Generic placeholder image

Current Nanoscience

Editor-in-Chief

ISSN (Print): 1573-4137
ISSN (Online): 1875-6786

Review Article

Arsenic Trioxide-based Nanomedicines as a Therapeutic Combination Approach for Treating Gliomas: A Review

Author(s): Rabeea Siddique, Suliman Khan*, Qian Bai, Hongmin Li, Muhammad Wajid Ullah* and Mengzhou Xue*

Volume 17, Issue 3, 2021

Published on: 07 December, 2020

Page: [406 - 417] Pages: 12

DOI: 10.2174/1573413716999201207142810

Price: $65

Abstract

Glioblastoma is one of the fatal and aggressive types of brain tumors. The current standard treatment for glioblastoma multiform (GBM) is surgical resection coupled with radiotherapy and chemotherapy. Although ample research has been performed, and multiple novel pharmacological approaches have been investigated for developing effective therapeutic drugs for treating GBM, the success of extending the survival of the patient is notably low. The unique barrier limiting GBM treatment is the presence of the blood-brain barrier (BBB), and most of the chemotherapeutic drugs fail to cross it due to their high molecular weight and large size. The currently used chemo drugs for GBM have poor penetration ability to the brain and cause off-target toxicity due to a high dose for maintaining drug concentration at the tumor site. The use of nanomaterial composites for co-delivery of multiple therapeutic drugs offers several advantages by encompassing the aforementioned obstacles. In this review, the first part sheds light on the characteristics of GBM and the major challenges faced by the current pharmacological treatments. The second part emphasizes the application of nanomaterials- based nanotherapeutics to overcome the challenges associated with current GBM therapy. A closer look is given to the use of FDA approved traditional Chinese medicine arsenic trioxide (ATO) and its application as co-delivery nanoparticles (i.e., ATO-NPs) against solid tumors, especially gliomas. In short, a breakthrough in nanotechnology offers a promising platform to treat GBM; however, rigorous efforts need to be devoted in order to develop novel therapeutic drugs with higher therapeutic efficiency and limited side effects.

Keywords: Glioblastoma, nanomaterials, arsenic trioxide, combination therapy, solid tumor, applications.

Graphical Abstract

[1]
Bureta, C.; Saitoh, Y.; Tokumoto, H.; Sasaki, H. Synergistic effect of arsenic trioxide, vismodegib and temozolomide on glioblastoma. Oncol. Rep., 2019, 41, 3404-3412.
[2]
Mujokoro, B.; Adabi, M.; Sadroddiny, E.; Adabi, M.; Khosravani, M. Nano-structures mediated co-delivery of therapeutic agents for glioblastoma treatment: A review. Mater. Sci. Eng. C, 2016, 69, 1092-1102.
[http://dx.doi.org/10.1016/j.msec.2016.07.080] [PMID: 27612807]
[3]
Wadajkar, A.S.; Dancy, J.G.; Hersh, D.S.; Anastasiadis, P.; Tran, N.L.; Woodworth, G.F.; Winkles, J.A.; Kim, A.J. Tumor-targeted nanotherapeutics: overcoming treatment barriers for glioblastoma. Nanomed. Nanobiotechnol., 2016, 9(4), e1439.
[4]
Zhao, M.; van Straten, D.; Broekman, M.L.D.; Préat, V.; Schiffelers, R.M. Nanocarrier-based drug combination therapy for glioblastoma. Theranostics, 2020, 10(3), 1355-1372.
[http://dx.doi.org/10.7150/thno.38147] [PMID: 31938069]
[5]
Liu, H.; Zhang, J.; Chen, X.; Du, X.S.; Zhang, J.L.; Liu, G.; Zhang, W.G. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale, 2016, 8(15), 7808-7826.
[http://dx.doi.org/10.1039/C6NR00147E] [PMID: 27029509]
[6]
Abdalla, A.M.E.; Xiao, L.; Ullah, M.W.; Yu, M.; Ouyang, C.; Yang, G. Current challenges of cancer anti-angiogenic therapy and the promise of nanotherapeutics. Theranostics, 2018, 8(2), 533-548.
[http://dx.doi.org/10.7150/thno.21674] [PMID: 29290825]
[7]
Perry, J.R.; Laperriere, N.; O’Callaghan, C.J.; Brandes, A.A.; Menten, J.; Phillips, C.; Fay, M.; Nishikawa, R.; Cairncross, J.G.; Roa, W.; Osoba, D.; Rossiter, J.P.; Sahgal, A.; Hirte, H.; Laigle-Donadey, F.; Franceschi, E.; Chinot, O.; Golfinopoulos, V.; Fariselli, L.; Wick, A.; Feuvret, L.; Back, M.; Tills, M.; Winch, C.; Baumert, B.G.; Wick, W.; Ding, K.; Mason, W.P. Trial Investigators. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N. Engl. J. Med., 2017, 376(11), 1027-1037.
[http://dx.doi.org/10.1056/NEJMoa1611977] [PMID: 28296618]
[8]
Diaz, R.J.; Ali, S.; Qadir, M.G.; De La Fuente, M.I.; Ivan, M.E.; Komotar, R.J. The role of bevacizumab in the treatment of glioblastoma. J. Neurooncol., 2017, 133(3), 455-467.
[http://dx.doi.org/10.1007/s11060-017-2477-x] [PMID: 28527008]
[9]
Park, J.W.; Kirpotin, D.B.; Hong, K.; Shalaby, R.; Shao, Y.; Nielsen, U.B.; Marks, J.D.; Papahadjopoulos, D.; Benz, C.C. Tumor targeting using anti-her2 immunoliposomes. J. Control. Release, 2001, 74(1-3), 95-113.
[http://dx.doi.org/10.1016/S0168-3659(01)00315-7] [PMID: 11489487]
[10]
Gabizon, A.; Shmeeda, H.; Barenholz, Y. Pharmacokinetics of pegylated liposomal Doxorubicin: review of animal and human studies. Clin. Pharmacokinet., 2003, 42(5), 419-436.
[http://dx.doi.org/10.2165/00003088-200342050-00002] [PMID: 12739982]
[11]
Griffon-Etienne, G.; Boucher, Y.; Brekken, C.; Suit, H.D.; Jain, R.K. Taxane-induced apoptosis decompresses blood vessels and lowers interstitial fluid pressure in solid tumors: clinical implications. Cancer Res., 1999, 59(15), 3776-3782.
[PMID: 10446995]
[12]
Thambi, T.; Son, S.; Lee, D.S.; Park, J.H. Poly(ethylene glycol)-b-poly(lysine) copolymer bearing nitroaromatics for hypoxia-sensitive drug delivery. Acta Biomater., 2016, 29, 261-270.
[http://dx.doi.org/10.1016/j.actbio.2015.10.011] [PMID: 26472611]
[13]
Jiang, W.; Huang, Y.; An, Y.; Kim, B.Y.S. Remodeling tumor vasculature to enhance delivery of intermediate-sized nanoparticles. ACS Nano, 2015, 9(9), 8689-8696.
[http://dx.doi.org/10.1021/acsnano.5b02028] [PMID: 26212564]
[14]
Ruan, S.; Cao, X.; Cun, X.; Hu, G.; Zhou, Y.; Zhang, Y.; Lu, L.; He, Q.; Gao, H. Matrix metalloproteinase-sensitive size-shrinkable nanoparticles for deep tumor penetration and pH triggered doxorubicin release. Biomaterials, 2015, 60, 100-110.
[http://dx.doi.org/10.1016/j.biomaterials.2015.05.006] [PMID: 25988725]
[15]
Griset, A.P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y.L.; Grinstaff, M.W. Expansile nanoparticles: synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc., 2009, 131(7), 2469-2471.
[http://dx.doi.org/10.1021/ja807416t] [PMID: 19182897]
[16]
He, Q.; Shi, J. MSN anti-cancer nanomedicines: chemotherapy enhancement, overcoming of drug resistance, and metastasis inhibition. Adv. Mater., 2014, 26(3), 391-411.
[http://dx.doi.org/10.1002/adma.201303123] [PMID: 24142549]
[17]
Soma, C.E.; Dubernet, C.; Bentolila, D.; Benita, S.; Couvreur, P. Reversion of multidrug resistance by co-encapsulation of doxorubicin and cyclosporin A in polyalkylcyanoacrylate nanoparticles. Biomaterials, 2000, 21(1), 1-7.
[http://dx.doi.org/10.1016/S0142-9612(99)00125-8] [PMID: 10619673]
[18]
Devalapally, H.; Duan, Z.; Seiden, M.V.; Amiji, M.M. Modulation of drug resistance in ovarian adenocarcinoma by enhancing intracellular ceramide using tamoxifen-loaded biodegradable polymeric nanoparticles. Clin. Cancer Res., 2008, 14(10), 3193-3203.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-4973] [PMID: 18483388]
[19]
Kim, S.H.; Jeong, J.H.; Lee, S.H.; Kim, S.W.; Park, T.G. Local and systemic delivery of VEGF siRNA using polyelectrolyte complex micelles for effective treatment of cancer. J. Control. Release, 2008, 129(2), 107-116.
[http://dx.doi.org/10.1016/j.jconrel.2008.03.008] [PMID: 18486981]
[20]
Benny, O.; Fainaru, O.; Adini, A.; Cassiola, F.; Bazinet, L.; Adini, I.; Pravda, E.; Nahmias, Y.; Koirala, S.; Corfas, G.; D’Amato, R.J.; Folkman, J. An orally delivered small-molecule formulation with antiangiogenic and anticancer activity. Nat. Biotechnol., 2008, 26(7), 799-807.
[http://dx.doi.org/10.1038/nbt1415] [PMID: 18587385]
[21]
Ganipineni, L.P.; Danhier, F.; Préat, V. Drug delivery challenges and future of chemotherapeutic nanomedicine for glioblastoma treatment. J. Control. Rel. Soc., 2018, 281, 42-57.
[22]
Saber-samandari, S.; Nezafati, N.; Saber-samandari, S. The effective role of hydroxyapatite- based composites in anticancer drug- delivery systems. Crit. Rev. Ther. Drug Carrier Syst., 2016, 33(1), 41-75.
[23]
Liu, X.; Chen, S.; Zhang, H.; Zhou, J.; Fan, H.; Liang, X. Magnetic nanomaterials for advanced regenerative medicine: the promise and challenges. Adv. Mater., 2018, 31(45), e1804922.
[PMID: 30511746]
[24]
Li, S.; Jasim, A.; Zhao, W.; Fu, L.; Ullah, M.W.; Shi, Z.; Yang, G. Fabrication of pH-electroactive bacterial cellulose/polyaniline hydrogel for the development of a controlled drug release system. ES Mater. Manuf., 2018, 1, 41-49.
[http://dx.doi.org/10.30919/esmm5f120]
[25]
Watermann, A.; Brieger, J. Mesoporous silica nanoparticles as drug delivery vehicles in cancer. Nanomaterials (Basel), 2017, 7(7), 189.
[http://dx.doi.org/10.3390/nano7070189] [PMID: 28737672]
[26]
Bayda, S.; Hadla, M.; Palazzolo, S.; Riello, P.; Corona, G.; Toffoli, G.; Rizzolio, F. Inorganic nanoparticles for cancer therapy: a transition from lab to clinic., Curr. Medic. Chem., 2018, (25), 4269-4303..
[27]
Wang, Y.; Hao, H.; Liu, H.; Wang, Y.; Li, Y.; Yang, G.; Ma, J. Selenite-releasing bone mineral nanoparticles retard bone tumor growth and improve healthy tissue functions. Adv. Healthc. Mater., 2015, 4(12), 1813-1818.
[http://dx.doi.org/10.1002/adhm.201500307]
[28]
Khan, S.; Ullah, M.W.; Siddique, R.; Liu, Y.; Ullah, I.; Xue, M.; Yang, G.; Hou, H. Catechins-modified selenium-doped hydroxyapatite nanomaterials for improved osteosarcoma therapy through generation of reactive oxygen species. Front. Oncol., 2019, 9, 499.
[http://dx.doi.org/10.3389/fonc.2019.00499] [PMID: 31263675]
[29]
Fei, W.; Zhang, Y.; Han, S.; Tao, J.; Zheng, H.; Wei, Y.; Zhu, J.; Li, F.; Wang, X. RGD conjugated liposome-hollow silica hybrid nanovehicles for targeted and controlled delivery of arsenic trioxide against hepatic carcinoma. Int. J. Pharm., 2017, 519(1-2), 250-262.
[http://dx.doi.org/10.1016/j.ijpharm.2017.01.031] [PMID: 28109899]
[30]
Dawood, M.; Hamdoun, S.; Efferth, T. Multifactorial modes of action of arsenic trioxide in cancer cells as analyzed by classical and network pharmacology. Front. Pharmacol., 2018, 9, 143.
[http://dx.doi.org/10.3389/fphar.2018.00143] [PMID: 29535630]
[31]
Yue, Z.; Zhong, L.; Mou, Y.; Wang, X.; Zhang, H.; Wang, Y.; Xia, J.; Li, R.; Wang, Z. Arsenic trioxide activate transcription of heme oxygenase-1 by promoting nuclear translocation of NFE2L2. Int. J. Med. Sci., 2015, 12(8), 674-679.
[http://dx.doi.org/10.7150/ijms.12450] [PMID: 26283888]
[32]
Tomuleasa, C.; Soritau, O.; Kacso, G.; Fischer-Fodor, E.; Cocis, A.; Ioani, H.; Timis, T.; Petrescu, M.; Cernea, D.; Virag, P.; Irimie, A.; Florian, I.S. Arsenic trioxide sensitizes cancer stem cells to chemoradiotherapy. A new approach in the treatment of inoperable glioblastoma multiforme. J. BUON, 2010, 15(4), 758-762.
[PMID: 21229642]
[33]
Patel, A.P.; Tirosh, I.; Trombetta, J.J.; Shalek, A.K.; Gillespie, S.M.; Wakimoto, H.; Cahill, D.P.; Nahed, B.V.; Curry, W.T.; Martuza, R.L.; Louis, D.N.; Rozenblatt-Rosen, O.; Suvà, M.L.; Regev, A.; Bernstein, B.E. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science, 2014, 344(6190), 1396-1401.
[http://dx.doi.org/10.1126/science.1254257] [PMID: 24925914]
[34]
Zhou, W.; Cheng, L.; Shi, Y.; Ke, S.Q.; Huang, Z.; Fang, X.; Chu, C.W.; Xie, Q.; Bian, X.W.; Rich, J.N.; Bao, S. Arsenic trioxide disrupts glioma stem cells via promoting PML degradation to inhibit tumor growth. Oncotarget, 2015, 6(35), 37300-37315.
[http://dx.doi.org/10.18632/oncotarget.5836] [PMID: 26510911]
[35]
Wu, J.; Ji, Z.; Liu, H.; Liu, Y.; Han, D.; Shi, C.; Shi, C.; Wang, C.; Yang, G.; Chen, X.; Shen, C.; Li, H.; Bi, Y.; Zhang, D.; Zhao, S. Arsenic trioxide depletes cancer stem-like cells and inhibits repopulation of neurosphere derived from glioblastoma by downregulation of Notch pathway. Toxicol. Lett., 2013, 220(1), 61-69.
[http://dx.doi.org/10.1016/j.toxlet.2013.03.019] [PMID: 23542114]
[36]
Tang, W.; Fan, W.; Lau, J.; Deng, L.; Shen, Z.; Chen, X. Emerging blood-brain-barrier-crossing nanotechnology for brain cancer theranostics. Chem. Soc. Rev., 2019, 48(11), 2967-3014.
[http://dx.doi.org/10.1039/C8CS00805A] [PMID: 31089607]
[37]
Yang, J.; McNeish, B.; Butterfield, C.; Moses, M.A. Lipocalin 2 is a novel regulator of angiogenesis in human breast cancer. FASEB J., 2013, 27(1), 45-50.
[http://dx.doi.org/10.1096/fj.12-211730] [PMID: 22982376]
[38]
Arvizo, R.R.; Rana, S.; Miranda, O.R.; Bhattacharya, R.; Rotello, V.M.; Mukherjee, P. Mechanism of anti-angiogenic property of gold nanoparticles: role of nanoparticle size and surface charge. Nanomedicine (Lond.), 2011, 7(5), 580-587.
[http://dx.doi.org/10.1016/j.nano.2011.01.011] [PMID: 21333757]
[39]
Baharara, J.; Namvar, F.; Mousavi, M.; Ramezani, T.; Mohamad, R. Anti-angiogenesis effect of biogenic silver nanoparticles synthesized using saliva officinalis on chick chorioalantoic membrane (CAM). Molecules, 2014, 19(9), 13498-13508.
[http://dx.doi.org/10.3390/molecules190913498] [PMID: 25255752]
[40]
Gurunathan, S.; Lee, K-J.; Kalishwaralal, K.; Sheikpranbabu, S.; Vaidyanathan, R.; Eom, S.H. Antiangiogenic properties of silver nanoparticles. Biomaterials, 2009, 30(31), 6341-6350.
[http://dx.doi.org/10.1016/j.biomaterials.2009.08.008] [PMID: 19698986]
[41]
Mroczek-Sosnowska, N.; Łukasiewicz, M.; Wnuk, A.; Sawosz, E.; Niemiec, J.; Skot, A.; Jaworski, S.; Chwalibog, A. In ovo administration of copper nanoparticles and copper sulfate positively influences chicken performance. J. Sci. Food Agric., 2016, 96(9), 3058-3062.
[http://dx.doi.org/10.1002/jsfa.7477] [PMID: 26417698]
[42]
Zhang, R.; Pan, D.; Cai, X.; Yang, X.; Senpan, A.; Allen, J.S.; Lanza, G.M.; Wang, L.V. alphaVbeta3-targeted copper nanoparticles incorporating an Sn 2 lipase-labile fumagillin prodrug for photoacoustic neovascular imaging and treatment. Theranostics, 2015, 5(2), 124-133.
[http://dx.doi.org/10.7150/thno.10014] [PMID: 25553103]
[43]
Song, H.; Wang, W.; Zhao, P.; Qi, Z.; Zhao, S. Cuprous oxide nanoparticles inhibit angiogenesis via down regulation of VEGFR2 expression. Nanoscale, 2014, 6(6), 3206-3216.
[http://dx.doi.org/10.1039/c3nr04363k] [PMID: 24499922]
[44]
Alpaslan, E.; Yazici, H.; Golshan, N.H.; Ziemer, K.S.; Webster, T.J. PH-dependent activity of dextran-coated cerium oxide nanoparticles on prohibiting osteosarcoma cell proliferation. ACS Biomater. Sci. Eng., 2015, 1(11), 1096-1103.
[http://dx.doi.org/10.1021/acsbiomaterials.5b00194]
[45]
Lord, M.S.; Tsoi, B.; Gunawan, C.; Teoh, W.Y.; Amal, R.; Whitelock, J.M. Anti-angiogenic activity of heparin functionalised cerium oxide nanoparticles. Biomaterials, 2013, 34(34), 8808-8818.
[http://dx.doi.org/10.1016/j.biomaterials.2013.07.083] [PMID: 23942211]
[46]
Wierzbicki, M.; Sawosz, E.; Grodzik, M.; Prasek, M.; Jaworski, S.; Chwalibog, A. Comparison of anti-angiogenic properties of pristine carbon nanoparticles. Nanoscale Res. Lett., 2013, 8(1), 195.
[http://dx.doi.org/10.1186/1556-276X-8-195] [PMID: 23618362]
[47]
Chen, Y.; Wang, X.; Liu, T.; Zhang, D.S.; Wang, Y.; Gu, H.; Di, W. Highly effective antiangiogenesis via magnetic mesoporous silica-based siRNA vehicle targeting the VEGF gene for orthotopic ovarian cancer therapy. Int. J. Nanomedicine, 2015, 10, 2579-2594.
[http://dx.doi.org/10.2147/IJN.S78774] [PMID: 25848273]
[48]
Satchi-Fainaro, R.; Puder, M.; Davies, J.W.; Tran, H.T.; Sampson, D.A.; Greene, A.K.; Corfas, G.; Folkman, J. Targeting angiogenesis with a conjugate of HPMA copolymer and TNP-470. Nat. Med., 2004, 10(3), 255-261.
[http://dx.doi.org/10.1038/nm1002] [PMID: 14981512]
[49]
Anand, P.; Nair, H.B.; Sung, B.; Kunnumakkara, A.B.; Yadav, V.R.; Tekmal, R.R.; Aggarwal, B.B. Design of curcumin-loaded PLGA nanoparticles formulation with enhanced cellular uptake, and increased bioactivity in vitro and superior bioavailability in vivo. Biochem. Pharmacol., 2010, 79(3), 330-338.
[http://dx.doi.org/10.1016/j.bcp.2009.09.003] [PMID: 19735646]
[50]
Gu, G.; Hu, Q.; Feng, X.; Gao, X.; Menglin, J.; Kang, T.; Jiang, D.; Song, Q.; Chen, H.; Chen, J. PEG-PLA nanoparticles modified with APTEDB peptide for enhanced anti-angiogenic and anti-glioma therapy. Biomaterials, 2014, 35(28), 8215-8226.
[http://dx.doi.org/10.1016/j.biomaterials.2014.06.022] [PMID: 24974009]
[51]
Pillé, J-Y.; Li, H.; Blot, E.; Bertrand, J-R.; Pritchard, L-L.; Opolon, P.; Maksimenko, A.; Lu, H.; Vannier, J-P.; Soria, J.; Malvy, C.; Soria, C. Intravenous delivery of anti-RhoA small interfering RNA loaded in nanoparticles of chitosan in mice: safety and efficacy in xenografted aggressive breast cancer. Hum. Gene Ther., 2006, 17(10), 1019-1026.
[http://dx.doi.org/10.1089/hum.2006.17.1019] [PMID: 17007568]
[52]
Carrasquillo, K.G.; Ricker, J.A.; Rigas, I.K.; Miller, J.W.; Gragoudas, E.S.; Adamis, A.P. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-co-glycolic)acid microspheres. Invest. Ophthalmol. Vis. Sci., 2003, 44(1), 290-299.
[http://dx.doi.org/10.1167/iovs.01-1156] [PMID: 12506087]
[53]
Yang, F.; Cho, S-W.; Son, S.M.; Bogatyrev, S.R.; Singh, D.; Green, J.J.; Mei, Y.; Park, S.; Bhang, S.H.; Kim, B-S.; Langer, R.; Anderson, D.G. Genetic engineering of human stem cells for enhanced angiogenesis using biodegradable polymeric nanoparticles. Proc. Natl. Acad. Sci. USA, 2010, 107(8), 3317-3322.
[http://dx.doi.org/10.1073/pnas.0905432106] [PMID: 19805054]
[54]
Banerjee, I.; De, K.; Mukherjee, D.; Dey, G.; Chattopadhyay, S.; Mukherjee, M.; Mandal, M.; Bandyopadhyay, A.K.; Gupta, A.; Ganguly, S.; Misra, M. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomater., 2016, 38, 69-81.
[http://dx.doi.org/10.1016/j.actbio.2016.04.026] [PMID: 27109765]
[55]
Emadi, A.; Gore, S.D. Arsenic trioxide - An old drug rediscovered. Blood Rev., 2010, 24(4-5), 191-199.
[http://dx.doi.org/10.1016/j.blre.2010.04.001] [PMID: 20471733]
[56]
Arsenic: Medical and Biological Effects of Environmental Pollutants; The National Academies Press: Washington, DC, 1977.
[57]
Zhang, P. On arsenic trioxide in the clinical treatment of acute promyelocytic leukemia. Leuk. Res. Rep., 2017, 7, 29-32.
[http://dx.doi.org/10.1016/j.lrr.2017.03.001] [PMID: 28462082]
[58]
Shooshtary, S.; Behtash, S.; Nafisi, S. Arsenic trioxide binding to serum proteins. J. Photochem. Photobiol. B, 2015, 148, 31-36.
[http://dx.doi.org/10.1016/j.jphotobiol.2015.03.001] [PMID: 25863441]
[59]
Subbarayan, P.R.; Ardalan, B. In the war against solid tumors arsenic trioxide needs partners. J. Gastrointest. Cancer, 2014, 45(3), 363-371.
[http://dx.doi.org/10.1007/s12029-014-9617-8] [PMID: 24825822]
[60]
Warrell, R.P., Jr Reply to ‘Arsenic patent keeps drug for rare cancer out of reach for many’. Nat. Med., 2007, 13(11), 1278.
[http://dx.doi.org/10.1038/nm1107-1278] [PMID: 17987017]
[61]
Xiao, X.; Liu, Y.; Guo, M.; Fei, W.; Zheng, H.; Zhang, R.; Zhang, Y.; Wei, Y.; Zheng, G.; Li, F. pH-triggered sustained release of arsenic trioxide by polyacrylic acid capped mesoporous silica nanoparticles for solid tumor treatment in vitro and in vivo. J. Biomater. Appl., 2016, 31(1), 23-35.
[http://dx.doi.org/10.1177/0885328216637211] [PMID: 27059495]
[62]
Zhang, Y.; Dai, C.; Yuan, C.; Wu, H.; Xiao, Z.; Lei, Z.; Yang, D.; Le, X. C.; Fu, L.; Chen, Z. Establishment and characterization of arsenic trioxide resistant KB/ATO cells Acta Pharmac. Sin., 2017, 1-7..
[63]
Wang, Y.; Wang, L.; Yin, C.; An, B.; Hao, Y.; Wei, T.; Li, L.; Song, G. Arsenic trioxide inhibits breast cancer cell growth via microRNA-328/hERG pathway in MCF-7 cells. Mol. Med. Rep., 2015, 12(1), 1233-1238.
[http://dx.doi.org/10.3892/mmr.2015.3558] [PMID: 25824027]
[64]
Gu, S.; Lai, Y.; Chen, H.; Liu, Y.; Zhang, Z. miR-155 mediates arsenic trioxide resistance by activating Nrf2 and suppressing apoptosis in lung cancer cells. Sci. Rep., 2017, 7(1), 12155.
[http://dx.doi.org/10.1038/s41598-017-06061-x] [PMID: 28939896]
[65]
Bao, X.; Ren, T.; Huang, Y.; Wang, S.; Zhang, F.; Liu, K.; Zheng, B.; Guo, W. Induction of the mesenchymal to epithelial transition by demethylation-activated microRNA-125b is involved in the anti-migration/invasion effects of arsenic trioxide on human chondrosarcoma. J. Exp. Clin. Cancer Res., 2016, 35(1), 129.
[http://dx.doi.org/10.1186/s13046-016-0407-y] [PMID: 27576314]
[66]
Lang, M.; Wang, X.; Wang, H.; Dong, J.; Lan, C.; Hao, J.; Huang, C.; Li, X.; Yu, M.; Yang, Y.; Yang, S.; Ren, H. Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Lett., 2016, 378(2), 87-96.
[http://dx.doi.org/10.1016/j.canlet.2016.05.016] [PMID: 27212442]
[67]
Chiu, H.W.; Tseng, Y.C.; Hsu, Y.H.; Lin, Y.F.; Foo, N.P.; Guo, H.R.; Wang, Y.J. Arsenic trioxide induces programmed cell death through stimulation of ER stress and inhibition of the ubiquitin-proteasome system in human sarcoma cells. Cancer Lett., 2015, 356(2 Pt B), 762-772.
[http://dx.doi.org/10.1016/j.canlet.2014.10.025] [PMID: 25449439]
[68]
Firdaus, F.; Zafeer, M.F.; Waseem, M.; Anis, E.; Hossain, M.M.; Afzal, M. Ellagic acid mitigates arsenic-trioxide-induced mitochondrial dysfunction and cytotoxicity in SH-SY5Y cells. J. Biochem. Mol. Toxicol., 2018, 32(2), 4-11.
[http://dx.doi.org/10.1002/jbt.22024] [PMID: 29314450]
[69]
Wang, Y.; Wei, Y.; Zhang, H.; Shi, Y.; Li, Y.; Li, R. Arsenic trioxide induces apoptosis of p53 null osteosarcoma MG63 cells through the inhibition of catalase. Med. Oncol., 2012, 29(2), 1328-1334.
[http://dx.doi.org/10.1007/s12032-011-9848-5] [PMID: 21308489]
[70]
Jiang, L.; Wang, L.; Chen, L.; Cai, G.H.; Ren, Q.Y.; Chen, J.Z.; Shi, H.J.; Xie, Y.H. As2O3 induces apoptosis in human hepatocellular carcinoma HepG2 cells through a ROS-mediated mitochondrial pathway and activation of caspases. Int. J. Clin. Exp. Med., 2015, 8(2), 2190-2196.
[PMID: 25932150]
[71]
Nooshinfar, E.; Bashash, D.; Safaroghli-Azar, A.; Bayati, S.; Rezaei-Tavirani, M.; Ghaffari, S.H.; Akbari, M.E. Melatonin promotes ATO-induced apoptosis in MCF-7 cells: Proposing novel therapeutic potential for breast cancer. Biomed. Pharmacother., 2016, 83, 456-465.
[http://dx.doi.org/10.1016/j.biopha.2016.07.004] [PMID: 27427852]
[72]
Ardalan, B.; Subbarayan, P.R.; Ramos, Y.; Gonzalez, M.; Fernandez, A.; Mezentsev, D.; Reis, I.; Duncan, R.; Podolsky, L.; Lee, K.; Lima, M.; Ganjei-Azar, P. A phase I study of 5-fluorouracil/leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma. Clin. Cancer Res., 2010, 16(11), 3019-3027.
[http://dx.doi.org/10.1158/1078-0432.CCR-09-2590] [PMID: 20501625]
[73]
Podolsky, L.; Oh, M.; Subbarayan, P.R.; Francheschi, D.; Livingstone, A.; Ardalan, B. 5-Fluorouracil/Leucovorin and arsenic trioxide for patients with refractory/relapsed colorectal carcinoma: A clinical experience. Acta Onco., 2011, 50(4), 602-605.
[74]
Shi, Y.; Wei, Y.; Qu, S. Arsenic induces apoptosis of human umbilical vein endothelial cells through mitochondrial pathways., 2010.10(3), 153-160..
[http://dx.doi.org/10.1007/s12012-010-9073-z]
[75]
Vuky, J.; Yu, R.; Schwartz, L.; Motzer, R.J.; Phase, I.I. Phase II trial of arsenic trioxide in patients with metastatic renal cell carcinoma. Invest. New Drugs, 2002, 20(3), 327-330.
[http://dx.doi.org/10.1023/A:1016270206374] [PMID: 12201495]
[76]
Beer, T.M.; Tangen, C.M.; Nichols, C.R.; Margolin, K.A.; Dreicer, R.; Stephenson, W.T.; Quinn, D.I.; Raghavan, D.; Crawford, E.D. Southwest Oncology Group phase II study of arsenic trioxide in patients with refractory germ cell malignancies. Cancer, 2006, 106(12), 2624-2629.
[http://dx.doi.org/10.1002/cncr.21925] [PMID: 16688776]
[77]
Lin, C-C.; Hsu, C.; Hsu, C-H.; Hsu, W-L.; Cheng, A-L.; Yang, C-H. Arsenic trioxide in patients with hepatocellular carcinoma: a phase II trial. Invest. New Drugs, 2007, 25(1), 77-84.
[http://dx.doi.org/10.1007/s10637-006-9004-9] [PMID: 16937079]
[78]
Lin, C-C.; Pu, Y-S.; Hsu, C-H.; Keng, H-Y.; Cheng, A-L.; Yang, C-H. Acute encephalopathy following arsenic trioxide for metastatic urothelial carcinoma. Urol. Oncol., 2008, 26(6), 659-661.
[http://dx.doi.org/10.1016/j.urolonc.2008.02.018] [PMID: 18555710]
[79]
Zhang, J.; Zhang, Y.; Wang, W.; Li, C.; Zhang, Z. Double-Sided Personality : Effects of Arsenic Trioxide on Inflammation; Inflamation, 2018.
[80]
Sun, Y.; Wang, C.; Wang, L.; Dai, Z.; Yang, K. Arsenic trioxide induces apoptosis and the formation of reactive oxygen species in rat glioma cells. Cell. Mol. Biol. Lett., 2018, 23, 13.
[http://dx.doi.org/10.1186/s11658-018-0074-4] [PMID: 29610575]
[81]
Cheng, Y.; Li, Y.; Ma, C.; Song, Y.; Xu, H.; Yu, H.; Xu, S.; Mu, Q.; Li, H.; Chen, Y.; Zhao, G. Arsenic trioxide inhibits glioma cell growth through induction of telomerase displacement and telomere dysfunction. Oncotarget, 2016, 7(11), 12682-12692.
[http://dx.doi.org/10.18632/oncotarget.7259] [PMID: 26871293]
[82]
Ul-Islam, M.; Subhan, F.; Islam, S.U.; Khan, S.; Shah, N.; Manan, S.; Ullah, M.W.; Yang, G. Development of three-dimensional bacterial cellulose/chitosan scaffolds: Analysis of cell-scaffold interaction for potential application in the diagnosis of ovarian cancer. Int. J. Biol. Macromol., 2019, 137, 1050-1059.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.07.050] [PMID: 31295500]
[83]
Ding, D.; Lim, K.S.; Eberhart, C.G. Arsenic trioxide inhibits Hedgehog, Notch and stem cell properties in glioblastoma neurospheres. Acta Neuropathol. Commun., 2014, 2, 31.
[http://dx.doi.org/10.1186/2051-5960-2-31] [PMID: 24685274]
[84]
Bell, J.B.; Eckerdt, F.; Dhruv, H.D.; Finlay, D.; Peng, S.; Kim, S.; Kroczynska, B.; Beauchamp, E.M.; Alley, K.; Clymer, J.; Goldman, S.; Cheng, S-Y.; James, C.D.; Nakano, I.; Horbinski, C.; Mazar, A.P.; Vuori, K.; Kumthekar, P.; Raizer, J.; Berens, M.E.; Platanias, L.C. Differential response of glioma stem cells to arsenic trioxide therapy is regulated by MNK1 and mRNA translation. Mol. Cancer Res., 2018, 16(1), 32-46.
[http://dx.doi.org/10.1158/1541-7786.MCR-17-0397] [PMID: 29042487]
[85]
Sun, H.; Zhang, S. Arsenic trioxide regulates the apoptosis of glioma cell and glioma stem cell via down-regulation of stem cell marker Sox2. Biochem. Biophys. Res. Commun., 2011, 410(3), 692-697.
[http://dx.doi.org/10.1016/j.bbrc.2011.06.060] [PMID: 21703238]
[86]
Fang, J-H.; Lai, Y-H.; Chiu, T-L.; Chen, Y-Y.; Hu, S-H.; Chen, S-Y. Magnetic core-shell nanocapsules with dual-targeting capabilities and co-delivery of multiple drugs to treat brain gliomas. Adv. Healthc. Mater., 2014, 3(8), 1250-1260.
[http://dx.doi.org/10.1002/adhm.201300598] [PMID: 24623647]
[87]
Lu, Y.; Han, S.; Zheng, H.; Ma, R.; Ping, Y.; Zou, J.; Tang, H.; Zhang, Y.; Xu, X.; Li, F. A novel RGDyC/PEG co-modified PAMAM dendrimer-loaded arsenic trioxide of glioma targeting delivery system. https://www.dovepress.com/a-novel-rgdycpeg-co-modified-pamam-dendrimer-loaded-arsenic-trioxide-o-peer-reviewed-article-IJN
[88]
Grimm, S.A.; Marymont, M.; Chandler, J.P.; Muro, K.; Newman, S.B.; Levy, R.M.; Jovanovic, B.; McCarthy, K.; Raizer, J.J.; Phase, I. Phase I study of arsenic trioxide and temozolomide in combination with radiation therapy in patients with malignant gliomas. J. Neurooncol., 2012, 110(2), 237-243.
[http://dx.doi.org/10.1007/s11060-012-0957-6] [PMID: 22875709]
[89]
Wang, C.; Chen, X.; Wu, J.; Liu, H.; Ji, Z.; Shi, H.; Gao, C.; Han, D.; Wang, L.; Liu, Y.; Yang, G.; Fu, C.; Li, H.; Zhang, D.; Liu, Z.; Li, X.; Yin, F.; Zhao, S. Low-dose arsenic trioxide enhances 5-aminolevulinic acid-induced PpIX accumulation and efficacy of photodynamic therapy in human glioma. J. Photochem. Photobiol. B, 2013, 127, 61-67.
[http://dx.doi.org/10.1016/j.jphotobiol.2013.06.001] [PMID: 23962849]
[90]
Griffin, R.J.; Williams, B.W.; Koonce, N.A.; Bischof, J.C.; Song, C.W.; Asur, R.; Upreti, M. Vascular disrupting agent arsenic trioxide enhances thermoradiotherapy of solid tumors. J. Oncol., 2012, 2012..
[http://dx.doi.org/10.1155/2012/934918] [PMID: 22272199]
[91]
Karsy, M.; Albert, L.; Murali, R.; Jhanwar-Uniyal, M. The impact of arsenic trioxide and all-trans retinoic acid on p53 R273H-codon mutant glioblastoma. Tumour Biol., 2014, 35(5), 4567-4580.
[http://dx.doi.org/10.1007/s13277-013-1601-6] [PMID: 24399651]
[92]
Zhen, Y.; Zhao, S.; Li, Q.; Li, Y.; Kawamoto, K. Arsenic trioxide-mediated Notch pathway inhibition depletes the cancer stem-like cell population in gliomas. Cancer Lett., 2010, 292(1), 64-72.
[http://dx.doi.org/10.1016/j.canlet.2009.11.005] [PMID: 19962820]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy