Surg 2006; 29(6): 989-90.
[http://dx.doi.org/10.1016/j.ejcts.2006.02.033] [PMID: 16675227]
[48]
Lacour-Gayet F. Risk stratification theme for congenital heart surgery. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu 2002; 5: 148-52.
[http://dx.doi.org/10.1053/pcsu.2002.31502] [PMID: 11994875]
[49]
Lacour-Gayet F, Clarke DR. Aristotle Committee. The Aristotle method: a new concept to evaluate quality of care based on complexity. Curr Opin Pediatr 2005; 17(3): 412-7.
[http://dx.doi.org/10.1097/01.mop.0000165361.05587.b9] [PMID: 15891437]
[50]
Putman LM, van Gameren M, Meijboom FJ, et al. Seventeen years of adult congenital heart surgery: a single centre experience. Eur J Cardiothorac Surg 2009; 36(1): 96-104.
[http://dx.doi.org/10.1016/j.ejcts.2009.01.046] [PMID: 19303791]
[51]
Jacquet L, Vancaenegem O, Rubay J, et al. Intensive care outcome of adult patients operated on for congenital heart disease. Intensive Care Med 2007; 33(3): 524-8.
[http://dx.doi.org/10.1007/s00134-006-0462-5] [PMID: 17177049]
[52]
van Gameren M, Putman LM, Takkenberg JJ, Bogers AJ. Risk stratification for adult congenital heart surgery. Eur J Cardiothorac Surg 2011; 39(4): 490-4.
[http://dx.doi.org/10.1016/j.ejcts.2010.07.032] [PMID: 20846873]
[53]
Kogon B, Oster M. Assessing surgical risk for adults with congenital heart disease: are pediatric scoring systems appropriate? J Thorac Cardiovasc Surg 2014; 147(2): 666-71.
[http://dx.doi.org/10.1016/j.jtcvs.2013.09.053] [PMID: 24252941]
[54]
Ramchandani BK, Polo L, Sánchez R, et al. External validation of 3 risk scores in adults with congenital heart disease. Korean Circ J 2019; 49(9): 856-63.
[http://dx.doi.org/10.4070/kcj.2019.0015] [PMID: 31165593]
[55]
Hörer J, Belli E, Roussin R, et al. Evaluation of the adult congenital heart surgery mortality score at two European centers. Ann Thorac Surg 2018; 105(5): 1441-6.
[http://dx.doi.org/10.1016/j.athoracsur.2017.12.018] [PMID: 29410185]
[56]
Hörer J, Roussin R, LeBret E, et al. Validation of the grown-ups with congenital heart disease score. Heart 2018; 104(12): 1019-25.
[http://dx.doi.org/10.1136/heartjnl-2017-312275] [PMID: 29196541]
[57]
Stefanescu Schmidt AC, Armstrong A, Kennedy KF, Nykanen D, Aboulhosn J, Bhatt AB. Prediction of adverse events after catheter-based procedures in adolescents and adults with congenital heart disease in the impact registry. Eur Heart J 2017; 38(26): 2070-7.
[http://dx.doi.org/10.1093/eurheartj/ehx200] [PMID: 28430913]
[58]
Walsh EP, Cecchin F. Arrhythmias in adult patients with congenital heart disease. Circulation 2007; 115(4): 534-45.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.592410] [PMID: 17261672]
[59]
Giannakoulas G, Dimopoulos K, Yuksel S, et al. Atrial tachyarrhythmias late after Fontan operation are related to increase in mortality and hospitalization. Int J Cardiol 2012; 157(2): 221-6.
[http://dx.doi.org/10.1016/j.ijcard.2010.12.049] [PMID: 21196055]
[60]
Verheugt CL, Uiterwaal CS, van der Velde ET, et al. Mortality in adult congenital heart disease. Eur Heart J 2010; 31(10): 1220-9.
[http://dx.doi.org/10.1093/eurheartj/ehq032] [PMID: 20207625]
[61]
Gallego P, Gonzalez AE, Sanchez-Recalde A, et al. Incidence and predictors of sudden cardiac arrest in adults with congenital heart defects repaired before adult life. Am J Cardiol 2012; 110(1): 109-17.
[http://dx.doi.org/10.1016/j.amjcard.2012.02.057] [PMID: 22464215]
[62]
Hernández-Madrid A, Paul T, Abrams D, et al. ESC Scientific Document Group. Arrhythmias in congenital heart disease: a position paper of the European Heart Rhythm Association (EHRA), Association for European Paediatric and Congenital Cardiology (AEPC), and the European Society of Cardiology (ESC) Working Group on Grown-up Congenital heart disease, endorsed by HRS, PACES, APHRS, and SOLAECE. Europace 2018; 20(11): 1719-53.
[http://dx.doi.org/10.1093/europace/eux380] [PMID: 29579186]
[63]
Van De Bruaene A, Moons P, Belmans A, et al. Predictive model for late atrial arrhythmia after closure of an atrial septal defect. Int J Cardiol 2013; 164(3): 318-22.
[http://dx.doi.org/10.1016/j.ijcard.2011.07.010] [PMID: 21802750]
[64]
Webb G, Gatzoulis MA. Atrial septal defects in the adult: recent progress and overview. Circulation 2006; 114(15): 1645-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.105.592055] [PMID: 17030704]
[65]
Gatzoulis MA, Freeman MA, Siu SC, Webb GD, Harris L. Atrial arrhythmia after surgical closure of atrial septal defects in adults. N Engl J Med 1999; 340(11): 839-46.
[http://dx.doi.org/10.1056/NEJM199903183401103] [PMID: 10080846]
[66]
Roca-Luque I, Rivas-Gándara N, Dos Subirà L, et al. Long-term follow-up after ablation of intra-atrial re-entrant tachycardia in patients with congenital heart disease: types and predictors of recurrence. JACC Clin Electrophysiol 2018; 4(6): 771-80.
[http://dx.doi.org/10.1016/j.jacep.2018.04.011] [PMID: 29929671]
[67]
de Groot NM, Atary JZ, Blom NA, Schalij MJ. Long-term outcome after ablative therapy of postoperative atrial tachyarrhythmia in patients with congenital heart disease and characteristics of atrial tachyarrhythmia recurrences. Circ Arrhythm Electrophysiol 2010; 3(2): 148-54.
[http://dx.doi.org/10.1161/CIRCEP.109.909838] [PMID: 20194797]
[68]
Ueda A, Adachi I, McCarthy KP, Li W, Ho SY, Uemura H. Substrates of atrial arrhythmias: histological insights from patients with congenital heart disease. Int J Cardiol 2013; 168(3): 2481-6.
[http://dx.doi.org/10.1016/j.ijcard.2013.03.004] [PMID: 23541611]
[69]
Khairy P. Arrhythmias in adults with congenital heart disease: what the practicing cardiologist needs to know. Can J Cardiol 2019; 35(12): 1698-707.
[http://dx.doi.org/10.1016/j.cjca.2019.07.009] [PMID: 31703824]
[70]
Gatzoulis MA, Balaji S, Webber SA, et al. Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 2000; 356(9234): 975-81.
[http://dx.doi.org/10.1016/S0140-6736(00)02714-8] [PMID: 11041398]
[71]
Khairy P, Harris L, Landzberg MJ, et al. Implantable cardioverter-defibrillators in tetralogy of Fallot. Circulation 2008; 117(3): 363-70.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.726372] [PMID: 18172030]
[72]
Vehmeijer JT, Koyak Z, Zwinderman AH, et al. Prevention-ACHD: prospective study on implantable cardioverter-defibrillator therapy and sudden cardiac death in adults with congenital heart disease; rationale and design. Neth Heart J 2019; 27(10): 474-9.
[http://dx.doi.org/10.1007/s12471-019-1297-3] [PMID: 31270738]
[73]
Koyak Z, Harris L, de Groot JR, et al. Sudden cardiac death in adult congenital heart disease. Circulation 2012; 126(16): 1944-54.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.104786] [PMID: 22991410]
[74]
Khairy P, Van Hare GF, Balaji S, et al. PACES/HRS expert consensus statement on the recognition and management of arrhythmias in adult congenital heart disease: developed in partnership between the Pediatric and Congenital Electrophysiology Society (PACES) and the Heart Rhythm Society (HRS). Endorsed by the governing bodies of PACES, HRS, the American College of Cardiology (ACC), the American Heart Association (AHA), the European Heart Rhythm Association (EHRA), the Canadian Heart Rhythm Society (CHRS), and the International Society for Adult Congenital Heart Disease (ISACHD). Can J Cardiol 2014; 30(10): e1-e63.
[http://dx.doi.org/10.1016/j.cjca.2014.09.002] [PMID: 25262867]
[75]
Knirsch W, Haas NA, Uhlemann F, Dietz K, Lange PE. Clinical course and complications of infective endocarditis in patients growing up with congenital heart disease. Int J Cardiol 2005; 101(2): 285-91.
[http://dx.doi.org/10.1016/j.ijcard.2004.03.035] [PMID: 15882677]
[76]
Habib G, Lancellotti P, Antunes MJ, et al. ESC Scientific Document Group. 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC). Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM). Eur Heart J 2015; 36(44): 3075-128.
[http://dx.doi.org/10.1093/eurheartj/ehv319] [PMID: 26320109]
[77]
Verheugt CL, Uiterwaal CS, van der Velde ET, et al. Turning 18 with congenital heart disease: prediction of infective endocarditis based on a large population. Eur Heart J 2011; 32(15): 1926-34.
[http://dx.doi.org/10.1093/eurheartj/ehq485] [PMID: 21217144]
[78]
Kuijpers JM, Koolbergen DR, Groenink M, et al. Incidence, risk factors, and predictors of infective endocarditis in adult congenital heart disease: focus on the use of prosthetic material. Eur Heart J 2017; 38(26): 2048-56.
[http://dx.doi.org/10.1093/eurheartj/ehw591] [PMID: 28065906]
[79]
Moons P, Van Deyk K, Dedroog D, Troost E, Budts W. Prevalence of cardiovascular risk factors in adults with congenital heart disease. Eur J Cardiovasc Prev Rehabil 2006; 13(4): 612-6.
[http://dx.doi.org/10.1097/01.hjr.0000197472.81694.2b] [PMID: 16874153]
[80]
Giannakoulas G, Dimopoulos K, Engel R, et al. Burden of coronary artery disease in adults with congenital heart disease and its relation to congenital and traditional heart risk factors. Am J Cardiol 2009; 103(10): 1445-50.
[http://dx.doi.org/10.1016/j.amjcard.2009.01.353] [PMID: 19427444]
[81]
Giannakoulas G, Ntiloudi D. Acquired cardiovascular disease in adult patients with congenital heart disease. Heart 2018; 104(7): 546-7.
[http://dx.doi.org/10.1136/heartjnl-2017-311997] [PMID: 28870981]
[82]
Lui GK, Rogers IS, Ding VY, et al. Risk estimates for atherosclerotic cardiovascular disease in adults with congenital heart disease. Am J Cardiol 2017; 119(1): 112-8.
[http://dx.doi.org/10.1016/j.amjcard.2016.09.023] [PMID: 28247847]
[83]
Häcker AL, Oberhoffer R, Hager A, Ewert P, Müller J. Age-related cardiovascular risk in adult patients with congenital heart disease. Int J Cardiol 2019; 277: 90-6.
[http://dx.doi.org/10.1016/j.ijcard.2018.09.042] [PMID: 30262228]
[84]
Diller GP, Kempny A, Babu-Narayan SV, et al. Machine learning algorithms estimating prognosis and guiding therapy in adult congenital heart disease: data from a single tertiary centre including 10019 patients. Eur Heart J 2019; 40(13): 1069-77.
[http://dx.doi.org/10.1093/eurheartj/ehy915] [PMID: 30689812]
[85]
Diller GP, Babu-Narayan S, Li W, et al. Utility of machine learning algorithms in assessing patients with a systemic right ventricle. Eur Heart J Cardiovasc Imaging 2019; 20(8): 925-31.
[http://dx.doi.org/10.1093/ehjci/jey211] [PMID: 30629127]
[86]
Zaidi S, Brueckner M. Genetics and genomics of congenital heart disease. Circ Res 2017; 120(6): 923-40.
[http://dx.doi.org/10.1161/CIRCRESAHA.116.309140] [PMID: 28302740]
[87]
Theis JL, Zimmermann MT, Evans JM, et al. Recessive MYH6 mutations in hypoplastic left heart with reduced ejection fraction. Circ Cardiovasc Genet 2015; 8(4): 564-71.
[http://dx.doi.org/10.1161/CIRCGENETICS.115.001070] [PMID: 26085007]
[88]
Simmons MA, Brueckner M. The genetics of congenital heart disease… understanding and improving long-term outcomes in congenital heart disease: a review for the general cardiologist and primary care physician. Curr Opin Pediatr 2017; 29(5): 520-8.
[http://dx.doi.org/10.1097/MOP.0000000000000538] [PMID: 28872494]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy