Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Fluorescent Nanotechnology: An Evolution in Optical Sensors

Author(s): Dilawar Hassan, Hadi Bakhsh, Asif M. Khurram, Shakeel A. Bhutto, Nida S. Jalbani, Tania Ghumro and Amber R. Solangi*

Volume 18, Issue 2, 2022

Published on: 15 December, 2020

Page: [176 - 185] Pages: 10

DOI: 10.2174/1573411017666201215121420

Price: $65

Abstract

Background: The optical properties of nanomaterials have evolved enormously with the introduction of nanotechnology. The property of materials to absorb and/or emit specific wavelength has turned them into one of the most favourite candidates to be effectively utilized in different sensing applications e.g, organic light emission diodes (OLEDs) sensors, gas sensors, biosensors, and fluorescent sensors. These materials have been reported as a sensor in the field of tissue and cell imaging, cancer detection, and detection of environmental contaminants, etc. Fluorescent nanomaterials are helping in rapid and timely detection of various contaminants that greatly impact the quality of life and food that is exposed to these contaminants. Later, all the contaminants have been investigated to be the most perilous entities that momentously affect the life span of the animals and humans who use those foods which have been contaminated.

Objective: In this review, we will discuss various methods and approaches to synthesize the fluorescent nanoparticles and quantum dots (QDs) and their applications in various fields. The application will include the detection of various environmental contaminants and bio-medical applications. We will discuss the possible mode of action of the nanoparticles when used as a sensor for the environmental contaminants as well as the surface modification of some fluorescent nanomaterials with anti-body and enzyme for specific detection in the animal kingdom. We will also describe some RAMAN based sensors as well as some optical sensing-based nanosensors.

Conclusion: Nanotechnology has enabled us to play with the size, shape and morphology of materials in the nanoscale. The physical, chemical and optical properties of materials change dramatically when they are reduced to the nanoscale. The optical properties can become choosy in terms of emission or absorption of wavelength in the size range and can result in the production of the very sensitive optical sensor. The results show that the use of fluorescent nanomaterials for sensing purposes is helping a great deal in the sensing field.

Keywords: Nanotechnology, fluorescent sensor, nanosensor, optical nanosensor, environmental optical nanosensor, optical biological nanosensor.

Graphical Abstract

[1]
Nosheen, E.; Shah, A.; Iftikhar, F.; Aftab, S.; Karadas, N.; Ozkan, S. Optical Nanosensors for Pharmaceutical Detection., 2019.
[2]
aHassan, D.; Khalil, A.T.; Solangi, A.R.; El-Mallul, A.; Shinwari, Z.K.; Maaza, M. Physiochemical properties and novel biological applications of Callistemon viminalis-mediated α-Cr2O3 nanoparticles., 2019.
bSidra, A.; Amber, R.S.; Dilawar, H.; Nadir, H.; Jamil, A.; Hadi, B. Recent Trends in Development of Nanomaterials Based Green Analytical Methods for Environmental Remediation. Curr. Anal. Chem., 2020, 16, 1-11.
cKhalil, A.T.; Ovais, M.; Ullah, I.; Ali, M.; Shinwari, Z.K.; Hassan, D.; Maaza, M. 2018.
dHassan, D.; Khalil, A. T.; Saleem, J.; Diallo, A.; Khamlich, S.; Shinwari, Z. K.; Maaza, M. 2018.
eHassan, D.; Amin, S.; Solangi, A.; Memon, S. Focused Ion Beam Tomography., 2019.
[3]
aChenthamara, D.; Subramaniam, S.; Ramakrishnan, S.G.; Krishnaswamy, S.; Essa, M.M.; Lin, F-H.; Qoronfleh, M.W. Therapeutic efficacy of nanoparticles and routes of administration., 2019.
bBuledi, J.A.; Amin, S.; Haider, S.I.; Bhanger, M.I.; Solangi, A.R. A review on detection of heavy metals from aqueous media using nanomaterial-based sensors. Environ. Sci. Pollut. Res. Int., 2020, •••, 1-9.
[http://dx.doi.org/10.1007/s11356-020-07865-7] [PMID: 32036535]
[4]
Ray, P.C.; Yu, H.; Fu, P.P. Toxicity and environmental risks of nanomaterials: challenges and future needs. J Environ Sci Health C Environ Carcinog Ecotoxicol Rev, 2009, 27(1), 1-35.
[http://dx.doi.org/10.1080/10590500802708267] [PMID: 19204862]
[5]
Nayfeh, M.H. Optics in Nanotechnology.Optics in Our Time; Al-Amri, M.D.; El-Gomati, M; Zubairy, M.S., Ed.; Springer International Publishing: Cham, 2016, pp. 223-264.
[http://dx.doi.org/10.1007/978-3-319-31903-2_10]
[6]
Phelps, C.F. Dynamic light scattering, with application to chemistry, biology and physics: B. J. Berne & R. Pecora. Pp. 376. John Wiley 1976. £14.00 or $27.00. Biochem. Educ., 1977, 5(1), 22-22.
[http://dx.doi.org/10.1016/0307-4412(77)90025-5]
[7]
Sakmann, B. Nobel Lecture. Elementary steps in synaptic transmission revealed by currents through single ion channels. Neuron, 1992, 8(4), 613-629.
[http://dx.doi.org/10.1016/0896-6273(92)90084-Q] [PMID: 1373631]
[8]
Borgia, A.; Williams, P.M.; Clarke, J. Single-molecule studies of protein folding. Annu. Rev. Biochem., 2008, 77(1), 101-125.
[http://dx.doi.org/10.1146/annurev.biochem.77.060706.093102] [PMID: 18412537]
[9]
Ha, T. Single-molecule fluorescence methods for the study of nucleic acids. Curr. Opin. Struct. Biol., 2001, 11(3), 287-292.
[10]
Physical chemistry of macromolecules. J. Pharm. Sci., 1961, 51(2), 190-190.
[11]
Koedrith, P.; Thasiphu, T.; Weon, J-I.; Boonprasert, R.; Tuitemwong, K.; Tuitemwong, P. Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications., 2015.
[12]
Rotman, B. Measurement of activity of single molecules of beta-D-galactosidase. Proc. Natl. Acad. Sci. USA, 1961, 47(12), 1981-1991.
[http://dx.doi.org/10.1073/pnas.47.12.1981] [PMID: 14038788]
[13]
Magde, D.; Elson, E.; Webb, W.W. Thermodynamic fluctuations in a reacting system measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett., 1972, 29(11), 705-708.
[http://dx.doi.org/10.1103/PhysRevLett.29.705]
[14]
Ehrenberg, M.; Rigler, R. Rotational brownian motion and fluorescence intensify fluctuations. Chem. Phys., 1974, 4(3), 390-401.
[http://dx.doi.org/10.1016/0301-0104(74)85005-6]
[15]
Cullum, B.M.; Griffin, G.D.; Vo-Dinh, T. Nanosensors: Design and application to site-specific cellular analyses. Proc. SPIE, 2002, 4615, •••.
[http://dx.doi.org/10.1117/12.466642]
[16]
Agrawal, S.; Prajapati, R. Nanosensors and their pharmaceutical applications: a review. Int J Pharm Sci Technol, 2012, 4, 1528-1535.
[http://dx.doi.org/10.37285/ijpsn.2011.4.4.2]
[17]
Saini, R.K. L., P. B.; A. K., Bajpai. New Pesticides and Soil Sensors; Grumezescu, A., Ed.; Elsevier: Amsterdam, 2017.
[18]
Juárez-Maldonado, A.; Ortega-Ortíz, H.; Morales-Díaz, A.B.; González-Morales, S.; Morelos-Moreno, Á.; Cabrera-De la Fuente, M.; Sandoval-Rangel, A.; Cadenas-Pliego, G.; Benavides-Mendoza, A. Nanoparticles and Nanomaterials as Plant Biostimulants. Int. J. Mol. Sci., 2019, 20(1), 162.
[http://dx.doi.org/10.3390/ijms20010162] [PMID: 30621162]
[19]
aPiccinno, F.; Gottschalk, F.; Seeger, S.; Nowack, B. 2011.
bMemon, S.A.; Hassan, D.; Buledi, J.A.; Solangi, A.R.; Memon, S.Q.; Palabiyik, I.M. 2020.
cBuledi, J.A.; Ameen, S.; Khand, N.H.; Solangi, A.R.; Taqvi, I.H.; Agheem, M.H.; Wajdan, Z. CuO Nanostructures Based Electrochemical Sensor for Simultaneous Determination of Hydroquinone and Ascorbic Acid. Electroanalysis, 2020.
[http://dx.doi.org/10.1002/elan.202000083]
[20]
Marcos Fernández-Garcia, J. A. R. Metal Oxide Nanoparticles., 2007.
[21]
aBarsan, N.; Koziej, D.; Weimar, U. 2007.
bWolfrum, E.J.; Meglen, R.M.; Peterson, D.; Sluiter, J. Metal oxide sensor arrays for the detection, differentiation, and quantification of volatile organic compounds at sub-parts-per-million concentration levels. Sens. Actuators B Chem., 2006, 115(1), 322-329.
[http://dx.doi.org/10.1016/j.snb.2005.09.026]
[22]
aShetti, N.P.; Bukkitgar, S.D.; Reddy, K.R.; Reddy, C.V.; Aminabhavi, T.M. Nanostructured titanium oxide hybrids-based electrochemical biosensors for healthcare applications., 2019.
bSingh, J.; Kaur, G.; Rawat, M. A brief review on synthesis and characterization of copper oxide nanoparticles and its applications. J. Bioelectron. Nanotechnol, 2016, 1(9)
cNayral, C.; Viala, E.; Fau, P.; Senocq, F.; Jumas, J.-C.; Maisonnat, A.; Chaudret, B. 2000.
dKumar, S.S.; Venkateswarlu, P.; Rao, V.R.; Rao, G.N. Synthesis, characterization and optical properties of zinc oxide nanoparticles. Int. Nano Lett., 2013, 3(1), 30.
[http://dx.doi.org/10.1186/2228-5326-3-30]
[23]
Bao, S.J.; Li, C.M.; Zang, J.F.; Cui, X.Q.; Qiao, Y.; Guo, J. New nanostructured TiO2 for direct electrochemistry and glucose sensor applications. Adv. Funct. Mater., 2008, 18(4), 591-599.
[http://dx.doi.org/10.1002/adfm.200700728]
[24]
Zhang, X.; Wang, G.; Liu, X.; Wu, J.; Li, M.; Gu, J.; Liu, H.; Fang, B. Different CuO nanostructures: synthesis, characterization, and applications for glucose sensors. J. Phys. Chem. C, 2008, 112(43), 16845-16849.
[http://dx.doi.org/10.1021/jp806985k]
[25]
Heidari, H.; Habibi, E. Amperometric enzyme-free glucose sensor based on the use of a reduced graphene oxide paste electrode modified with electrodeposited cobalt oxide nanoparticles. Mikrochim. Acta, 2016, 183(7), 2259-2266.
[26]
Zong, S.; Cao, Y.; Zhou, Y.; Ju, H. Reagentless biosensor for hydrogen peroxide based on immobilization of protein in zirconia nanoparticles enhanced grafted collagen matrix. Biosens. Bioelectron., 2007, 22(8), 1776-1782.
[http://dx.doi.org/10.1016/j.bios.2006.08.032] [PMID: 17029781]
[27]
Dey, A. Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng. B, 2018, 229, 206-217.
[http://dx.doi.org/10.1016/j.mseb.2017.12.036]
[28]
Cavicchi, R.E.; Walton, R.M.; Aquino-Class, M.; Allen, J.D.; Panchapakesan, B. Spin-on nanoparticle tin oxide for microhotplate gas sensors. Sens. Actuators B Chem., 2001, 77(1), 145-154.
[http://dx.doi.org/10.1016/S0925-4005(01)00686-4]
[29]
Dolbec, R.; El Khakani, M.A. Sub-ppm sensitivity towards carbon monoxide by means of pulsed laser deposited SnO2:Pt based sensors. Appl. Phys. Lett., 2007, 90, 173114-173114.
[http://dx.doi.org/10.1063/1.2731710]
[30]
Bach, U.; Lupo, D.; Comte, P.; Moser, J.E.; Weissörtel, F.; Salbeck, J.; Spreitzer, H.; Grätzel, M. Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies. Nature, 1998, 395(6702), 583-585.
[http://dx.doi.org/10.1038/26936]
[31]
Arruebo, M.; Fernández-Pacheco, R.; Ibarra, M.R.; Santamaría, J. Magnetic nanoparticles for drug delivery. Nano Today, 2007, 2(3), 22-32.
[http://dx.doi.org/10.1016/S1748-0132(07)70084-1]
[32]
Ciofani, G.; Riggio, C.; Raffa, V.; Menciassi, A.; Cuschieri, A. A bi-modal approach against cancer: magnetic alginate nanoparticles for combined chemotherapy and hyperthermia. Med. Hypotheses, 2009, 73(1), 80-82.
[http://dx.doi.org/10.1016/j.mehy.2009.01.031] [PMID: 19272717]
[33]
Altavilla, C.E.; Ciliberto, E., Eds.; Inorganic Nanoparticles; CRC Press: Boca Raton, 2011.
[34]
da Silva Assis, M.B.; Werneck, I.H.S.R.; de Moraes, G.N.; Semaan, F.S.; Pereira, R.P. Citrate-capped iron oxide nanoparticles: ultrasound-assisted synthesis, structure and thermal properties. Mater. Res. Express, 2019, 6(4)045064
[http://dx.doi.org/10.1088/2053-1591/aaff2a]
[35]
Maduraiveeran, G.; Sasidharan, M.; Ganesan, V. Electrochemical sensor and biosensor platforms based on advanced nanomaterials for biological and biomedical applications. Biosens. Bioelectron., 2018, 103, 113-129.
[http://dx.doi.org/10.1016/j.bios.2017.12.031] [PMID: 29289816]
[36]
Yang, C.; Jacobs, C.B.; Nguyen, M.D.; Ganesana, M.; Zestos, A.G.; Ivanov, I.N.; Puretzky, A.A.; Rouleau, C.M.; Geohegan, D.B.; Venton, B.J. Carbon Nanotubes Grown on Metal Microelectrodes for the Detection of Dopamine. Anal. Chem., 2016, 88(1), 645-652.
[http://dx.doi.org/10.1021/acs.analchem.5b01257] [PMID: 26639609]
[37]
Wang, L.; Zhang, Y.; Yu, J.; He, J.; Yang, H.; Ye, Y.; Song, Y. A green and simple strategy to prepare graphene foam-like three-dimensional porous carbon/Ni nanoparticles for glucose sensing. Sens. Actuators B Chem., 2017, 239, 172-179.
[http://dx.doi.org/10.1016/j.snb.2016.06.173]
[38]
Bui, M-P.N.; Li, C.A.; Han, K.N.; Pham, X-H.; Seong, G.H. Electrochemical determination of cadmium and lead on pristine single-walled carbon nanotube electrodes. Anal. Sci., 2012, 28(7), 699-704.
[http://dx.doi.org/10.2116/analsci.28.699] [PMID: 22790373]
[39]
Wang, L.; Wang, X.; Shi, G.; Peng, C.; Ding, Y. Thiacalixarene covalently functionalized multiwalled carbon nanotubes as chemically modified electrode material for detection of ultratrace Pb2+ ions. Anal. Chem., 2012, 84(24), 10560-10567.
[http://dx.doi.org/10.1021/ac302747f] [PMID: 23140187]
[40]
Morton, J.; Havens, N.; Mugweru, A.; Wanekaya, A.K. Detection of trace heavy metal ions using carbon nanotube-modified electrodes. Electroanalysis, 2009, 21(14), 1597-1603.
[http://dx.doi.org/10.1002/elan.200904588]
[41]
Keiji, S.; Zhong-You, S.; Raoul, K.; Hiroshi, M. Three-dimensional pH microprobing with an optically-manipulated fluorescent particle. Chem. Lett., 1996, 25(2), 141-142.
[http://dx.doi.org/10.1246/cl.1996.141]
[42]
Liu, X.; Yang, Y.; Mao, L.; Li, Z.; Zhou, C.; Liu, X.; Zheng, S.; Hu, Y. SPR quantitative analysis of direct detection of atrazine traces on Au-nanoparticles: Nanoparticles size effect. Sens. Actuators B Chem., 2015, 218, 1-7.
[http://dx.doi.org/10.1016/j.snb.2015.04.099]
[43]
Lee, K-L.; You, M-L.; Tsai, C-H.; Lin, E-H.; Hsieh, S-Y.; Ho, M-H.; Hsu, J-C.; Wei, P-K. Nanoplasmonic biochips for rapid label-free detection of imidacloprid pesticides with a smartphone. Biosens. Bioelectron., 2016, 75, 88-95.
[http://dx.doi.org/10.1016/j.bios.2015.08.010] [PMID: 26298639]
[44]
Yan, Z.; Hu, T.; Guo, W.; Deng, A.; Di, J. A label-free immunosensor for determination of salbutamol based on localized surface plasmon resonance biosensing. Bioprocess Biosyst. Eng., 2014, 37(4), 651-657.
[http://dx.doi.org/10.1007/s00449-013-1034-z] [PMID: 23934102]
[45]
Kreuzer, M.P.; Quidant, R.; Salvador, J.P.; Marco, M.P.; Badenes, G. Colloidal-based localized surface plasmon resonance (LSPR) biosensor for the quantitative determination of stanozolol. Anal. Bioanal. Chem., 2008, 391(5), 1813-1820.
[http://dx.doi.org/10.1007/s00216-008-2022-z] [PMID: 18373230]
[46]
Sun, Z.; Bebis, G.; Miller, R. In On-road vehicle detection using optical sensors: a review 2004.
[47]
Ya, Y.; Xiaoshu, W.; Qing, D.; Lin, J.; Yifeng, T. Label-free immunosensor for morphine based on the electrochemiluminescence of luminol on indium–tin oxide coated glass functionalized with gold nanoparticles. Anal. Methods, 2015, 7(11), 4502-4507.
[http://dx.doi.org/10.1039/C5AY00764J]
[48]
Lu, J.; Van Stappen, T.; Spasic, D.; Delport, F.; Vermeire, S.; Gils, A.; Lammertyn, J. Fiber optic-SPR platform for fast and sensitive infliximab detection in serum of inflammatory bowel disease patients. Biosens. Bioelectron., 2016, 79, 173-179.
[49]
Freeman, R.; Li, Y.; Tel-Vered, R.; Sharon, E.; Elbaz, J.; Willner, I. Self-assembly of supramolecular aptamer structures for optical or electrochemical sensing. Analyst (Lond.), 2009, 134(4), 653-656.
[50]
Yan, F.; Zhang, Y.; Zhang, S.; Zhao, J.; Liu, S.; He, L.; Feng, X.; Zhang, H.; Zhang, Z. Carboxyl-modified graphene for use in an immunoassay for the illegal feed additive clenbuterol using surface plasmon resonance and electrochemical impedance spectroscopy. Mikrochim. Acta, 2015, 182(3), 855-862.
[http://dx.doi.org/10.1007/s00604-014-1399-y]
[51]
Das, J.; Aziz, M.A.; Yang, H. A nanocatalyst-based assay for proteins: DNA-free ultrasensitive electrochemical detection using catalytic reduction of p-nitrophenol by gold-nanoparticle labels. J. Am. Chem. Soc., 2006, 128(50), 16022-16023.
[http://dx.doi.org/10.1021/ja0672167] [PMID: 17165740]
[52]
Franke, M.E.; Koplin, T.J.; Simon, U. Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small, 2006, 2(1), 36-50.
[http://dx.doi.org/10.1002/smll.200500261] [PMID: 17193551]
[53]
Yuan, Y.; Zhang, F.; Wang, H.; Gao, L.; Wang, Z. A Sensor Based on Au Nanoparticles/Carbon Nitride/Graphene Composites for the Detection of Chloramphenicol and Ciprofloxacin. ECS J. Solid State Sci. Technol., 2018, 7(12), M201-M208.
[http://dx.doi.org/10.1149/2.0111812jss]
[54]
Khan, M.E.; Khan, M.M.; Cho, M.H. Environmentally sustainable biogenic fabrication of AuNP decorated-graphitic g-C3N4 nanostructures towards improved photoelectrochemical performances. RSC Advances, 2018, 8(25), 13898-13909.
[http://dx.doi.org/10.1039/C8RA00690C]
[55]
Kariuki, V.M.; Fasih-Ahmad, S.A.; Osonga, F.J.; Sadik, O.A. An electrochemical sensor for nitrobenzene using π-conjugated polymer-embedded nanosilver. Analyst (Lond.), 2016, 141(7), 2259-2269.
[http://dx.doi.org/10.1039/C6AN00029K] [PMID: 26936406]
[56]
Zhong, W. Nanomaterials in fluorescence-based biosensing. Anal. Bioanal. Chem., 2009, 394(1), 47-59.
[http://dx.doi.org/10.1007/s00216-009-2643-x] [PMID: 19221721]
[57]
Mahmoudian, M.R.; Basirun, W.J.; Alias, Y. A sensitive electrochemical Hg2+ ions sensor based on polypyrrole coated nanospherical platinum. RSC Advances, 2016, 6(43), 36459-36466.
[58]
Yuliarto, B.; Gumilar, G.; Septiani, N.L.W. 2015.
[59]
Wei, Y.; Gao, C.; Meng, F-L.; Li, H-H.; Wang, L.; Liu, J-H.; Huang, X-J. SnO2/Reduced Graphene Oxide Nanocomposite for the Simultaneous Electrochemical Detection of Cadmium(II), Lead(II), Copper(II), and Mercury(II): An Interesting Favorable Mutual Interference. J. Phys. Chem. C, 2011, 116, 1034-1041.
[http://dx.doi.org/10.1021/jp209805c]
[60]
Dirksen, J.; Duval, K. NiO thin-film formaldehyde gas sensor. Sens. Actuators B Chem., 2001, 80, 106-115.
[http://dx.doi.org/10.1016/S0925-4005(01)00898-X]
[61]
Topoglidis, E.; Campbell, C.J.; Cass, A.E.G.; Durrant, J.R. Factors that affect protein adsorption on nanostructured titania films. A novel spectroelectrochemical application to sensing. Langmuir, 2001, 17(25), 7899-7906.
[http://dx.doi.org/10.1021/la010309b]
[62]
Noronha, T. 2019.
[63]
Zhang, S.; Luo, H.; Zhang, Y.; Li, X.; Liu, J.; Xu, Q.; Wang, Z. In situ rapid magnetic solid-phase extraction coupled with HPLC-ICP-MS for mercury speciation in environmental water. Microchem. J., 2016, 126, 25-31.
[http://dx.doi.org/10.1016/j.microc.2015.11.040]
[64]
Kuang, H.; Xing, C.; Hao, C.; Liu, L.; Wang, L.; Xu, C. Rapid and highly sensitive detection of lead ions in drinking water based on a strip immunosensor. Sensors (Basel), 2013, 13(4), 4214-4224.
[http://dx.doi.org/10.3390/s130404214] [PMID: 23539028]
[65]
Willner, M.R.; Vikesland, P.J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnology, 2018, 16(1), 95.
[http://dx.doi.org/10.1186/s12951-018-0419-1] [PMID: 30466465]
[66]
Gao, X.; Dave, S.R. Quantum dots for cancer molecular imaging., 2007.
[67]
Xu, Z.; Hou, Y.; Sun, S. Magnetic core/shell Fe3O4/Au and Fe3O4/Au/Ag nanoparticles with tunable plasmonic properties. J. Am. Chem. Soc., 2007, 129(28), 8698-8699.
[http://dx.doi.org/10.1021/ja073057v] [PMID: 17590000]
[68]
Karthiga, D.; Anthony, S.P. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Advances, 2013, 3(37), 16765-16774.
[http://dx.doi.org/10.1039/c3ra42308e]
[69]
Liu, B.; Huang, Y.; Shen, Q.; Zhu, X.; Hao, Y.; Qu, P.; Xu, M. Turn-on fluorescence detection of ciprofloxacin in tablets based on lanthanide coordination polymer nanoparticles. RSC Advances, 2016, 6(103), 100743-100747.
[http://dx.doi.org/10.1039/C6RA20357D]
[70]
Alzahrani, E. 2020.
[71]
Koedrith, P.; Thasiphu, T.; Weon, J-I.; Boonprasert, R.; Tuitemwong, K.; Tuitemwong, P. Recent trends in rapid environmental monitoring of pathogens and toxicants: potential of nanoparticle-based biosensor and applications. ScientificWorldJournal, 2015.
[http://dx.doi.org/10.1155/2015/510982]
[72]
Alzahrani, E. Colorimetric detection based on localized surface plasmon resonance optical characteristics for sensing of mercury using green-synthesized silver nanoparticles. J. Anal. Methods Chem., 2020.
[http://dx.doi.org/10.1155/2020/6026312]
[73]
Smith, A.M.; Nie, S. Chemical analysis and cellular imaging with quantum dots. Analyst (Lond.), 2004, 129(8), 672-677.
[http://dx.doi.org/10.1039/b404498n] [PMID: 15344262]
[74]
Gao, X.; Yang, L.; Petros, J.A.; Marshall, F.F.; Simons, J.W.; Nie, S. In vivo molecular and cellular imaging with quantum dots. Curr. Opin. Biotechnol., 2005, 16(1), 63-72.
[http://dx.doi.org/10.1016/j.copbio.2004.11.003] [PMID: 15722017]
[75]
aOrnberg, R.L.; Harper, T.F.; Liu, H. Western blot analysis with quantum dot fluorescence technology: a sensitive and quantitative method for multiplexed proteomics., 2005.
bBakalova, R.; Zhelev, Z.; Ohba, H.; Baba, Y. Quantum dot-based western blot technology for ultrasensitive detection of tracer proteins. J. Am. Chem. Soc., 2005, 127(26), 9328-9329.
[http://dx.doi.org/10.1021/ja0510055] [PMID: 15984834]
[76]
Gu, B.; Xu, C.; Yang, C.; Liu, S.; Wang, M. ZnO quantum dot labeled immunosensor for carbohydrate antigen 19-9. Biosens. Bioelectron., 2011, 26(5), 2720-2723.
[http://dx.doi.org/10.1016/j.bios.2010.09.031] [PMID: 20961745]
[77]
Knittel, F.; Gravel, E.; Cassette, E.; Pons, T.; Pillon, F.; Dubertret, B.; Doris, E. On the characterization of the surface chemistry of quantum dots. Nano Lett., 2013, 13(11), 5075-5078.
[http://dx.doi.org/10.1021/nl402192d] [PMID: 24111602]
[78]
Soman, C.P.; Giorgio, T.D. Quantum dot self-assembly for protein detection with sub-picomolar sensitivity. Langmuir, 2008, 24(8), 4399-4404.
[http://dx.doi.org/10.1021/la704078u] [PMID: 18335969]
[79]
Choi, Y.; Kim, H.P.; Hong, S.M.; Ryu, J.Y.; Han, S.J.; Song, R. In situ visualization of gene expression using polymer-coated quantum-dot-DNA conjugates. Small, 2009, 5(18), 2085-2091.
[http://dx.doi.org/10.1002/smll.200900116] [PMID: 19517489]
[80]
Wolfbeis, O.S. An overview of nanoparticles commonly used in fluorescent bioimaging. Chem. Soc. Rev., 2015, 44(14), 4743-4768.
[http://dx.doi.org/10.1039/C4CS00392F] [PMID: 25620543]
[81]
Balzani, V.; Ceroni, P.; Gestermann, S.; Kauffmann, C.; Gorka, M.; Vögtle, F. Dendrimers as fluorescent sensors with signal amplification. Chem. Commun. (Camb.), 2000, (10), 853-854.
[http://dx.doi.org/10.1039/b002116o]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy