Generic placeholder image

Current Pharmaceutical Biotechnology

Editor-in-Chief

ISSN (Print): 1389-2010
ISSN (Online): 1873-4316

Research Article

Phytochemical Screening and Protective Effects of Prunus persica Seeds Extract on Carbon Tetrachloride-Induced Hepatic Injury in Rats

Author(s): Sidra Rehman*, Rubina Nazar, Azeem Mehmood Butt, Bushra Ijaz, Nadia Tasawar, Ahmareen Khalid Sheikh, Imran Shahid, Shahid Masood Shah and Raheel Qamar

Volume 23, Issue 1, 2022

Published on: 03 February, 2021

Page: [158 - 170] Pages: 13

DOI: 10.2174/1389201022666210203142138

Price: $65

conference banner
Abstract

Background and Purpose: Carbon tetrachloride (CCl4) is a dynamic environmental toxin released from chemical factories and its concentration in the atmosphere is accelerating at an alarming proportion. The potential presence of CCl4 in the human body causes liver injury via free radical stimulated inflammatory responses.

Objectives: In this study, protective effects of hydromethanolic seeds extract of Prunus persica (PPHM) were evaluated for free radical scavenging potential in CCl4 mediated acute liver toxicity in the murine model.

Experimental Approach: Followed by acute oral toxicity analysis, liver cells of Sprague-Dawley (SD) rats were treated with CCl4 and subsequently, the chemoprophylactic effect of extract (400 mg/Kg dose) was evaluated using in vivo studies including, silymarin as the positive control. Biochemical parameters, staining (hematoxylin and eosin (H & E) and Masson’s Trichome) and quantitative gene expression analysis via real-time PCR were used to evaluate hepatic damage control.

Results: The results illustrated that PPHM extract exhibit strong anti-oxidant activity, comparable to the positive control, gallic acid. Research study results also demonstrated that the extract treatment at 400 mg/Kg concentration is highly effective in protecting liver damage due to CCl4 exposure. Mechanistic investigations indicated that the therapeutic action of PPHM was correlated with the increase in Nrf2, NQO-1 and decrease in collagen III mRNA genes expression compared to CCl4 treated group.

Conclusions and Implications: Accordingly, our research study indicated that PPHM alleviated CCl4-mediated oxidative stress through Nrf2/NQO-1 pathway, thereby protecting liver damage against environmental toxins. Our findings provide supportive evidence to suggest PPHM as a novel nontoxic hepatoprotective agent.

Keywords: CCl4, Acute oral toxicity, Prunus persica, Hepatoprotective activity, Oxidative stress, Peach seeds Antioxidant activity.

Graphical Abstract

[1]
Di Meo, S.; Reed, T.T.; Venditti, P.; Victor, V.M. Role of ROS and RNS sources in physiological and pathological conditions. Oxid. Med. Cell. Longev., 2016.Article ID 1245049
[http://dx.doi.org/10.1155/2016/1245049]
[2]
Dey, P.; Dutta, S.; Biswas-Raha, A.; Sarkar, M.P.; Chaudhuri, T.K. Haloalkane induced hepatic insult in murine model: Amelioration by Oleander through antioxidant and anti-inflammatory activities, an in vitro and in vivo study. BMC Complement. Altern. Med., 2016, 16(1), 280.
[http://dx.doi.org/10.1186/s12906-016-1260-4] [PMID: 27516209]
[3]
De Iuliis, G.N.; Newey, R.J.; King, B.V.; Aitken, R.J. Mobile phone radiation induces reactive oxygen species production and DNA damage in human spermatozoa in vitro. PLoS One, 2009, 4(7)e6446
[http://dx.doi.org/10.1371/journal.pone.0006446] [PMID: 19649291]
[4]
Cederbaum, A.I.; Lu, Y.; Wu, D. Role of oxidative stress in alcohol-induced liver injury. Arch. Toxicol., 2009, 83(6), 519-548.
[http://dx.doi.org/10.1007/s00204-009-0432-0] [PMID: 19448996]
[5]
Dey, P.; Dutta, S.; Sarkar, M.P.; Chaudhuri, T.K. Assessment of hepatoprotective potential of N. indicum leaf on haloalkane xenobiotic induced hepatic injury in Swiss albino mice. Chem. Biol. Interact., 2015, 235, 37-46.
[http://dx.doi.org/10.1016/j.cbi.2015.03.025] [PMID: 25871905]
[6]
Devaraj, V.C.; Krishna, B.G.; Viswanatha, G.L.; Kamath, J.V.; Kumar, S. Hepatoprotective activity of Hepax-a polyherbal formulation. Asian Pac. J. Trop. Biomed., 2011, 1(2), 142-146.
[http://dx.doi.org/10.1016/S2221-1691(11)60013-0] [PMID: 23569745]
[7]
Wu, T.; Li, J.; Li, Y.; Song, H. Antioxidant and hepatoprotective effect of swertiamarin on carbon tetrachloride-induced hepatotoxicity via the Nrf2/HO-1 pathway. Cell. Physiol. Biochem., 2017, 41(6), 2242-2254.
[http://dx.doi.org/10.1159/000475639] [PMID: 28448964]
[8]
Carbonell, P.; Lopez, O.; Amberg, A.; Pastor, M.; Sanz, F. Hepatotoxicity prediction by systems biology modeling of disturbed metabolic pathways using gene expression data. ALTEX, 2017, 34(2), 219-234.
[http://dx.doi.org/10.14573/altex.1602071] [PMID: 27690270]
[9]
Kensler, T.W.; Wakabayashi, N.; Biswal, S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway. Annu. Rev. Pharmacol. Toxicol., 2007, 47, 89-116.
[http://dx.doi.org/10.1146/annurev.pharmtox.46.120604.141046] [PMID: 16968214]
[10]
Boettler, U.; Volz, N.; Teller, N.; Haupt, L.M.; Bakuradze, T.; Eisenbrand, G.; Bytof, G.; Lantz, I.; Griffiths, L.R.; Marko, D. Induction of antioxidative Nrf2 gene transcription by coffee in humans: Depending on genotype? Mol. Biol. Rep., 2012, 39(6), 7155-7162.
[http://dx.doi.org/10.1007/s11033-012-1547-6] [PMID: 22314914]
[11]
Ma, B.; Wang, J.; Tong, J.; Zhou, G.; Chen, Y.; He, J.; Wang, Y. Protective effects of Chaenomeles thibetica extract against carbon tetrachloride-induced damage via the MAPK/Nrf2 pathway. Food Funct., 2016, 7(3), 1492-1500.
[http://dx.doi.org/10.1039/C5FO01430A] [PMID: 26882870]
[12]
Aziz, S.; Rahman, H. Biological activities of Prunus persica L. batch. J. Med. Plants Res., 2013, 7, 947-951.
[13]
Prakash, V.; Rana, S.; Sagar, A. Studies on analysis of antibacterial and antioxidant activity of Prunus persica (L.). Batsch. Int. J. Sci. Nat., 2017, 8(1), 54-58.
[14]
Kant, R.; Shukla, R.K.; Shukla, A. A review on peach (Prunus persica): An asset of medicinal phytochemicals. Int. J. Res. Appl. Sci. Engin. Technol. (Ijraset), 2018, 6(1)
[15]
Dhanasekaran, S.P.P.; Palayan, M. In-vitro Screening for acetylcholinesterase enzyme inhibition potential and antioxidant activity of extracts of Ipomoea aquatica Forsk: therapeutic lead for Alzheimer’s disease. J. Appl. Pharm. Sci., 2015, 5(2)
[http://dx.doi.org/10.7324/JAPS.2015.50203]
[16]
Liu, Y.; Zheng, D.; Su, L.; Wang, Q.; Li, Y. Protective effect of polysaccharide from Agaricus bisporus in Tibet area of China against tetrachloride-induced acute liver injury in mice. Int. J. Biol. Macromol, 2018, 118(Pt B), 1488-1493.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.06.179] [PMID: 29969638]
[17]
Dong, D.; Zhang, S.; Yin, L.; Tang, X.; Xu, Y.; Han, X.; Qi, Y.; Peng, J. Protective effects of the total saponins from Rosa laevigata Michx fruit against carbon tetrachloride-induced acute liver injury in mice. Food Chem. Toxicol., 2013, 62, 120-130.
[http://dx.doi.org/10.1016/j.fct.2013.08.050] [PMID: 23994094]
[18]
Ma, J-Q.; Li, Z.; Xie, W-R.; Liu, C-M.; Liu, S-S. Quercetin protects mouse liver against CCl4-induced inflammation by the TLR2/4 and MAPK/NF-κB pathway. Int. Immunopharmacol., 2015, 28(1), 531-539.
[http://dx.doi.org/10.1016/j.intimp.2015.06.036] [PMID: 26218279]
[19]
Kang, M-C.; Kang, S-M.; Ahn, G.; Kim, K-N.; Kang, N.; Samarakoon, K.W.; Oh, M.C.; Lee, J.S.; Jeon, Y.J. Protective effect of a marine polyphenol, dieckol against carbon tetrachloride-induced acute liver damage in mouse. Environ. Toxicol. Pharmacol., 2013, 35(3), 517-523.
[http://dx.doi.org/10.1016/j.etap.2013.02.013] [PMID: 23528870]
[20]
Kim, D-W.; Cho, H-I.; Kim, K-M.; Kim, S-J.; Choi, J.S.; Kim, Y.S.; Lee, S-M. Isorhamnetin-3-O-galactoside protects against CCl4-induced hepatic injury in mice. Biomol. Ther. (Seoul), 2012, 20(4), 406-412.
[http://dx.doi.org/10.4062/biomolther.2012.20.4.406] [PMID: 24009828]
[21]
Shin, S.M.; Yang, J.H.; Ki, S.H. Role of the Nrf2-ARE pathway in liver diseases. Oxid. Med. Cell. Longev., 2013.
[http://dx.doi.org/10.1155/2013/763257]
[22]
Al-Rasheed, N.M.; Fadda, L.M.; Ali, H.M.; Abdel Baky, N.A.; El-Orabi, N.F.; Al-Rasheed, N.M.; Yacoub, H.I. New mechanism in the modulation of carbon tetrachloride hepatotoxicity in rats using different natural antioxidants. Toxicol. Mech. Methods, 2016, 26(4), 243-250.
[http://dx.doi.org/10.3109/15376516.2016.1159769] [PMID: 27043868]
[23]
Farombi, E.O.; Shrotriya, S.; Na, H-K.; Kim, S-H.; Surh, Y-J. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem. Toxicol., 2008, 46(4), 1279-1287.
[http://dx.doi.org/10.1016/j.fct.2007.09.095] [PMID: 18006204]
[24]
Su, C.; Xia, X.; Shi, Q.; Song, X.; Fu, J.; Xiao, C.; Chen, H.; Lu, B.; Sun, Z.; Wu, S.; Yang, S.; Li, X.; Ye, X.; Song, E.; Song, Y. Neohesperidin dihydrochalcone versus CCl4-induced hepatic injury through different mechanisms: the implication of free radical scavenging and Nrf2 activation. J. Agric. Food Chem 2015, 63(22), 5468-5475.
[http://dx.doi.org/10.1021/acs.jafc.5b01750] [PMID: 25978654]
[25]
Milani, S.; Herbst, H.; Schuppan, D.; Surrenti, C.; Riecken, E.O.; Stein, H. Cellular localization of type I III and IV procollagen gene transcripts in normal and fibrotic human liver. Am. J. Pathol, 1990, 137(1), 59-70.
[PMID: 2372043]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy