Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Risk Models and Scores of Cardiovascular Disease in Patients with Diabetes Mellitus

Author(s): Georgios Kostopoulos*, Christina Antza, Ioannis Doundoulakis and Konstantinos A. Toulis*

Volume 27, Issue 10, 2021

Published on: 10 December, 2020

Page: [1245 - 1253] Pages: 9

DOI: 10.2174/1381612826666201210112743

Price: $65

Abstract

Diabetes mellitus (DM) is an established risk factor for atherosclerotic cardiovascular disease (CVD), and patients with DM are at a two to four-fold higher cardiovascular risk, including myocardial infraction, unstable angina, stroke, and heart failure. All of the above have arisen interest in CVD preventive strategies by the use of non-invasive methods, such as risk scores. The most common approach is to consider DM as a CVD equivalent and, therefore, to treat patients with DM in a similar way to those who required secondary CVD prevention. However, this approach has been disputed as all patients with DM do not have the same risk for CVD, and since other potentially important factors within the context of DM, such as DM duration, presence of albuminuria, and comorbidities, should be taken into consideration. Thus, the second and third approach is the application of risk models that were either developed initially for the general population or designed specifically for patients with DM, respectively. This review summarizes the evidence and implications for clinical practice regarding these scores. Up to date, several models that can be applied to the diabetic population have been proposed. However, only a few meet the minimum requirement of adequate external validation. In addition, moderate discrimination and poor calibration, which might lead to inaccurate risk estimations in populations with different characteristics, have been reported. Therefore, future research is needed before recommending a specific risk model for universal clinical practice in the management of diabetes.

Keywords: Diabetes mellitus, cardiovascular disease, risk models, risk scores, risk equations, risk stratification.

[1]
World Health Organization. Global report on diabetes World Health Organization 2016. Available from: https://apps.who.int/iris/handle/10665/204871
[2]
Global Health Estimates 2016: Deaths by Cause, Age, Sex, by Country and by Region 2000-2016, Geneva, World Health Organization 2018. Available from: https://www.who.int/healthinfo/global_burden_disease/estimates/en/
[3]
Sarwar N, Gao P, Seshasai SR, et al. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: a collaborative meta-analysis of 102 prospective studies. Lancet 2010; 375(9733): 2215-22.
[http://dx.doi.org/10.1016/S0140-6736(10)60484-9] [PMID: 20609967]
[4]
Haffner SM, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Mortality from coronary heart disease in subjects with type 2 diabetes and in nondiabetic subjects with and without prior myocardial infarction. N Engl J Med 1998; 339(4): 229-34.
[http://dx.doi.org/10.1056/NEJM199807233390404] [PMID: 9673301]
[5]
Bertoluci MC, Rocha VZ. Cardiovascular risk assessment in patients with diabetes. Diabetol Metab Syndr 2017; 9: 25.
[http://dx.doi.org/10.1186/s13098-017-0225-1] [PMID: 28435446]
[6]
Juutilainen A, Lehto S, Rönnemaa T, Pyörälä K, Laakso M. Type 2 Diabetes as a “Coronary Heart Disease Equivalent” An 18-year prospective population-based study in Finnish subjects. Diabetes Care 2005; 28(12): 2901-7.
[7]
Rana JS, Liu JY, Moffet HH, Jaffe M, Karter AJ. Diabetes and prior coronary heart disease are not necessarily risk equivalent for future coronary heart disease events. J Gen Intern Med 2016; 31(4): 387-93.
[http://dx.doi.org/10.1007/s11606-015-3556-3] [PMID: 26666660]
[8]
Fuller JH, Stevens LK, Wang SL. Risk factors for cardiovascular mortality and morbidity: the WHO Mutinational Study of Vascular Disease in Diabetes. Diabetologia 2001; 44(Suppl. 2): S54-64.
[http://dx.doi.org/10.1007/PL00002940] [PMID: 11587051]
[9]
National Institute for Health and Care Excellence. Type 2 diabetes in adults: management NICE guideline [NG28] 2017. Available at: https://www.nice.org.uk/guidance/ng28
[10]
American Diabetes Association. 10. Cardiovascular disease and risk management: standards of medical care in diabetes-2020. Diabetes Care 2020; 43(Suppl. 1): S111-34.
[http://dx.doi.org/10.2337/dc20-S010] [PMID: 31862753]
[11]
Cosentino F, Grant PJ, Aboyans V, et al. 2019 ESC Guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD. Eur Heart J 2020; 41(2): 255-323.
[http://dx.doi.org/10.1093/eurheartj/ehz486] [PMID: 31497854]
[12]
Moons KG, de Groot JA, Bouwmeester W, et al. Critical appraisal and data extraction for systematic reviews of prediction modelling studies: the CHARMS checklist. PLoS Med 2014; 11(10): e1001744.
[http://dx.doi.org/10.1371/journal.pmed.1001744] [PMID: 25314315]
[13]
Royston P, Moons KG, Altman DG, Vergouwe Y. Prognosis and prognostic research: Developing a prognostic model. BMJ 2009; 338: b604.
[http://dx.doi.org/10.1136/bmj.b604] [PMID: 19336487]
[14]
Grant SW, Collins GS, Nashef SAM. Statistical Primer: developing and validating a risk prediction model. Eur J Cardiothorac Surg 2018; 54(2): 203-8.
[http://dx.doi.org/10.1093/ejcts/ezy180] [PMID: 29741602]
[15]
van Dieren S, Beulens JW, Kengne AP, et al. Prediction models for the risk of cardiovascular disease in patients with type 2 diabetes: a systematic review. Heart 2012; 98(5): 360-9.
[http://dx.doi.org/10.1136/heartjnl-2011-300734] [PMID: 22184101]
[16]
Steyerberg EW, Vickers AJ, Cook NR, et al. Assessing the performance of prediction models: a framework for traditional and novel measures. Epidemiology 2010; 21(1): 128-38.
[http://dx.doi.org/10.1097/EDE.0b013e3181c30fb2] [PMID: 20010215]
[17]
Chowdhury MZI, Yeasmin F, Rabi DM, Ronksley PE, Turin TC. Prognostic tools for cardiovascular disease in patients with type 2 diabetes: A systematic review and meta-analysis of C-statistics. J Diabetes Complications 2019; 33(1): 98-111.
[http://dx.doi.org/10.1016/j.jdiacomp.2018.10.010] [PMID: 30446478]
[18]
Chamnan P, Simmons RK, Sharp SJ, Griffin SJ, Wareham NJ. Cardiovascular risk assessment scores for people with diabetes: a systematic review. Diabetologia 2009; 52(10): 2001-14.
[PMID: 19629430]
[19]
Borsari L, Lorenzini M, Riccomi S, Solfrini V, Vinceti M, Capelli O. Cardiovascular risk assessment in people affected with diabetes in primary care, primary care in practice - integration is needed, Oreste Capelli, IntechOpen 2016. Available from: https://www.intechopen.com/books/primary-care-in-practice-integration-is-needed/cardiovascular-risk-assessment-in-peopleaffected-with-diabetes-in-primary-care10.5772/62646
[20]
Bachmann KN, Wang TJ. Biomarkers of cardiovascular disease: contributions to risk prediction in individuals with diabetes. Diabetologia 2018; 61(5): 987-95.
[http://dx.doi.org/10.1007/s00125-017-4442-9] [PMID: 28956084]
[21]
Echouffo-Tcheugui JB, Kengne AP. On the importance of global cardiovascular risk assessment in people with type 2 diabetes. Prim Care Diabetes 2013; 7(2): 95-102.
[http://dx.doi.org/10.1016/j.pcd.2013.03.002] [PMID: 23623209]
[22]
2013 Practice guidelines for the management of arterial hypertension of the European Society of Hypertension (ESH) and the European Society of Cardiology (ESC): ESH/ESC Task Force for the Management of Arterial Hypertension. J Hypertens 2013; 31(10): 1925-38.
[http://dx.doi.org/10.1097/HJH.0b013e328364ca4c] [PMID: 24107724]
[23]
Williams B, Mancia G, Spiering W, et al. 2018 ESC/ESH Guidelines for the management of arterial hypertension. Eur Heart J 2018; 39(33): 3021-104.
[http://dx.doi.org/10.1093/eurheartj/ehy339] [PMID: 30165516]
[24]
Mach F, Baigent C, Catapano AL, et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias: lipid modification to reduce cardiovascular risk. Eur Heart J 2020; 41(1): 111-88.
[http://dx.doi.org/10.1093/eurheartj/ehz455] [PMID: 31504418]
[25]
Coleman RL, Stevens RJ, Retnakaran R, Holman RR. Framingham, SCORE, and DECODE risk equations do not provide reliable cardiovascular risk estimates in type 2 diabetes. Diabetes Care 2007; 30(5): 1292-3.
[http://dx.doi.org/10.2337/dc06-1358] [PMID: 17290036]
[26]
Anderson KM, Odell PM, Wilson PW, Kannel WB. Cardiovascular disease risk profiles. Am Heart J 1991; 121(1 Pt 2): 293-8.
[http://dx.doi.org/10.1016/0002-8703(91)90861-B] [PMID: 1985385]
[27]
Wilson PW, D’Agostino RB, Levy D, Belanger AM, Silbershatz H, Kannel WB. Prediction of coronary heart disease using risk factor categories. Circulation 1998; 97(18): 1837-47.
[http://dx.doi.org/10.1161/01.CIR.97.18.1837] [PMID: 9603539]
[28]
D’Agostino RB Sr, Vasan RS, Pencina MJ, et al. General cardiovascular risk profile for use in primary care: the Framingham Heart Study. Circulation 2008; 117(6): 743-53.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.107.699579] [PMID: 18212285]
[29]
Albarqouni L, Doust JA, Magliano D, Barr EL, Shaw JE, Glasziou PP. External validation and comparison of four cardiovascular risk prediction models with data from the Australian Diabetes, Obesity and Lifestyle study. Med J Aust 2019; 210(4): 161-7.
[http://dx.doi.org/10.5694/mja2.12061] [PMID: 30656697]
[30]
D’Agostino RB Sr, Grundy S, Sullivan LM, Wilson P. Validation of the Framingham coronary heart disease prediction scores: results of a multiple ethnic groups investigation. JAMA 2001; 286(2): 180-7.
[http://dx.doi.org/10.1001/jama.286.2.180] [PMID: 11448281]
[31]
Hense HW, Schulte H, Löwel H, Assmann G, Keil U. Framingham risk function overestimates risk of coronary heart disease in men and women from Germany--results from the MONICA Augsburg and the PROCAM cohorts. Eur Heart J 2003; 24(10): 937-45.
[http://dx.doi.org/10.1016/S0195-668X(03)00081-2] [PMID: 12714025]
[32]
Kengne AP, Patel A, Marre M, et al. Contemporary model for cardiovascular risk prediction in people with type 2 diabetes. Eur J Cardiovas Preven Rehab 2011; 18(3): 393-8.
[33]
Goff DC, Lloyd-Jones DM, Bennett G, et al. 2013 ACC/AHA Guideline on the assessment of cardiovascular risk. Circulation 2014; 129(25_suppl_2): S49-73.
[34]
Muntner P, Colantonio LD, Cushman M, et al. Validation of the atherosclerotic cardiovascular disease Pooled Cohort risk equations. JAMA 2014; 311(14): 1406-15.
[http://dx.doi.org/10.1001/jama.2014.2630] [PMID: 24682252]
[35]
DeFilippis AP, Young R, McEvoy JW, et al. Risk score overestimation: the impact of individual cardiovascular risk factors and preventive therapies on the performance of the American Heart Association-American College of Cardiology-Atherosclerotic Cardiovascular Disease risk score in a modern multi-ethnic cohort. Eur Heart J 2017; 38(8): 598-608.
[PMID: 27436865]
[36]
National Institute for Health and Care Excellence. Cardiovascular disease: risk assessment and reduction, including lipid modification Clinical guideline [CG181] 2014. Available from: https://www.nice.org.uk/guidance/cg181
[37]
Hippisley-Cox J, Coupland C, Brindle P. Development and validation of QRISK3 risk prediction algorithms to estimate future risk of cardiovascular disease: prospective cohort study. BMJ 2017; 357: j2099.
[http://dx.doi.org/10.1136/bmj.j2099] [PMID: 28536104]
[38]
Hippisley-Cox J, Coupland C, Brindle P. Validation of QRISK2 (2014) in patients with diabetes 2014. Available from: https://core.ac.uk/download/pdf/33563625.pdf
[39]
Read SH, van Diepen M, Colhoun HM, et al. Performance of cardiovascular disease risk scores in people diagnosed with type 2 diabetes: external validation using data from the national scottish diabetes register. Diabetes Care 2018; 41(9): 2010-8.
[http://dx.doi.org/10.2337/dc18-0578] [PMID: 30002197]
[40]
Conroy RM, Pyörälä K, Fitzgerald AP, et al. Estimation of ten-year risk of fatal cardiovascular disease in Europe: the SCORE project. Eur Heart J 2003; 24(11): 987-1003.
[http://dx.doi.org/10.1016/S0195-668X(03)00114-3] [PMID: 12788299]
[41]
van der Heijden AA, Ortegon MM, Niessen LW, Nijpels G, Dekker JM. Prediction of coronary heart disease risk in a general, pre-diabetic, and diabetic population during 10 years of follow-up: accuracy of the Framingham, SCORE, and UKPDS risk functions: The Hoorn Study. Diabetes Care 2009; 32(11): 2094-8.
[http://dx.doi.org/10.2337/dc09-0745] [PMID: 19875606]
[42]
Menotti A, Lanti M, Agabiti-Rosei E, et al. Riskard 2005. New tools for prediction of cardiovascular disease risk derived from Italian population studies. Nutr Metab Cardiovasc Dis 2005; 15(6): 426-40.
[http://dx.doi.org/10.1016/j.numecd.2005.07.007] [PMID: 16314229]
[43]
Palmieri L, Panico S, Vanuzzo D, et al. Evaluation of the global cardiovascular absolute risk: the Progetto CUORE individual score. Ann Ist Super Sanita 2004; 40(4): 393-9.
[PMID: 15815105]
[44]
Pellegrini E, Maurantonio M, Giannico IM, et al. Risk for cardiovascular events in an Italian population of patients with type 2 diabetes. Nutr Metab Cardiovasc Dis 2011; 21(11): 885-92.
[http://dx.doi.org/10.1016/j.numecd.2010.02.022] [PMID: 20674312]
[45]
Donfrancesco C, Palmieri L, Cooney M-T, et al. Italian cardiovascular mortality charts of the CUORE project: are they comparable with the SCORE charts? Eur J Cardiovasc Prev Rehabil 2010; 17(4): 403-9.
[http://dx.doi.org/10.1097/HJR.0b013e328334ea70] [PMID: 20351552]
[46]
Balkau B, Hu G, Qiao Q, Tuomilehto J, Borch-Johnsen K, Pyörälä K. Prediction of the risk of cardiovascular mortality using a score that includes glucose as a risk factor. The DECODE Study. Diabetologia 2004; 47(12): 2118-28.
[http://dx.doi.org/10.1007/s00125-004-1574-5] [PMID: 15662552]
[47]
Assmann G, Cullen P, Schulte H. Simple scoring scheme for calculating the risk of acute coronary events based on the 10-year follow-up of the prospective cardiovascular Münster (PROCAM) study. Circulation 2002; 105(3): 310-5.
[http://dx.doi.org/10.1161/hc0302.102575] [PMID: 11804985]
[48]
Stephens JW, Ambler G, Vallance P, Betteridge DJ, Humphries SE, Hurel SJ. Cardiovascular risk and diabetes. Are the methods of risk prediction satisfactory? Eur J Cardiovasc Prev Rehabil 2004; 11(6): 521-8.
[http://dx.doi.org/10.1097/00149831-200412000-00013] [PMID: 15580065]
[49]
Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Gudbjörnsdottir S. A new model for 5-year risk of cardiovascular disease in Type 1 diabetes; from the Swedish National Diabetes Register (NDR). Diabet Med 2011; 28(10): 1213-20.
[http://dx.doi.org/10.1111/j.1464-5491.2011.03342.x] [PMID: 21627687]
[50]
Vistisen D, Andersen GS, Hansen CS, et al. Prediction of first cardiovascular disease event in type 1 diabetes mellitus: the steno type 1 risk engine. Circulation 2016; 133(11): 1058-66.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018844] [PMID: 26888765]
[51]
Llauradó G, Cano A, Albert L, et al. Arterial stiffness is highly correlated with the scores obtained from the Steno Type 1 Risk Engine in subjects with T1DM. PLoS One 2019; 14(9): e0220206.
[http://dx.doi.org/10.1371/journal.pone.0220206] [PMID: 31483791]
[52]
Stevens RJ, Kothari V, Adler AI, Stratton IM. The UKPDS risk engine: a model for the risk of coronary heart disease in Type II diabetes (UKPDS 56). Clinical science 2001; 101(6): 671-9.
[53]
Bannister CA, Poole CD, Jenkins-Jones S, et al. External validation of the UKPDS risk engine in incident type 2 diabetes: a need for new type 2 diabetes-specific risk equations. Diabetes Care 2014; 37(2): 537-45.
[http://dx.doi.org/10.2337/dc13-1159] [PMID: 24089541]
[54]
van Dieren S, Peelen LM, Nöthlings U, et al. External validation of the UK Prospective Diabetes Study (UKPDS) risk engine in patients with type 2 diabetes. Diabetologia 2011; 54(2): 264-70.
[http://dx.doi.org/10.1007/s00125-010-1960-0] [PMID: 21076956]
[55]
Hayes AJ, Leal J, Gray AM, Holman RR, Clarke PM. UKPDS outcomes model 2: a new version of a model to simulate lifetime health outcomes of patients with type 2 diabetes mellitus using data from the 30 year United Kingdom Prospective Diabetes Study: UKPDS 82. Diabetologia 2013; 56(9): 1925-33.
[http://dx.doi.org/10.1007/s00125-013-2940-y] [PMID: 23793713]
[56]
Piniés JA, González-Carril F, Arteagoitia JM, et al. Development of a prediction model for fatal and non-fatal coronary heart disease and cardiovascular disease in patients with newly diagnosed type 2 diabetes mellitus: the Basque Country Prospective Complications and Mortality Study risk engine (BASCORE). Diabetologia 2014; 57(11): 2324-33.
[http://dx.doi.org/10.1007/s00125-014-3370-1] [PMID: 25212259]
[57]
Svensson MK, Cederholm J, Eliasson B, Zethelius B, Gudbjornsdottir S. Albuminuria and renal function as predictors of cardiovascular events and mortality in a general population of patients with type 2 diabetes: A nationwide observational study from the Swedish National Diabetes Register. Diabetes & vascular disease research 2013; 10(6): 520-9.
[http://dx.doi.org/10.1177/1479164113500798]
[58]
Ramírez-Prado D, Palazón-Bru A, Folgado-de la Rosa DM, et al. A four-year cardiovascular risk score for type 2 diabetic inpatients. PeerJ 2015; 3: e984.
[http://dx.doi.org/10.7717/peerj.984] [PMID: 26056618]
[59]
Cederholm J, Eeg-Olofsson K, Eliasson B, Zethelius B, Nilsson PM, Gudbjörnsdottir S. Risk prediction of cardiovascular disease in type 2 diabetes: a risk equation from the Swedish National Diabetes Register. Diabetes Care 2008; 31(10): 2038-43.
[http://dx.doi.org/10.2337/dc08-0662] [PMID: 18591403]
[60]
Davis WA, Knuiman MW, Davis TM. An Australian cardiovascular risk equation for type 2 diabetes: the Fremantle Diabetes Study. Intern Med J 2010; 40(4): 286-92.
[http://dx.doi.org/10.1111/j.1445-5994.2009.01958.x] [PMID: 19323700]
[61]
Elley CR, Robinson E, Kenealy T, Bramley D, Drury PL. Derivation and validation of a new cardiovascular risk score for people with type 2 diabetes: the New Zealand diabetes cohort study. Diabetes Care 2010; 33(6): 1347-52.
[http://dx.doi.org/10.2337/dc09-1444] [PMID: 20299482]
[62]
van der Leeuw J, van Dieren S, Beulens JW, et al. The validation of cardiovascular risk scores for patients with type 2 diabetes mellitus. Heart 2015; 101(3): 222-9.
[http://dx.doi.org/10.1136/heartjnl-2014-306068] [PMID: 25256148]
[63]
Robinson T, Elley CR, Wells S, et al. New Zealand Diabetes Cohort Study cardiovascular risk score for people with Type 2 diabetes: validation in the PREDICT cohort. J Prim Health Care 2012; 4(3): 181-8.
[http://dx.doi.org/10.1071/HC12181] [PMID: 22946065]
[64]
Zethelius B, Eliasson B, Eeg-Olofsson K, Svensson AM, Gudbjörnsdottir S, Cederholm J. A new model for 5-year risk of cardiovascular disease in type 2 diabetes, from the Swedish National Diabetes Register (NDR). Diabetes Res Clin Pract 2011; 93(2): 276-84.
[http://dx.doi.org/10.1016/j.diabres.2011.05.037] [PMID: 21719139]
[65]
Looker HC, Colombo M, Agakov F, et al. Protein biomarkers for the prediction of cardiovascular disease in type 2 diabetes. Diabetologia 2015; 58(6): 1363-71.
[http://dx.doi.org/10.1007/s00125-015-3535-6] [PMID: 25740695]
[66]
Joseph P, Leong D, McKee M, et al. Reducing the Global Burden of Cardiovascular Disease, Part 1: The Epidemiology and Risk Factors. Circ Res 2017; 121(6): 677-94.
[http://dx.doi.org/10.1161/CIRCRESAHA.117.308903] [PMID: 28860318]
[67]
Katsiki N, Banach M, Mikhailidis DP. Is type 2 diabetes mellitus a coronary heart disease equivalent or not? Do not just enjoy the debate and forget the patient! Arch Med Sci 2019; 15(6): 1357-64.
[http://dx.doi.org/10.5114/aoms.2019.89449] [PMID: 31749862]
[68]
Bulugahapitiya U, Siyambalapitiya S, Sithole J, Idris I. Is diabetes a coronary risk equivalent? Systematic review and meta-analysis. Diabet Med 2009; 26(2): 142-8.
[http://dx.doi.org/10.1111/j.1464-5491.2008.02640.x] [PMID: 19236616]
[69]
Schofield J, Ho J, Soran H. Cardiovascular risk in type 1 diabetes mellitus. Diabetes Ther 2019; 10(3): 773-89.
[http://dx.doi.org/10.1007/s13300-019-0612-8] [PMID: 31004282]
[70]
Khunti K, Davies M, Majeed A, Thorsted BL, Wolden ML, Paul SK. Hypoglycemia and risk of cardiovascular disease and all-cause mortality in insulin-treated people with type 1 and type 2 diabetes: a cohort study. Diabetes Care 2015; 38(2): 316-22.
[http://dx.doi.org/10.2337/dc14-0920] [PMID: 25492401]
[71]
de Ferranti SD, de Boer IH, Fonseca V, et al. Type 1 diabetes mellitus and cardiovascular disease: a scientific statement from the American Heart Association and American Diabetes Association. Circulation 2014; 130(13): 1110-30.
[http://dx.doi.org/10.1161/CIR.0000000000000034] [PMID: 25114208]
[72]
Rawshani A, Sattar N, Franzén S, et al. Excess mortality and cardiovascular disease in young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet 2018; 392(10146): 477-86.
[http://dx.doi.org/10.1016/S0140-6736(18)31506-X] [PMID: 30129464]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy