Generic placeholder image

Current Analytical Chemistry

Editor-in-Chief

ISSN (Print): 1573-4110
ISSN (Online): 1875-6727

Review Article

Role of Capping Agent for the Colorimetric and Fluorescent Sensing of Different Materials Using Metal Nanoparticles

Author(s): Syed Tufail Hussain Sherazi*, Sarfaraz Ahmed Mahesar, Sirajuddin and Xiuzhu Yu

Volume 18, Issue 2, 2022

Published on: 17 June, 2021

Page: [186 - 195] Pages: 10

DOI: 10.2174/1573411017666210617092818

Price: $65

Abstract

Background: The selection of capping agent depends on the method of synthesis, nature of nanoparticles (NPs), and type of the compounds to be analyzed. Therefore, different types of capping agents such as surfactants, drugs, amino acids, fatty acids, and polymers are used to increase stability of NPs, avoid aggregation, keep NPs away from one another, thereby achieving desired morphology as well as the size of NPs.

Introduction: Recently, the fabrication of NPs has been extensively carried out using synthetic chemical routes in a wide range of materials. In this review, a comprehensive assessment of the colorimetric and fluorescent sensing of metal nanoparticles using different capped agents, such as surfactants, drugs, amino acids, fatty acids, and polymers has been summarized for the present and future strategies.

Method: For the synthesis of metal nanoparticles, different methods, metals, and a variety of capping agents are used to obtain new properties and explore opportunities for innovative applications.

Result: Capping agents perform their significant role as stabilizers to avoid the over-growth and coagulation of nanoparticles.

Conclusion: Capping agents play an essential role in the colorimetric and fluorescent sensing of metal nanoparticles for particular analytes.

Keywords: Metal nanoparticles, capping agents, proposed mechanisms, uses, colorimetric sensors, fluorescent sensing.

Graphical Abstract

[1]
Kim, J.; Lee, J.; Liu, C.; Pandey, S.; Joo, S.W.; Son, N.; Kang, M. Achieving a long-term stability by self-redox property between Fe and Mn ions in the iron-manganese spinel structured electrode in oxygen evolution reaction. Appl. Surf. Sci., 2021, 546149124
[http://dx.doi.org/10.1016/j.apsusc.2021.149124]
[2]
Do, J.Y.; Son, N.; Chava, R.K.; Mandari, K.K.; Pandey, S.; Kumaravel, V.; Senthil, T.S.S.; Joo, W.; Kang, M. Plasmon-induced hot electron amplification and effective charge separation by Au nanoparticles sandwiched between copper titanium phosphate nanosheets and improved carbon dioxide conversion to methane. ACS Sustain. Chem.& Eng., 2020, 8(50), 18646-18660.
[http://dx.doi.org/10.1021/acssuschemeng.0c06983]
[3]
Wang, S.; Yang, X.; Zhou, L.; Li, J.; Chen, H. 2D nanostructures beyond graphene: Preparation, biocompatibility and biodegradation behaviors. J. Mater. Chem. B Mater. Biol. Med., 2020, 8(15), 2974-2989.
[http://dx.doi.org/10.1039/C9TB02845E] [PMID: 32207478]
[4]
Wang, S.; Zhou, L.; Zheng, Y.; Li, L.; Wu, C.; Yang, H.; Huang, M.; An, X. Synthesis and biocompatibility of two-dimensional biomaterials. Colloids Surf. A Physicochem. Eng. Asp., 2019, 583124004
[http://dx.doi.org/10.1016/j.colsurfa.2019.124004]
[5]
Memon, S.; Uddin, S.; Nafady, A.; Solangi, A.; Shah, M.; Nisar, J.; Sherazi, T.; Memon, S.; Abro, M.I. Cephradine-capped gold nanoparticle modified glassy carbon electrode for trace level sensing of triphenyltin hydroxide. J. Electrochem. Soc., 2020, 167, 137503-137510.
[http://dx.doi.org/10.1149/1945-7111/abb3db]
[6]
Baksh, H.; Buledi, J.A.; Khand, N.H.; Solangi, A.R.; Mallah, A.; Sherazi, S.T.; Abro, M.I. Ultra-selective determination of carbofuran by electrochemical sensor based on nickel oxide nanoparticles stabilized by ionic liquid; Monatshefte für Chemie – Chem. Monthly, 2020.
[http://dx.doi.org/10.1007/s00706-020-02704-4]
[7]
Memon, R.; Memon, A.A. Ultrasensitive colorimetric detection of Hg2+ in aqueous media via green synthesis by Ziziphus Mauritiana Leaves extract based silver nanoparticles. Int. J. Environ. Anal. Chem., 2020.
[http://dx.doi.org/10.1080/03067319.2020.1822353]
[8]
Ali, A.; Mahar, R.B.; Sherazi, S.T.H. Methane augmentation of anaerobic digestion of food waste in the presence of Fe3O4 and carbamide surfaced Fe3O4 nanoparticles. Waste Biomass Valoriz., 2020, 11, 4093-4107.
[http://dx.doi.org/10.1007/s12649-019-00732-8]
[9]
Ali, A.; Mahar, R.B.; Abdelsalam, E.M.; Sherazi, S.T.H. Kinetic modeling for bioaugmented anaerobic digestion of the organic fraction of municipal solid waste by using Fe3O4 panoparticles. Waste Biomass Valoriz., 2019, 10(11), 3213-3224.
[http://dx.doi.org/10.1007/s12649-018-0375-x]
[10]
Siddiqui, S.; Nafady, A.; El-Sagher, H.M.; Al-Saeedi, S.; Alsalme, A.M. Sirajuddin; Talpur, F.N.; Sherazi, S.T.H.; Kalhoro, M.S.; Shah, M.R.; Shaikh, T.; Arain, M.; Bhargava, S.K. Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine capped Au@Ag core-shell nanoparticles. J. Solid State Electrochem., 2019, 23(7), 2073-2083.
[http://dx.doi.org/10.1007/s10008-019-04298-2]
[11]
Bhutto, A.A.; Kalay, Ş.; Sherazi, S.T.H.; Culha, M. Quantitative structure-activity relationship between antioxidant capacity of phenolic compounds and the plasmonic properties of silver nanoparticles. Talanta, 2018, 189(1), 174-181.
[http://dx.doi.org/10.1016/j.talanta.2018.06.080] [PMID: 30086903]
[12]
Ali, A.; Mahar, R.B.; Sherazi, S.T.H.; Soomro, R. Production, enhancement of methane production in anaerobic digestion of organic fraction of municipal solid waste by using capped iron oxide nanoparticles. Energ. Sources. Part A, 2017, 39(16), 1815-1822.
[13]
Shaikh, T.; Uddin, S.; Talpur, F.N.; Khaskeli, A.R.; Agheem, M.H.; Shah, M.R.; Sherazi, T.H.; Siddiqui, S. Ultrasensitive determination of piroxicam at diflunisal-derived gold nanoparticle-modified glassy carbon electrode. J. Electron. Mater., 2017, 46(10), 5957-5966.
[http://dx.doi.org/10.1007/s11664-017-5573-y]
[14]
Kalwar, N.H.; Nafady, A.; Soomro, R.A.; Sherazi, S.T.H.; Khaskheli, A.R.; Hallam, K.R. Microwave-assisted synthesis of L-cysteine-capped nickel nanoparticles for catalytic reduction of 4-nitrophenol. Rare Met., 2015, 34(10), 683-691.
[http://dx.doi.org/10.1007/s12598-015-0475-8]
[15]
Krishnamoorthy, V. Literature review on metal nanoparticle synthesis. Int. J. Nanotechnol. Appl., 2014, 4(5), 19-24.
[16]
Ahmed, S. Annu; Ikram, S.; Yudha S, S. Biosynthesis of gold nanoparticles: A green approach. J. Photochem. Photobiol. B, 2016, 161, 141-153.
[http://dx.doi.org/10.1016/j.jphotobiol.2016.04.034] [PMID: 27236049]
[17]
Javed, R.; Zia, M.; Naz, S.; Aisida, S.O.; Ain, N.U.; Ao, Q. Role of capping agents in the application of nanoparticles in biomedicine and environmental remediation: Recent trends and future prospects. J. Nanobiotechnology, 2020, 18(1), 172-187.
[http://dx.doi.org/10.1186/s12951-020-00704-4] [PMID: 33225973]
[18]
Basnet, P.; Chatterjee, S. Structure-directing property and growth mechanism induced by capping agents in nanostructured ZnO during hydrothermal synthesis-A systematic review. Nano-Structures Nano-Objects, 2020, 22100426
[http://dx.doi.org/10.1016/j.nanoso.2020.100426]
[19]
Lehner, R.; Wang, X.; Marsch, S.; Hunziker, P. Intelligent nanomaterials for medicine: Carrier platforms and targeting strategies in the context of clinical application. Nanomedicine , 2013, 9(6), 742-757.
[http://dx.doi.org/10.1016/j.nano.2013.01.012] [PMID: 23434677]
[20]
Bagchi, M.; Moriyama, H.; Shahidi, F. Bio-nanotechnology: A revolution in food, biomedical and health sciences; John Wiley & Sons, 2012.
[21]
Jianrong, C.; Yuqing, M.; Nongyue, H.; Xiaohua, W.; Sijiao, L. Nanotechnology and biosensors. Biotechnol. Adv., 2004, 22(7), 505-518.
[http://dx.doi.org/10.1016/j.biotechadv.2004.03.004] [PMID: 15262314]
[22]
Li, M.; Gou, H.; Al-Ogaidi, I.; Wu, N. Nanostructured sensors for detection of heavy metals: A review. ACS Sustain. Chem.& Eng., 2013, 1, 713-723.
[http://dx.doi.org/10.1021/sc400019a]
[23]
Kailasa, S.K.; Wu, H-F. One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Analyst (Lond.), 2012, 137(7), 1629-1638.
[http://dx.doi.org/10.1039/c2an16008k] [PMID: 22353931]
[24]
Upadhyayula, V.K. Functionalized gold nanoparticle supported sensory mechanisms applied in detection of chemical and biological threat agents: A review. Anal. Chim. Acta, 2012, 715, 1-18.
[http://dx.doi.org/10.1016/j.aca.2011.12.008] [PMID: 22244163]
[25]
Vilela, D.; González, M.C.; Escarpa, A. Sensing colorimetric approaches based on gold and silver nanoparticles aggregation: Chemical creativity behind the assay. A review. Anal. Chim. Acta, 2012, 751, 24-43.
[http://dx.doi.org/10.1016/j.aca.2012.08.043] [PMID: 23084049]
[26]
Zhang, J.F.; Zhou, Y.; Yoon, J.; Kim, J.S. Recent progress in fluorescent and colorimetric chemosensors for detection of precious metal ions (silver, gold and platinum ions). Chem. Soc. Rev., 2011, 40(7), 3416-3429.
[http://dx.doi.org/10.1039/c1cs15028f] [PMID: 21491036]
[27]
Biju, V. Chemical modifications and bioconjugate reactions of nanomaterials for sensing, imaging, drug delivery and therapy. Chem. Soc. Rev., 2014, 43(3), 744-764.
[http://dx.doi.org/10.1039/C3CS60273G] [PMID: 24220322]
[28]
Khatua, S.; Goswami, S.; Biswas, S.; Tomar, K.; Jena, H.S.; Konar, S. Stable mul-tiresponsive luminescent MOF for colorimetric detection of small molecules in selective and reversible manner. Chem. Mater., 2015, 27, 5349-5360.
[http://dx.doi.org/10.1021/acs.chemmater.5b01773]
[29]
Zhang, X.; Yin, J.; Yoon, J. Recent advances in development of chiral fluorescent and colorimetric sensors. Chem. Rev., 2014, 114(9), 4918-4959.
[http://dx.doi.org/10.1021/cr400568b] [PMID: 24499128]
[30]
Gunnlaugsson, T.; Glynn, M.; Tocci, G.M.; Kruger, P.E.; Pfeffer, F.M. Anion recognition and sensing in organic and aqueous media using luminescent and colorimetric sensors. Coord. Chem. Rev., 2006, 250, 3094-3117.
[http://dx.doi.org/10.1016/j.ccr.2006.08.017]
[31]
Kukkar, D.; Vellingiri, K.; Kim, K-H.A. Deep, Recent progress in biological and chemical sensing by luminescent metal-organic frameworks. Sens. Actuators B Chem., 2018, 273, 1346-1370.
[http://dx.doi.org/10.1016/j.snb.2018.06.128]
[32]
Piriya, V,S A.; Joseph, P.; Daniel S C G, K.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C, 2017, 78, 1231-1245.
[http://dx.doi.org/10.1016/j.msec.2017.05.018] [PMID: 28575962]
[33]
Morsy, S.M.I. Role of surfactants in nanotechnology and their applications. Int. J. Curr. Microbiol. Appl. Sci., 2014, 3(5), 237-260.
[34]
Salem, J.K.; El-Nahhal, I.M.; Najri, B.A.; Kodeh, F. Effect of anionic surfactants on the surface plasmon resonance band of silver nanoparticles: Determination of critical micelle concentration. J. Mol. Liq., 2016, 223, 771-774.
[http://dx.doi.org/10.1016/j.molliq.2016.09.014]
[35]
Adegoke, O.; McKenzie, C.; Daeid, N.N. Multi-shaped cationic gold nanoparticle-l-cysteine-ZnSeS quantum dots hybrid nanozyme as an intrinsic peroxidase mimic for the rapid colorimetric detection of cocaine. Sens. Actuators B Chem., 2019, 287, 416-427.
[http://dx.doi.org/10.1016/j.snb.2019.02.074]
[36]
Zeng, S.; Baillargeat, D.; Ho, H-P.; Yong, K-T. Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications. Chem. Soc. Rev., 2014, 43(10), 3426-3452.
[http://dx.doi.org/10.1039/c3cs60479a] [PMID: 24549396]
[37]
Ho, H.P.; Law, W.C.; Wu, S.Y.; Liu, X.H.; Wong, S.P.; Lin, C.; Kong, S.K. Phase-sensitive surface plasmon resonance biosensor using the photoelastic modulation technique. Sens. Actuators B Chem., 2006, 114, 80-84.
[http://dx.doi.org/10.1016/j.snb.2005.04.007]
[38]
Memon, R.; Memon, A.A.; Sherazi, S.T.H.; Sirajuddin, S.; Balouch, A.; Shah, M.R.; Mahesar, S.A.; Rajar, K.; Agheem, M.H. Application of synthesized copper nanoparticles using aqueous extract ofZiziphus mauritiana L. leaves as a colorimetric sensor for the detection of Ag. Turk. J. Chem., 2020, 44(5), 1376-1385.
[http://dx.doi.org/10.3906/kim-2001-51] [PMID: 33488237]
[39]
Priyadarshini, E.; Pradhan, N. Gold nanoparticles as efficient sensors in colorimetric detection of toxic metal ions: A review. Sens. Actuators B Chem., 2017, 238, 888-902.
[http://dx.doi.org/10.1016/j.snb.2016.06.081]
[40]
Weston, M.; Kuchel, R.P.; Ciftci, M.; Boyer, C.; Chandrawati, R. A polydiacetylene-based colorimetric sensor as an active use-by date indicator for milk. J. Colloid Interface Sci., 2020, 572, 31-38.
[http://dx.doi.org/10.1016/j.jcis.2020.03.040] [PMID: 32224349]
[41]
Hassan, S.; Nafady, A. Sirajuddin; Sherazi, S.T.H.; Kalhoro, M.S.; Arain, M.; Shah, M.R.; Talpur, M.Y.; Panhwar, S. Fabrication of highly sensitive and selective electrochemical sensors for detection of paracetamol by using piroxicam stabilized gold nanoparticles. J. Electrochem. Soc., 2017, 164, B427-B434.
[http://dx.doi.org/10.1149/2.0811709jes]
[42]
Siyal, P.; Nafady, A. Sirajuddin; Sherazi, S.T.H.; Nisar, J.; Siyal, A.A.; Shah, M.R.; Mahesar, S.A.; Bhagat, S. Highly selective, sensitive and simpler colorimetric sensor for Fe2+ detection based on biosynthesized gold nanoparticles. Spectrochimca Acta Part A, 2021, 254119645
[http://dx.doi.org/10.1016/j.saa.2021.119645]
[43]
Abdolmohammad-Zadeh, H.; Azari, Z.; Pourbasheer, E. Fluorescence resonance energy transfer between carbon quantum dots and silver nanoparticles: Application to mercuric ion sensing. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2021, 245118924
[http://dx.doi.org/10.1016/j.saa.2020.118924] [PMID: 32950856]
[44]
Yu, X.; Zhang, C.X.; Zhang, L.; Xue, Y.R.; Li, H.W.; Wu, Y. The construction of a FRET assembly by using gold nanoclusters and carbon dots and their application as a ratiometric probe for cysteine detection. Sens. Actuators B Chem., 2018, 263, 327-335.
[http://dx.doi.org/10.1016/j.snb.2018.02.072]
[45]
Wang, Y.; Ma, T.; Ma, S.; Liu, Y.; Tian, Y.; Wang, R.; Jiang, Y.; Hou, D.; Wang, J. Fluorometric determination of the antibiotic kanamycin by aptamer-induced FRET quenching and recovery between MoS2 nanosheets and carbon dots. Mikrochim. Acta, 2017, 184, 203-210.
[http://dx.doi.org/10.1007/s00604-016-2011-4]
[46]
Medintz, I.L.; Hildebrandt, N. FRET-Förster Resonance Energy Transfer: From Theory to Applications; John Wiley & Sons, 2013.
[http://dx.doi.org/10.1002/9783527656028]
[47]
Okamoto, K.; Sako, Y. Recent advances in FRET for the study of protein interactions and dynamics. Curr. Opin. Struct. Biol., 2017, 46, 16-23.
[http://dx.doi.org/10.1016/j.sbi.2017.03.010] [PMID: 29800904]
[48]
Sharma, A.; Khan, R.; Catanante, G.; Sherazi, T.A.; Bhand, S.; Hayat, A.; Marty, J.L. Designed strategies for fluorescence-based biosensors for the detection of mycotoxins. Toxins (Basel), 2018, 10, 197-206.
[http://dx.doi.org/10.3390/toxins10050197]
[49]
Anfossi, L.; Di Nardo, F.; Cavalera, S.; Giovannoli, C.; Spano, G.; Speranskaya, E.S.; Goryacheva, I.Y.; Baggiani, C. A lateral flow immunoassay for straightforward determination of fumonisin mycotoxins based on the quenching of the fluorescence of CdSe/ZnS quantum dots by gold and silver nanoparticles. Mikrochim. Acta, 2018, 185(2), 94.
[http://dx.doi.org/10.1007/s00604-017-2642-0] [PMID: 29594559]
[50]
Lu, Z.; Chen, X.; Hu, W. A fluorescence aptasensor based on semiconductor quantum dots and MoS2nanosheets for ochratoxin A detection. Sens. Actuators B Chem., 2017, 246, 61-67.
[http://dx.doi.org/10.1016/j.snb.2017.02.062]
[51]
Wu, S.; Duan, N.; Ma, X.; Xia, Y.; Wang, H.; Wang, Z.; Zhang, Q. Multiplexed fluorescence resonance energy transfer aptasensor between upconversion nanoparticles and graphene oxide for the simultaneous determination of mycotoxins. Anal. Chem., 2012, 84(14), 6263-6270.
[http://dx.doi.org/10.1021/ac301534w] [PMID: 22816786]
[52]
Rhouati, A.; Hayat, A.; Mishra, R.K.; Bueno, D.; Shahid, S.A.; Muñoz, R.; Marty, J.L. Ligand assistedstabilization of fluorescence nanoparticles; an insight on the fluorescence characteristics, dispersion stabilityand DNA loading efficiency of nanoparticles. J. Fluoresc., 2016, 26(4), 1407-1414.
[http://dx.doi.org/10.1007/s10895-016-1832-1] [PMID: 27209005]
[53]
Shi, L.; De Paoli, V.; Rosenzweig, N.; Rosenzweig, Z. Synthesis and application of quantum dots FRET-based protease sensors. J. Am. Chem. Soc., 2006, 128(32), 10378-10379.
[http://dx.doi.org/10.1021/ja063509o] [PMID: 16895398]
[54]
Duan, N.; Wu, S.; Dai, S.; Miao, T.; Chen, J.; Wang, Z. Simultaneous detection of pathogenic bacteria using an aptamer based biosensor and dual fluorescence resonance energy transfer from quantum dots to carbon nanoparticles. Mikrochim. Acta, 2015, 182, 917-923.
[http://dx.doi.org/10.1007/s00604-014-1406-3]
[55]
Yu, C.; Li, X.; Zeng, F.; Zheng, F.; Wu, S. Carbon-dot-based ratiometric fluorescent sensor for detecting hydrogen sulfide in aqueous media and inside live cells. Chem. Commun. (Camb.), 2013, 49(4), 403-405.
[http://dx.doi.org/10.1039/C2CC37329G] [PMID: 23192384]
[56]
Xu, Y.; Zhou, Y.; Ma, W.; Wang, S. A fluorescent sensor for zinc detection and removal based on core-shell functionalized Fe3O4@SiO2 nanoparticles. J. Nanomater., 2013, 2013178138
[http://dx.doi.org/10.1155/2013/178138]
[57]
Nathanael, A.J.; Hong, S.I.; Mangalaraj, D.; Chen, P.C. Large scale synthesis ofhydroxyapatite nanospheres by high gravity method. Chem. Eng. J., 2011, 173(3), 846-854.
[http://dx.doi.org/10.1016/j.cej.2011.07.053]
[58]
Nathanael, A.J.; Hong, S.I.; Oh, T.H.; Seo, Y.H.; Singh, D.; Han, S.S. Enhanced cellviability of hydroxyapatite nanowires by surfactant mediated synthesis and its growth mechanism. RSC Advances, 2016, 6, 25070-25081.
[http://dx.doi.org/10.1039/C6RA01155A]
[59]
Nathanael, A.J.; Hong, S.I.; Mangalaraj, D.; Ponpandian, N.; Chen, P.C. Template-free growth of novel hydroxyapatite nanorings: Formation mechanism and their enhanced functional properties. Cryst. Growth Des., 2012, 12, 3565-3574.
[http://dx.doi.org/10.1021/cg3003959]
[60]
Bian, T.; Zhao, K.; Meng, Q.; Tang, Y.; Jiao, H.; Luo, J.; Liu, X. Synthesis of plate-like single-crystal hydroxyl apatite rods with c-axis orientation by biotemplate small intestinal submucosa. Ceram. Int., 2017, 43, 11807-11814.
[http://dx.doi.org/10.1016/j.ceramint.2017.06.022]
[61]
Lin, K.; Wu, C.; Chang, J. Advances in synthesis of calcium phosphate crystals with controlled size and shape. Acta Biomater., 2014, 10(10), 4071-4102.
[http://dx.doi.org/10.1016/j.actbio.2014.06.017] [PMID: 24954909]
[62]
Pandey, S.; Do, J.Y.; Kim, J.; Kang, M. Fast and highly efficient catalytic degradation of dyes using κ-carrageenan stabilized silver nanoparticles nanocatalyst. Carbohydr. Polym., 2020, 230115597
[http://dx.doi.org/10.1016/j.carbpol.2019.115597] [PMID: 31887912]
[63]
Yin, Y.; Alivisatos, A.P. Colloidal nanocrystal synthesis and the organic-inorganic interface. Nature, 2005, 437(7059), 664-670.
[http://dx.doi.org/10.1038/nature04165] [PMID: 16193041]
[64]
Jun, Y.W.; Casula, M.F.; Sim, J-H.; Kim, S.Y.; Cheon, J.; Alivisatos, A.P. Surfactant-assisted elimination of a high energy facet as a means of controlling the shapes of TiO2 nanocrystals. J. Am. Chem. Soc., 2003, 125(51), 15981-15985.
[http://dx.doi.org/10.1021/ja0369515] [PMID: 14677990]
[65]
Yang, T.Y.; Yifeng, S.; Annemieke, J.; Younan, X. Surface capping agents and their roles in shape controlled synthesis of colloidal metal nanocrystals. Angew. Chem., 2020, 59(36), 15378-15401.
[http://dx.doi.org/10.1002/anie.201911135]
[66]
Kalwar, N.H. Sirajuddin; Agheem, H.; Sherazi, S.T.H.; Tagar, Z.A.; Sara, S.; Junejo, Y. Synthesis of l-methionine stabilized nickel nanowires and their application for catalytic oxidative transfer hydrogenation of isopropanol. Appl. Catalysis A, 2011, 400, 215-220.
[http://dx.doi.org/10.1016/j.apcata.2011.04.034]
[67]
Kalwar, N.H. Sirajuddin; Sherazi, S.T.H.; Khaskheli, A.R.; Hallam, K.R.; Scott, T.B.; Sara, S.; Soomro, R.A. Fabrication of small l-threonine capped nickel nanoparticles and their catalytic application. Appl. Catalysis A, 2013, 453, 54-59.
[http://dx.doi.org/10.1016/j.apcata.2012.12.005]
[68]
Soomro, R.A.; Hallam, K.R. Sirajuddin; Khaskheli, A.R.; Sherazi, S.T.H. Microwave assisted formation of l-cysteine capped nickel nanoparticles for catalytic reduction of 4-nitrophenol. Rare Met., 2015, 34(10), 683-691.
[http://dx.doi.org/10.1007/s12598-015-0475-8]
[69]
Zhang, L.; Xu, C.; Liu, C.; Li, B. Visual chiral recognition of tryptophan enantiomers using unmodified gold nanoparticles as colorimetric probes. Anal. Chim. Acta, 2014, 809, 123-127.
[http://dx.doi.org/10.1016/j.aca.2013.11.043] [PMID: 24418142]
[70]
Das, A.; Chadha, R.; Maiti, N.; Kapoor, S. Role of surfactant in the formation of gold nanoparticles in aqueous medium. J. Nanoparticles, 2014, 2014916429
[http://dx.doi.org/10.1155/2014/916429]
[71]
Shaban, S.M.; Aiad, I.; El-Sukkary, M.M.; Soliman, E.A.; El-Awady, M.Y. One step green synthesis of hexagonal silver nanoparticles and their biological activity. J. Ind. Eng. Chem., 2014, 20, 4473-4481.
[http://dx.doi.org/10.1016/j.jiec.2014.02.019]
[72]
Song, J.; Huang, P-C.; Wan, Y-Q.; Wu, F-Y. Colorimetric detection of thiocyanate based on anti-aggregation of gold nanoparticles in the presence of cetyltrimethyl ammonium bromide. Sens. Actuators B Chem., 2016, 222, 790-796.
[http://dx.doi.org/10.1016/j.snb.2015.09.006]
[73]
Rogowski, J.L.; Verma, M.S.; Gu, F.X. Discrimination of proteins using an array of surfactant-stabilized gold nanoparticles. Langmuir, 2016, 32(30), 7621-7629.
[http://dx.doi.org/10.1021/acs.langmuir.6b01339] [PMID: 27399345]
[74]
Aiad, I.; Shaban, S.M.; Moustafa, H.Y.; Hamed, A. Experimental investigation of newly synthesized gemini cationic surfactants as corrosion inhibitors of mild steel in 1.0 M HCl. Prot. Met. Phys. Chem. Surf., 2018, 54, 135-147.
[http://dx.doi.org/10.1134/S2070205118010173]
[75]
Xu, J.; Hu, J.; Peng, C.; Liu, H.; Hu, Y. A simple approach to the synthesis of silver nanowires by hydrothermal process in the presence of gemini surfactant. J. Colloid Interface Sci., 2006, 298(2), 689-693.
[http://dx.doi.org/10.1016/j.jcis.2005.12.047] [PMID: 16414058]
[76]
Liu, Q.; Guo, M.; Nie, Z.; Yuan, J.; Tan, J.; Yao, S. Spacer-mediated synthesis of size-controlled gold nanoparticles using geminis as ligands. Langmuir, 2008, 24(5), 1595-1599.
[http://dx.doi.org/10.1021/la702978z] [PMID: 18237211]
[77]
Shaban, S.M.; Lee, J.Y.; Kim, D-H. Dual-surfactant-capped Ag nanoparticles as a highly selective and sensitive colorimetric sensor for citrate detection. ACS Omega, 2020, 5(19), 10696-10703.
[http://dx.doi.org/10.1021/acsomega.9b04199] [PMID: 32455188]
[78]
Zheng, H.; Qiu, S.; Xu, K.; Luo, L.; Song, Y.; Lin, Z.; Guo, L.; Qiu, B.; Chen, G. Colorimetric and fluorometric dual-readout sensor for lysozyme. Analyst (Lond.), 2013, 138(21), 6517-6522.
[http://dx.doi.org/10.1039/c3an01194a] [PMID: 23978821]
[79]
Sahasranaman, S.; Howard, D.; Roy, S. Clinical pharmacology and pharmacogenetics of thiopurines. Eur. J. Clin. Pharmacol., 2008, 64(8), 753-767.
[http://dx.doi.org/10.1007/s00228-008-0478-6] [PMID: 18506437]
[80]
Modi, R.P.; Mehta, V.N.; Kailasa, S.K. Bifunctionalization of silver nanoparticles with 6-mercaptonicotinic acid and melamine for simultaneous colorimetric sensing of Cr3+ and Ba2+ ions. Sens. Actuators B Chem., 2014, 195, 562-571.
[http://dx.doi.org/10.1016/j.snb.2014.01.059]
[81]
Hussain, M.; Nafady, A. Sirajuddin; Sherazi, S.T.H.; Shah, M.R.; Alsalme, A.; Kalhoro, M.S.; Mahesar, S.A.; Siddiqui, S. Cefuroxime derived copper nanoparticles and their application as colorimetric sensor for trace level detection of picric acid. RSC Advances, 2016, 6, 82882-82889.
[http://dx.doi.org/10.1039/C6RA08571G]
[82]
Memon, S.S.; Nafady, A.; Solangi, A.R.; Al-Enizi, A.M. Sirajuddin; Shah, M.R.; Sherazi, S.T.H.; Memon, S.; Arain, M.; Abro, M.I.; Khattak, M.I. Sensitive and selective aggregation based colorimetric sensing of Fe3+ via interaction with acetyl salicylic acid derived gold nanoparticles. Sens. Actuators B Chem., 2018, 259, 1006-1012.
[http://dx.doi.org/10.1016/j.snb.2017.12.162]
[83]
Laghari, G.N.; Nafady, A.; Al-Saeedi, S.I.; Sherazi, S.T.H.; Nisar, J.; Shah, M.R.; Abro, M.I.; Arain, M.; Bhargava, S.K.; Bhargava, S.K. Sirajuddin. Ranolazine-functionalized copper nanoparticles as colorimetric sensor for trace level detection of As3+. Nanomaterials (Basel), 2019, 9(1), 83.
[http://dx.doi.org/10.3390/nano9010083] [PMID: 30634575]
[84]
Hussain, M.; Nafady, A.; Avcı, A.; Pehlivan, E.; Nisar, J.; Sherazi, S.T.H.; Balouch, A.; Shah, M.R.; Almaghrabi, O.A.; Ul-Haq, M.A. Sirajuddin. Biogenic silver nanoparticles for trace colorimetric sensing of enzyme disrupter fungicide vinclozolin. Nanomaterials (Basel), 2019, 9(11), 1604-1614.
[http://dx.doi.org/10.3390/nano9111604] [PMID: 31726731]
[85]
Soomro, R.A.; Nafady, A. Sirajuddin; Memon, N.; Sherazi, T.H.; Kalwar, N.H. L-cysteine protected copper nanoparticles as colorimetric sensor for mercuric ions. Talanta, 2014, 130, 415-422.
[http://dx.doi.org/10.1016/j.talanta.2014.07.023] [PMID: 25159429]
[86]
Sang, F.; Li, X.; Zhang, Z.; Liu, J.; Chen, G. Recyclable colorimetric sensor of Cr3+ and Pb2+ ions simultaneously using a zwitterionic amino acid modified gold nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2018, 193, 109-116.
[http://dx.doi.org/10.1016/j.saa.2017.11.048] [PMID: 29223455]
[87]
Raman Seth, S. L-Cysteine Functionalized Gold Nanoparticles as a Colorimetric Sensor for Ultrasensitive Detection of Toxic Metal Ion Cadmium. Mater. Today Proc., 2020, 24, 2375-2382.
[http://dx.doi.org/10.1016/j.matpr.2020.03.767]
[88]
Cui, Z.; Han, C.; Li, H. Dual-signal fenamithion probe by combining fluorescence with colorimetry based on Rhodamine B modified silver nanoparticles. Analyst (Lond.), 2011, 136(7), 1351-1356.
[http://dx.doi.org/10.1039/c0an00617c] [PMID: 21305084]
[89]
Sung, Y.; Wu, S. Colorimetric detection of Cd(II) ions based on di-(1H-pyrrol-2-yl)methanethione functionalized gold nanoparticles. Sens. Actuators B Chem., 2014, 201, 86-91.
[http://dx.doi.org/10.1016/j.snb.2014.04.069]
[90]
Chaiendoo, K.; Tuntulani, T.; Ngeontae, W. A highly selective colorimetric sensor for ferrous ion based on polymethylacrylic acid-templated silver nanoclusters. Sens. Actuators B Chem., 2015, 207, 658-667.
[http://dx.doi.org/10.1016/j.snb.2014.10.062]
[91]
Wang, H-B.; Zhang, H-D.; Chen, Y.; Huang, K-J.; Liu, Y-M. A label-free and ultrasensitive fluorescent sensor for dopamine detection based on double-stranded DNA templated copper nanoparticles. Sens. Actuators B Chem., 2015, 220, 146-153.
[http://dx.doi.org/10.1016/j.snb.2015.05.055]
[92]
Rahim, S.; Khalid, S.; Bhanger, M.I.; Shah, M.R.; Malik, M.I. Polystyrene-block-poly(2-vinylpyridine)-conjugated silver nanoparticles as colorimetric sensor for quantitative determination of Cartap in aqueous media and blood plasma. Sens. Actuators B Chem., 2018, 259, 878-887.
[http://dx.doi.org/10.1016/j.snb.2017.12.138]
[93]
Elahia, N.; Kamalia, M.; Baghersad, M.H.; Amini, B. A fluorescence Nano-biosensors immobilization on Iron (MNPs) and gold (AuNPs) nanoparticles for detection of Shigella spp. Mater. Sci. Eng. C, 2019, 105, 110-113.
[http://dx.doi.org/10.1016/j.msec.2019.110113]

Rights & Permissions Print Cite
© 2025 Bentham Science Publishers | Privacy Policy