Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Review Article

Gut Microbiota and Human Body Interactions; Its Impact on Health: A Review

Author(s): Mahdyeh Neghabi Hajiagha, Sepehr Taghizadeh, Mohammad Asgharzadeh, Sounkalo Dao, Khudaverdi Ganbarov, Şükran Köse and Hossein Samadi Kafil*

Volume 23, Issue 1, 2022

Published on: 03 January, 2021

Page: [4 - 14] Pages: 11

DOI: 10.2174/1389201022666210104115836

Price: $65

Abstract

Gut microbiota (GM), as an organ of the human body, has a particular and autonomous function that is related to it. This review aims to investigate human intestinal and gut microbiota interaction and its impact on health. As a creation referable database about this dynamic and complex organ, several comprehensive projects are implemented by using culture-dependent (culturomics), culture- independent methods (e.g., metagenomics, mathematics model), and Gnotobiological together. This study was done by searching PubMed, Scopus and Google scholar database in the gut, health microbiota, and interaction keywords. The first acquired microbiota during pregnancy or childbirth is colonized in the gut by using specific and non-specific mechanisms. Its structure and shape reach relative stability with selection pressure along with host development until adulthood and keeps its resilience against external or internal variables depending on the host’s genetics and negative feedback. According to research, individuals have 2 functional group microbiotas, including the core (common between vast majorities human) and flexible (transient population) microbiome. The most important role of the GM in the human body can be summarized in three basic landscapes: metabolic, immune system, and gut-brain axis interaction. So, the loss of microbial population balance will lead to disorder and disease.

Keywords: Gut microbiota, composition, metagenomic, function, interaction, disease, core microbiome, dysbiosis

Graphical Abstract

[1]
Martin, D.H. The microbiota of the vagina and its influence on women’s health and disease. Am. J. Med. Sci., 2012, 343(1), 2-9.
[http://dx.doi.org/10.1097/MAJ.0b013e31823ea228] [PMID: 22143133]
[2]
Gholizadeh, P.; Eslami, H.; Yousefi, M.; Asgharzadeh, M.; Aghazadeh, M.; Kafil, H.S. Role of oral microbiome on oral cancers, a review. Biomed. Pharmacother., 2016, 84, 552-558.
[http://dx.doi.org/10.1016/j.biopha.2016.09.082] [PMID: 27693964]
[3]
Steer, T.; Carpenter, H.; Tuohy, K.; Gibson, G.R. Perspectives on the role of the human gut microbiota and its modulation by pro- and prebiotics. Nutr. Res. Rev., 2000, 13(2), 229-254.
[http://dx.doi.org/10.1079/095442200108729089] [PMID: 19087441]
[4]
Sanford, J.A.; Gallo, R.L. Functions of the skin microbiota in health and disease. Semin. Immunol., 2013, 25(5), 370-377.
[http://dx.doi.org/10.1016/j.smim.2013.09.005] [PMID: 24268438]
[5]
Simon, J.C.; Marchesi, J.R.; Mougel, C.; Selosse, M.A. Host-microbiota interactions: from holobiont theory to analysis. Microbiome, 2019, 7(1), 5.
[http://dx.doi.org/10.1186/s40168-019-0619-4] [PMID: 30635058]
[6]
Gilbert, S.F. Symbiosis as the way of eukaryotic life: the dependent co-origination of the body. J. Biosci., 2014, 39(2), 201-209.
[http://dx.doi.org/10.1007/s12038-013-9343-6] [PMID: 24736154]
[7]
Zapata, H.J.; Quagliarello, V.J. The microbiota and microbiome in aging: potential implications in health and age-related diseases. J. Am. Geriatr. Soc., 2015, 63(4), 776-781.
[http://dx.doi.org/10.1111/jgs.13310] [PMID: 25851728]
[8]
Methé, B.A.; Nelson, K.E.; Pop, M.; Creasy, H.H.; Giglio, M.G.; Huttenhower, C. Human Microbiome Project Consortium. A framework for human microbiome research. Nature, 2012, 486(7402), 215-221.
[http://dx.doi.org/10.1038/nature11209] [PMID: 22699610]
[9]
Bauer, E.; Williams, B.A.; Smidt, H.; Verstegen, M.W.; Mosenthin, R. Influence of the gastrointestinal microbiota on development of the immune system in young animals. Curr. Issues Intest. Microbiol., 2006, 7(2), 35-51.
[PMID: 16875418]
[10]
McLoughlin, K.; Schluter, J.; Rakoff-Nahoum, S.; Smith, A.L.; Foster, K.R. Host selection of microbiota via differential adhesion. Cell Host Microbe, 2016, 19(4), 550-559.
[http://dx.doi.org/10.1016/j.chom.2016.02.021] [PMID: 27053168]
[11]
Nagano, T.; Otoshi, T.; Hazama, D.; Kiriu, T.; Umezawa, K.; Katsurada, N.; Nishimura, Y. Novel cancer therapy targeting microbiome. OncoTargets Ther., 2019, 12, 3619-3624.
[http://dx.doi.org/10.2147/OTT.S207546] [PMID: 31190864]
[12]
Lerner, A.; Matthias, T. Changes in intestinal tight junction permeability associated with industrial food additives explain the rising incidence of autoimmune disease. Autoimmun. Rev., 2015, 14(6), 479-489.
[http://dx.doi.org/10.1016/j.autrev.2015.01.009] [PMID: 25676324]
[13]
Ballard, S.T.; Hunter, J.H.; Taylor, A.E. Regulation of tight-junction permeability during nutrient absorption across the intestinal epithelium. Annu. Rev. Nutr., 1995, 15(1), 35-55.
[http://dx.doi.org/10.1146/annurev.nu.15.070195.000343] [PMID: 8527224]
[14]
Haller, D.; Colbus, H.; Gänzle, M.G.; Scherenbacher, P.; Bode, C.; Hammes, W.P. Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: a comparative in vitro study between bacteria of intestinal and fermented food origin. Syst. Appl. Microbiol., 2001, 24(2), 218-226.
[http://dx.doi.org/10.1078/0723-2020-00023] [PMID: 11518324]
[15]
Verdugo, P. Goblet cells secretion and mucogenesis. Annu. Rev. Physiol., 1990, 52(1), 157-176.
[http://dx.doi.org/10.1146/annurev.ph.52.030190.001105] [PMID: 2184755]
[16]
Flint, H.J.; Scott, K.P.; Louis, P.; Duncan, S.H. The role of the gut microbiota in nutrition and health. Nat. Rev. Gastroenterol. Hepatol., 2012, 9(10), 577-589.
[http://dx.doi.org/10.1038/nrgastro.2012.156] [PMID: 22945443]
[17]
Garcia-Gutierrez, E.; Mayer, M.J.; Cotter, P.D.; Narbad, A. Gut microbiota as a source of novel antimicrobials. Gut Microbes, 2019, 10(1), 1-21.
[http://dx.doi.org/10.1080/19490976.2018.1455790] [PMID: 29584555]
[18]
Sekirov, I.; Russell, S.L.; Antunes, L.C.M.; Finlay, B.B. Gut microbiota in health and disease. Physiol. Rev., 2010, 90(3), 859-904.
[http://dx.doi.org/10.1152/physrev.00045.2009] [PMID: 20664075]
[19]
Thursby, E.; Juge, N. Introduction to the human gut microbiota. Biochem. J., 2017, 474(11), 1823-1836.
[http://dx.doi.org/10.1042/BCJ20160510] [PMID: 28512250]
[20]
Nicholson, J.K.; Holmes, E.; Kinross, J.; Burcelin, R.; Gibson, G.; Jia, W.; Pettersson, S. Host-gut microbiota metabolic interactions. Science, 2012, 336(6086), 1262-1267.
[http://dx.doi.org/10.1126/science.1223813] [PMID: 22674330]
[21]
Backhed, F; Ley, RE; Sonnenburg, JL; Peterson, DA; Gordon, JI Host-bacterial mutualism in the human intestine. science., 2005, 307(5717), 1915-20.,
[22]
Sommer, F.; Anderson, J.M.; Bharti, R.; Raes, J.; Rosenstiel, P. The resilience of the intestinal microbiota influences health and disease. Nat. Rev. Microbiol., 2017, 15(10), 630-638.
[http://dx.doi.org/10.1038/nrmicro.2017.58] [PMID: 28626231]
[23]
Rautava, S.; Isolauri, E. The development of gut immune responses and gut microbiota: effects of probiotics in prevention and treatment of allergic disease. Curr. Issues Intest. Microbiol., 2002, 3(1), 15-22.
[PMID: 12022809]
[24]
Sommer, F.; Bäckhed, F. The gut microbiota--masters of host development and physiology. Nat. Rev. Microbiol., 2013, 11(4), 227-238.
[http://dx.doi.org/10.1038/nrmicro2974] [PMID: 23435359]
[25]
Ubeda, C.; Djukovic, A.; Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunology, 2017, 6(2)
[http://dx.doi.org/10.1038/cti.2017.2] [PMID: 28243438]
[26]
Wasielewski, H.; Alcock, J.; Aktipis, A. Resource conflict and cooperation between human host and gut microbiota: implications for nutrition and health. Ann. N. Y. Acad. Sci., 2016, 1372(1), 20-28.
[http://dx.doi.org/10.1111/nyas.13118] [PMID: 27270755]
[27]
Laffin, M.R.; Tayebi Khosroshahi, H.; Park, H.; Laffin, L.J.; Madsen, K.; Kafil, H.S.; Abedi, B.; Shiralizadeh, S.; Vaziri, N.D. Amylose resistant starch (HAM-RS2) supplementation increases the proportion of Faecalibacterium bacteria in end-stage renal disease patients: Microbial analysis from a randomized placebo-controlled trial. Hemodial. Int., 2019, 23(3), 343-347.
[http://dx.doi.org/10.1111/hdi.12753] [PMID: 30924310]
[28]
Onal, E.M.; Afsar, B.; Covic, A.; Vaziri, N.D.; Kanbay, M. Gut microbiota and inflammation in chronic kidney disease and their roles in the development of cardiovascular disease. Hypertens. Res., 2019, 42(2), 123-140.
[http://dx.doi.org/10.1038/s41440-018-0144-z] [PMID: 30504819]
[29]
Emoto, T.; Yamashita, T.; Sasaki, N.; Hirota, Y.; Hayashi, T.; So, A.; Kasahara, K.; Yodoi, K.; Matsumoto, T.; Mizoguchi, T.; Ogawa, W.; Hirata, K. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J. Atheroscler. Thromb., 2016, 23(8), 908-921.
[http://dx.doi.org/10.5551/jat.32672] [PMID: 26947598]
[30]
Jandhyala, S.M.; Talukdar, R.; Subramanyam, C.; Vuyyuru, H.; Sasikala, M.; Nageshwar Reddy, D. Role of the normal gut microbiota. World J. Gastroenterol., 2015, 21(29), 8787-8803.
[http://dx.doi.org/10.3748/wjg.v21.i29.8787] [PMID: 26269668]
[31]
Yachi, S.; Loreau, M. Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc. Natl. Acad. Sci. USA, 1999, 96(4), 1463-1468.
[http://dx.doi.org/10.1073/pnas.96.4.1463] [PMID: 9990046]
[32]
Olesen, S.W.; Alm, E.J. Dysbiosis is not an answer. Nat. Microbiol., 2016, 1(12), 16228.
[http://dx.doi.org/10.1038/nmicrobiol.2016.228] [PMID: 27886190]
[33]
Cani, P.D. Human gut microbiome: hopes, threats and promises. Gut, 2018, 67(9), 1716-1725.
[http://dx.doi.org/10.1136/gutjnl-2018-316723] [PMID: 29934437]
[34]
Forster, S.C.; Kumar, N.; Anonye, B.O.; Almeida, A.; Viciani, E.; Stares, M.D.; Dunn, M.; Mkandawire, T.T.; Zhu, A.; Shao, Y.; Pike, L.J.; Louie, T.; Browne, H.P.; Mitchell, A.L.; Neville, B.A.; Finn, R.D.; Lawley, T.D. A human gut bacterial genome and culture collection for improved metagenomic analyses. Nat. Biotechnol., 2019, 37(2), 186-192.
[http://dx.doi.org/10.1038/s41587-018-0009-7] [PMID: 30718869]
[35]
Vrancken, G.; Gregory, A.C.; Huys, G.R.B.; Faust, K.; Raes, J. Synthetic ecology of the human gut microbiota. Nat. Rev. Microbiol., 2019, 17(12), 754-763.
[http://dx.doi.org/10.1038/s41579-019-0264-8] [PMID: 31578461]
[36]
Tripathi, A.; Marotz, C.; Gonzalez, A.; Vázquez-Baeza, Y.; Song, S.J.; Bouslimani, A.; McDonald, D.; Zhu, Q.; Sanders, J.G.; Smarr, L.; Dorrestein, P.C.; Knight, R. Are microbiome studies ready for hypothesis-driven research? Curr. Opin. Microbiol., 2018, 44, 61-69.
[http://dx.doi.org/10.1016/j.mib.2018.07.002] [PMID: 30059804]
[37]
Vellend, M. Conceptual synthesis in community ecology. Q. Rev. Biol., 2010, 85(2), 183-206.
[http://dx.doi.org/10.1086/652373] [PMID: 20565040]
[38]
Nemergut, D.R.; Schmidt, S.K.; Fukami, T.; O’Neill, S.P.; Bilinski, T.M.; Stanish, L.F.; Knelman, J.E.; Darcy, J.L.; Lynch, R.C.; Wickey, P.; Ferrenberg, S. Patterns and processes of microbial community assembly. Microbiol. Mol. Biol. Rev., 2013, 77(3), 342-356.
[http://dx.doi.org/10.1128/MMBR.00051-12] [PMID: 24006468]
[39]
Martens, E.C.; Chiang, H.C.; Gordon, J.I. Mucosal glycan foraging enhances fitness and transmission of a saccharolytic human gut bacterial symbiont. Cell Host Microbe, 2008, 4(5), 447-457.
[http://dx.doi.org/10.1016/j.chom.2008.09.007] [PMID: 18996345]
[40]
El Aidy, S.; Van den Abbeele, P.; Van de Wiele, T.; Louis, P.; Kleerebezem, M. Intestinal colonization: how key microbial players become established in this dynamic process: microbial metabolic activities and the interplay between the host and microbes. BioEssays, 2013, 35(10), 913-923.
[http://dx.doi.org/10.1002/bies.201300073] [PMID: 23946088]
[41]
Donaldson, G.P.; Ladinsky, M.S.; Yu, K.B.; Sanders, J.G.; Yoo, B.B.; Chou, W-C.; Conner, M.E.; Earl, A.M.; Knight, R.; Bjorkman, P.J.; Mazmanian, S.K. Gut microbiota utilize immunoglobulin A for mucosal colonization. Science, 2018, 360(6390), 795-800.
[http://dx.doi.org/10.1126/science.aaq0926] [PMID: 29724905]
[42]
Donaldson, G.P.; Lee, S.M.; Mazmanian, S.K. Gut biogeography of the bacterial microbiota. Nat. Rev. Microbiol., 2016, 14(1), 20-32.
[http://dx.doi.org/10.1038/nrmicro3552] [PMID: 26499895]
[43]
Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, stability and resilience of the human gut microbiota. Nature, 2012, 489(7415), 220-230.
[http://dx.doi.org/10.1038/nature11550] [PMID: 22972295]
[44]
Dong, Y.; Takeuchi, Y.; Nakaoka, S. A mathematical model of multiple delayed feedback control system of the gut microbiota—Antibiotics injection controlled by measured metagenomic data. Nonlinear Anal. Real World Appl., 2018, 43, 1-17.
[http://dx.doi.org/10.1016/j.nonrwa.2018.02.005]
[45]
Kuperman, A.A.; Zimmerman, A.; Hamadia, S.; Ziv, O.; Gurevich, V.; Fichtman, B. Deep microbial analysis of multiple placentas shows no evidence for a placental microbiome. BJOG, 2019.
[PMID: 31376240]
[46]
DiGiulio, D.B.; Romero, R.; Amogan, H.P.; Kusanovic, J.P.; Bik, E.M.; Gotsch, F.; Kim, C.J.; Erez, O.; Edwin, S.; Relman, D.A. Microbial prevalence, diversity and abundance in amniotic fluid during preterm labor: a molecular and culture-based investigation. PLoS One, 2008, 3(8)
[http://dx.doi.org/10.1371/journal.pone.0003056] [PMID: 18725970]
[47]
Diversity of microbes in amniotic fluid. DiGiulio, D.B., Ed.; Seminars in Fetal and Neonatal Medicine.,, 2012.
[48]
Stinson, L.F.; Boyce, M.C.; Payne, M.S.; Keelan, J.A. The not-so-sterile womb: Evidence that the human fetus is exposed to bacteria prior to birth. Front. Microbiol., 2019, 10, 1124.
[http://dx.doi.org/10.3389/fmicb.2019.01124] [PMID: 31231319]
[49]
Lim, E.S.; Rodriguez, C.; Holtz, L.R. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. Microbiome, 2018, 6(1), 87.
[http://dx.doi.org/10.1186/s40168-018-0475-7] [PMID: 29751830]
[50]
Walker, R.W.; Clemente, J.C.; Peter, I.; Loos, R.J.F. The prenatal gut microbiome: are we colonized with bacteria in utero? Pediatr. Obes., 2017, 12(Suppl. 1), 3-17.
[http://dx.doi.org/10.1111/ijpo.12217] [PMID: 28447406]
[51]
Theis, KR; Romero, R; Winters, AD; Greenberg, JM; Gomez- Lopez, N; Alhousseini, A Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative realtime PCR, 16S rRNA gene sequencing, and metagenomics. American journal of obstetrics and gynecology., 2019, 220(3), 267.
[52]
Selma-Royo, M; Tarrazó, M; García-Mantrana, I; Gómez-Gallego, C; Salminen, S Collado, MC Shaping Microbiota During the First 1000 Days of Life.,. 2019.
[53]
Tanaka, M.; Nakayama, J. Development of the gut microbiota in infancy and its impact on health in later life. Allergol. Int., 2017, 66(4), 515-522.
[http://dx.doi.org/10.1016/j.alit.2017.07.010] [PMID: 28826938]
[54]
Derrien, M.; Alvarez, A-S.; de Vos, W.M. The Gut Microbiota in the First Decade of Life. Trends Microbiol., 2019, 27(12), 997-1010.
[http://dx.doi.org/10.1016/j.tim.2019.08.001] [PMID: 31474424]
[55]
Singh, A.; Mittal, M. Neonatal microbiome–a brief review. J. Matern. Fetal Neonatal Med., 2019, 1-8.
[http://dx.doi.org/10.1080/14767058.2019.1583738] [PMID: 30835585]
[56]
Ringel-Kulka, T.; Cheng, J.; Ringel, Y.; Salojärvi, J.; Carroll, I.; Palva, A.; de Vos, W.M.; Satokari, R. Intestinal microbiota in healthy U.S. young children and adults--a high throughput microarray analysis. PLoS One, 2013, 8(5)
[http://dx.doi.org/10.1371/journal.pone.0064315] [PMID: 23717595]
[57]
Fouhy, F.; Watkins, C.; Hill, C.J.; O’Shea, C-A.; Nagle, B.; Dempsey, E.M.; O’Toole, P.W.; Ross, R.P.; Ryan, C.A.; Stanton, C. Perinatal factors affect the gut microbiota up to four years after birth. Nat. Commun., 2019, 10(1), 1517.
[http://dx.doi.org/10.1038/s41467-019-09252-4] [PMID: 30944304]
[58]
Korpela, K.; Salonen, A.; Virta, L.J.; Kumpu, M.; Kekkonen, R.A.; de Vos, W.M. Lactobacillus rhamnosus GG intake modifies preschool children’s intestinal microbiota, alleviates penicillin-associated changes, and reduces antibiotic use. PLoS One, 2016, 11(4)
[http://dx.doi.org/10.1371/journal.pone.0154012] [PMID: 27111772]
[59]
Tropini, C.; Earle, K.A.; Huang, K.C.; Sonnenburg, J.L. The gut microbiome: connecting spatial organization to function. Cell Host Microbe, 2017, 21(4), 433-442.
[http://dx.doi.org/10.1016/j.chom.2017.03.010] [PMID: 28407481]
[60]
McFarland, L.V. Normal flora: diversity and functions. Microb. Ecol. Health Dis., 2000, 12(4), 193-207.
[61]
Leser, T.D.; Mølbak, L. Better living through microbial action: the benefits of the mammalian gastrointestinal microbiota on the host. Environ. Microbiol., 2009, 11(9), 2194-2206.
[http://dx.doi.org/10.1111/j.1462-2920.2009.01941.x] [PMID: 19737302]
[62]
Ley, R.E.; Peterson, D.A.; Gordon, J.I. Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell, 2006, 124(4), 837-848.
[http://dx.doi.org/10.1016/j.cell.2006.02.017] [PMID: 16497592]
[63]
Manson, J.M.; Rauch, M.; Gilmore, M.S. The commensal microbiology of the gastrointestinal tract. GI microbiota and regulation of the immune system., 2008, , 15-28.,
[64]
Baothman, O.A.; Zamzami, M.A.; Taher, I.; Abubaker, J.; Abu-Farha, M. The role of Gut Microbiota in the development of obesity and Diabetes. Lipids Health Dis., 2016, 15(1), 108.
[http://dx.doi.org/10.1186/s12944-016-0278-4] [PMID: 27317359]
[65]
Sirisinha, S. The potential impact of gut microbiota on your health:Current status and future challenges. Asian Pac. J. Allergy Immunol., 2016, 34(4), 249-264.
[PMID: 28042926]
[66]
Akbaba, T.H.; Balcı-Peynircioğlu, B. Potential impacts of Gut Microbiota On Immune System Related Diseases: Current studies and future challenges. Acta Medica (Cordoba), 2018, 49(2), 31-37.
[67]
Manrique, P.; Bolduc, B.; Walk, S.T.; van der Oost, J.; de Vos, W.M.; Young, M.J. Healthy human gut phageome. Proc. Natl. Acad. Sci. USA, 2016, 113(37), 10400-10405.
[http://dx.doi.org/10.1073/pnas.1601060113] [PMID: 27573828]
[68]
Burdett, H. Human microbiota: insights from large population studies. Nature, 2019.
[69]
Turnbaugh, P.J.; Ley, R.E.; Hamady, M.; Fraser-Liggett, C.M.; Knight, R.; Gordon, J.I. The human microbiome project. Nature, 2007, 449(7164), 804-810.
[http://dx.doi.org/10.1038/nature06244] [PMID: 17943116]
[70]
Shapira, M. Gut microbiotas and host evolution: scaling up symbiosis. Trends Ecol. Evol., 2016, 31(7), 539-549.
[http://dx.doi.org/10.1016/j.tree.2016.03.006] [PMID: 27039196]
[71]
Sekelja, M.; Berget, I.; Næs, T.; Rudi, K. Unveiling an abundant core microbiota in the human adult colon by a phylogroup-independent searching approach. ISME J., 2011, 5(3), 519-531.
[http://dx.doi.org/10.1038/ismej.2010.129] [PMID: 20740026]
[72]
Payne, A.N.; Zihler, A.; Chassard, C.; Lacroix, C. Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol., 2012, 30(1), 17-25.
[http://dx.doi.org/10.1016/j.tibtech.2011.06.011] [PMID: 21764163]
[73]
Zhu, B.; Wang, X.; Li, L. Human gut microbiome: the second genome of human body. Protein Cell, 2010, 1(8), 718-725.
[http://dx.doi.org/10.1007/s13238-010-0093-z] [PMID: 21203913]
[74]
Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med., 2016, 8(1), 51.
[http://dx.doi.org/10.1186/s13073-016-0307-y] [PMID: 27122046]
[75]
Faith, J.J.; Guruge, J.L.; Charbonneau, M.; Subramanian, S.; Seedorf, H.; Goodman, A.L.; Clemente, J.C.; Knight, R.; Heath, A.C.; Leibel, R.L.; Rosenbaum, M.; Gordon, J.I. The long-term stability of the human gut microbiota. Science, 2013, 341(6141)
[http://dx.doi.org/10.1126/science.1237439] [PMID: 23828941]
[76]
Rajilić-Stojanović, M.; de Vos, W.M. The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiol. Rev., 2014, 38(5), 996-1047.
[http://dx.doi.org/10.1111/1574-6976.12075] [PMID: 24861948]
[77]
Savage, D.C. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol., 1977, 31(1), 107-133.
[http://dx.doi.org/10.1146/annurev.mi.31.100177.000543] [PMID: 334036]
[78]
Gholizadeh, P.; Eslami, H.; Kafil, H.S. Carcinogenesis mechanisms of Fusobacterium nucleatum. Biomed. Pharmacother., 2017, 89, 918-925.
[http://dx.doi.org/10.1016/j.biopha.2017.02.102] [PMID: 28292019]
[79]
Gholizadeh, P.; Pormohammad, A.; Eslami, H.; Shokouhi, B.; Fakhrzadeh, V.; Kafil, H.S. Oral pathogenesis of Aggregatibacter actinomycetemcomitans. Microb. Pathog., 2017, 113, 303-311.
[http://dx.doi.org/10.1016/j.micpath.2017.11.001] [PMID: 29117508]
[80]
Nayfach, S.; Shi, Z.J.; Seshadri, R.; Pollard, K.S.; Kyrpides, N.C. New insights from uncultivated genomes of the global human gut microbiome. Nature, 2019, 568(7753), 505-510.
[http://dx.doi.org/10.1038/s41586-019-1058-x] [PMID: 30867587]
[81]
Lagier, J-C.; Khelaifia, S.; Alou, M.T.; Ndongo, S.; Dione, N.; Hugon, P.; Caputo, A.; Cadoret, F.; Traore, S.I.; Seck, E.H.; Dubourg, G.; Durand, G.; Mourembou, G.; Guilhot, E.; Togo, A.; Bellali, S.; Bachar, D.; Cassir, N.; Bittar, F.; Delerce, J.; Mailhe, M.; Ricaboni, D.; Bilen, M.; Dangui Nieko, N.P.; Dia Badiane, N.M.; Valles, C.; Mouelhi, D.; Diop, K.; Million, M.; Musso, D.; Abrahão, J.; Azhar, E.I.; Bibi, F.; Yasir, M.; Diallo, A.; Sokhna, C.; Djossou, F.; Vitton, V.; Robert, C.; Rolain, J.M.; La Scola, B.; Fournier, P.E.; Levasseur, A.; Raoult, D. Culture of previously uncultured members of the human gut microbiota by culturomics. Nat. Microbiol., 2016, 1(12), 16203.
[http://dx.doi.org/10.1038/nmicrobiol.2016.203] [PMID: 27819657]
[82]
Rettedal, E.A.; Gumpert, H.; Sommer, M.O. Cultivation-based multiplex phenotyping of human gut microbiota allows targeted recovery of previously uncultured bacteria. Nat. Commun., 2014, 5(1), 4714.
[http://dx.doi.org/10.1038/ncomms5714] [PMID: 25163406]
[83]
Browne, H.P.; Forster, S.C.; Anonye, B.O.; Kumar, N.; Neville, B.A.; Stares, M.D.; Goulding, D.; Lawley, T.D. Culturing of ‘unculturable’ human microbiota reveals novel taxa and extensive sporulation. Nature, 2016, 533(7604), 543-546.
[http://dx.doi.org/10.1038/nature17645] [PMID: 27144353]
[84]
Arumugam, M.; Raes, J.; Pelletier, E.; Le Paslier, D.; Yamada, T.; Mende, D.R.; Fernandes, G.R.; Tap, J.; Bruls, T.; Batto, J.M.; Bertalan, M.; Borruel, N.; Casellas, F.; Fernandez, L.; Gautier, L.; Hansen, T.; Hattori, M.; Hayashi, T.; Kleerebezem, M.; Kurokawa, K.; Leclerc, M.; Levenez, F.; Manichanh, C.; Nielsen, H.B.; Nielsen, T.; Pons, N.; Poulain, J.; Qin, J.; Sicheritz-Ponten, T.; Tims, S.; Torrents, D.; Ugarte, E.; Zoetendal, E.G.; Wang, J.; Guarner, F.; Pedersen, O.; de Vos, W.M.; Brunak, S.; Doré, J.; Antolín, M.; Artiguenave, F.; Blottiere, H.M.; Almeida, M.; Brechot, C.; Cara, C.; Chervaux, C.; Cultrone, A.; Delorme, C.; Denariaz, G.; Dervyn, R.; Foerstner, K.U.; Friss, C.; van de Guchte, M.; Guedon, E.; Haimet, F.; Huber, W.; van Hylckama-Vlieg, J.; Jamet, A.; Juste, C.; Kaci, G.; Knol, J.; Lakhdari, O.; Layec, S.; Le Roux, K.; Maguin, E.; Mérieux, A.; Melo Minardi, R.; M’rini, C.; Muller, J.; Oozeer, R.; Parkhill, J.; Renault, P.; Rescigno, M.; Sanchez, N.; Sunagawa, S.; Torrejon, A.; Turner, K.; Vandemeulebrouck, G.; Varela, E.; Winogradsky, Y.; Zeller, G.; Weissenbach, J.; Ehrlich, S.D.; Bork, P. MetaHIT Consortium. Enterotypes of the human gut microbiome. Nature, 2011, 473(7346), 174-180.
[http://dx.doi.org/10.1038/nature09944] [PMID: 21508958]
[85]
Siezen, R.J.; Kleerebezem, M. The human gut microbiome: are we our enterotypes? Microb. Biotechnol., 2011, 4(5), 550-553.
[http://dx.doi.org/10.1111/j.1751-7915.2011.00290.x] [PMID: 21848611]
[86]
Oki, K.; Toyama, M.; Banno, T.; Chonan, O.; Benno, Y.; Watanabe, K. Comprehensive analysis of the fecal microbiota of healthy Japanese adults reveals a new bacterial lineage associated with a phenotype characterized by a high frequency of bowel movements and a lean body type. BMC Microbiol., 2016, 16(1), 284.
[http://dx.doi.org/10.1186/s12866-016-0898-x] [PMID: 27894251]
[87]
Cheng, M.; Ning, K. Stereotypes about enterotype: the old and new ideas. Genomics Proteomics Bioinformatics, 2019, 17(1), 4-12.
[http://dx.doi.org/10.1016/j.gpb.2018.02.004] [PMID: 31026581]
[88]
Midtvedt, T. Microflora-associated characteristics (MACs) and germfree animal characteristics (GACs) in man and animal. Microecol Ther., 1985, 15, 295-302.
[89]
Shafquat, A.; Joice, R.; Simmons, S.L.; Huttenhower, C. Functional and phylogenetic assembly of microbial communities in the human microbiome. Trends Microbiol., 2014, 22(5), 261-266.
[http://dx.doi.org/10.1016/j.tim.2014.01.011] [PMID: 24618403]
[90]
Rosen, C.E.; Palm, N.W. Functional Classification of the Gut Microbiota: The Key to Cracking the Microbiota Composition Code: Functional classifications of the gut microbiota reveal previously hidden contributions of indigenous gut bacteria to human health and disease. BioEssays, 2017, 39(12)
[http://dx.doi.org/10.1002/bies.201700032] [PMID: 28976007]
[91]
Litvak, Y.; Byndloss, M.X.; Tsolis, R.M.; Bäumler, A.J. Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr. Opin. Microbiol., 2017, 39, 1-6.
[http://dx.doi.org/10.1016/j.mib.2017.07.003] [PMID: 28783509]
[92]
Chang, C.; Lin, H. Dysbiosis in gastrointestinal disorders. Best Pract. Res. Clin. Gastroenterol., 2016, 30(1), 3-15.
[http://dx.doi.org/10.1016/j.bpg.2016.02.001] [PMID: 27048892]
[93]
Tremaroli, V.; Bäckhed, F. Functional interactions between the gut microbiota and host metabolism. Nature, 2012, 489(7415), 242-249.
[http://dx.doi.org/10.1038/nature11552] [PMID: 22972297]
[94]
Bauer, E.; Thiele, I. From network analysis to functional metabolic modeling of the human gut microbiota. mSystems, 2018, 3(3), e00209-e00217.
[http://dx.doi.org/10.1128/mSystems.00209-17] [PMID: 29600286]
[95]
Sung, J.; Kim, S.; Cabatbat, J.J.T.; Jang, S.; Jin, Y-S.; Jung, G.Y.; Chia, N.; Kim, P.J. Global metabolic interaction network of the human gut microbiota for context-specific community-scale analysis. Nat. Commun., 2017, 8(1), 15393.
[http://dx.doi.org/10.1038/ncomms15393] [PMID: 28585563]
[96]
Magnúsdóttir, S.; Thiele, I. Modeling metabolism of the human gut microbiome. Curr. Opin. Biotechnol., 2018, 51, 90-96.
[http://dx.doi.org/10.1016/j.copbio.2017.12.005] [PMID: 29258014]
[97]
Palsson, BO Constraint-based Reconstruction and Analysis., 2012.
[98]
Li, Z.; Quan, G.; Jiang, X.; Yang, Y.; Ding, X.; Zhang, D.; Wang, X.; Hardwidge, P.R.; Ren, W.; Zhu, G. Effects of metabolites derived from gut microbiota and hosts on pathogens. Front. Cell. Infect. Microbiol., 2018, 8, 314.
[http://dx.doi.org/10.3389/fcimb.2018.00314] [PMID: 30276161]
[99]
Donia, M.S.; Fischbach, M.A. HUMAN MICROBIOTA. Small molecules from the human microbiota. Science, 2015, 349(6246)
[http://dx.doi.org/10.1126/science.1254766] [PMID: 26206939]
[100]
Pickard, J.M.; Zeng, M.Y.; Caruso, R.; Núñez, G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol. Rev., 2017, 279(1), 70-89.
[http://dx.doi.org/10.1111/imr.12567] [PMID: 28856738]
[101]
Ahern, P.P.; Maloy, K.J. Understanding immune-microbiota interactions in the intestine. Immunology, 2020, 159(1), 4-14.
[http://dx.doi.org/10.1111/imm.13150] [PMID: 31777071]
[102]
Kamada, N.; Seo, S-U.; Chen, G.Y.; Núñez, G. Role of the gut microbiota in immunity and inflammatory disease. Nat. Rev. Immunol., 2013, 13(5), 321-335.
[http://dx.doi.org/10.1038/nri3430] [PMID: 23618829]
[103]
Wang, H-X.; Wang, Y-P. Gut microbiota-brain axis. Chin. Med. J. (Engl.), 2016, 129(19), 2373-2380.
[http://dx.doi.org/10.4103/0366-6999.190667] [PMID: 27647198]
[104]
Koloski, N.A.; Jones, M.; Kalantar, J.; Weltman, M.; Zaguirre, J.; Talley, N.J. The brain--gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut, 2012, 61(9), 1284-1290.
[http://dx.doi.org/10.1136/gutjnl-2011-300474] [PMID: 22234979]
[105]
Carabotti, M.; Scirocco, A.; Maselli, M.A.; Severi, C. The gut-brain axis: interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol., 2015, 28(2), 203-209.
[PMID: 25830558]
[106]
Appleton, J. The gut-brain axis: influence of microbiota on mood and mental health. Integr. Med. (Encinitas), 2018, 17(4), 28-32.
[PMID: 31043907]
[107]
Ma, Q.; Xing, C.; Long, W.; Wang, H.Y.; Liu, Q.; Wang, R-F. Impact of microbiota on central nervous system and neurological diseases: the gut-brain axis. J. Neuroinflammation, 2019, 16(1), 53.
[http://dx.doi.org/10.1186/s12974-019-1434-3] [PMID: 30823925]
[108]
Cowan, C.S.M.; Dinan, T.G.; Cryan, J.F. Annual Research Review: Critical windows - the microbiota-gut-brain axis in neurocognitive development. J. Child Psychol. Psychiatry, 2020, 61(3), 353-371.
[http://dx.doi.org/10.1111/jcpp.13156] [PMID: 31773737]
[109]
Thakur, A.K.; Shakya, A.; Husain, G.M.; Emerald, M.; Kumar, V. Gut-microbiota and mental health: current and future perspectives. J. Pharmacol. Clin. Toxicol., 2014, 2(1), 1016.
[110]
Clapp, M.; Aurora, N.; Herrera, L.; Bhatia, M.; Wilen, E.; Wakefield, S. Gut microbiota’s effect on mental health: The gut-brain axis. Clin. Pract., 2017, 7(4), 987.
[http://dx.doi.org/10.4081/cp.2017.987] [PMID: 29071061]
[111]
Gacias, M; Gaspari, S; Santos, P-MG; Tamburini, S; Andrade, M; Zhang, F Microbiota-driven transcriptional changes in prefrontal cortex override genetic differences in social behavior. elife., 20165, e13442.,
[112]
Zheng, P.; Zeng, B.; Zhou, C.; Liu, M.; Fang, Z.; Xu, X.; Zeng, L.; Chen, J.; Fan, S.; Du, X.; Zhang, X.; Yang, D.; Yang, Y.; Meng, H.; Li, W.; Melgiri, N.D.; Licinio, J.; Wei, H.; Xie, P. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host’s metabolism. Mol. Psychiatry, 2016, 21(6), 786-796.
[http://dx.doi.org/10.1038/mp.2016.44] [PMID: 27067014]
[113]
Kelly, J.R.; Borre, Y.; O’ Brien, C.; Patterson, E.; El Aidy, S.; Deane, J.; Kennedy, P.J.; Beers, S.; Scott, K.; Moloney, G.; Hoban, A.E.; Scott, L.; Fitzgerald, P.; Ross, P.; Stanton, C.; Clarke, G.; Cryan, J.F.; Dinan, T.G. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res., 2016, 82, 109-118.
[http://dx.doi.org/10.1016/j.jpsychires.2016.07.019] [PMID: 27491067]
[114]
Quigley, E.M.M. Microbiota-brain-gut axis and neurodegenerative diseases. Curr. Neurol. Neurosci. Rep., 2017, 17(12), 94.
[http://dx.doi.org/10.1007/s11910-017-0802-6] [PMID: 29039142]
[115]
Huang, T-T.; Lai, J-B.; Du, Y-L.; Xu, Y.; Ruan, L-M.; Hu, S-H. Current understanding of gut microbiota in mood disorders: an update of human studies. Front. Genet., 2019, 10, 98.
[http://dx.doi.org/10.3389/fgene.2019.00098] [PMID: 30838027]
[116]
Dinan, T.G.; Cryan, J.F. Regulation of the stress response by the gut microbiota: implications for psychoneuroendocrinology. Psychoneuroendocrinology, 2012, 37(9), 1369-1378.
[http://dx.doi.org/10.1016/j.psyneuen.2012.03.007] [PMID: 22483040]
[117]
Olson, CA; Vuong, HE; Yano, JM; Liang, QY; Nusbaum, DJ; Hsiao, EY The gut microbiota mediates the anti-seizure effects of the ketogenic diet. Cell., 2018, 173(7), 1728-41..
[118]
Hajjo, H.; Geva-Zatorsky, N. Gut microbiota - host interactions now also brain-immune axis. Curr. Opin. Neurobiol., 2020, 62, 53-59.
[http://dx.doi.org/10.1016/j.conb.2019.10.009] [PMID: 31816572]
[119]
Dinan, T.G.; Cryan, J.F. Gut-brain axis in 2016: Brain-gut-microbiota axis - mood, metabolism and behaviour. Nat. Rev. Gastroenterol. Hepatol., 2017, 14(2), 69-70.
[http://dx.doi.org/10.1038/nrgastro.2016.200] [PMID: 28053341]
[120]
Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.A.D.; Gasbarrini, A.; Mele, M.C. What is the healthy gut microbiota composition? a changing ecosystem across age, environment, diet, and diseases. Microorganisms, 2019, 7(1), 14.
[http://dx.doi.org/10.3390/microorganisms7010014] [PMID: 30634578]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy